CHAPTER 8

The assignment game

8.1 The formal model

This chapter presents a model in which there may be many sellers maa
many buyers, or many firms and workers. Formally, there are two .mEH
disjoint sets of players P and Q, containing m and » players, respectively.
Members of P will sometimes be called P-agents and members of ¢ called
(-agents, and the letters i and / will be reserved mOn.mv. m:m .@-mmgﬁm..nm-
spectively. Associated with each possible Ez;.ﬂ,m:_u (i, b in PxQ isa
nonnegative real number o;;. A game in coalitional function form i.:r
side payments is determined by (P, Q, o), iﬂ...&m numbers «;; being
equal to the worth of the coalitions (i, j} nnmmpm::m wm one N.mmmcﬁ and
one Q-agent. The worth of large coalitions is ao:.u.EEna entirely by the
worth of the pairwise combinations that the coalition members can form.
That is, the coalitional function v is given by

v(S)=ay if §={i,j}foriin Pand j in Q;

v(S) =0 if S contains only P-agents or only (J-agents; and

v(S) = max(v(é, j;) +vliy, Ja)+ -+ - +0{ig, ji)) for arbitrary

coalitions S, with the maximum to be taken over all sets

(U1 f1), +evs Uk, Ji)} of k distinct pairs in _m.wx M@. where Sp

and §;, denote the sets of P- and Q-agents in S (i.e., the .

intersection of the coalition S with P and with Q) respectively.

Of course the number & of pairs in this maximization problem

cannot exceed the minimum of |Sp| and |Sg|.

So the rules of the game are that any pair of agents (i, j) w.b PxQ can
together obtain «;;, and any larger coalition is valuable on_x Gmo?n as mn
can organize itself into such pairs. The members of any nom:nmou EB\.E-
vide among themselves their collective worth in any way EQ _uﬂm. \wb im-
putation of this game is thus a nonnegative vector (u, ﬁ in R™x w Mcos
that 3¢ pt;+Z ;¢ o vy = v(PUQ). The easiest way to interpret this is to
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take the quantities «;; to be amounts of money, and to assume that agents’
preferences are concerned only with their monetary payoffs.

We might think of this kind of game as arising from the multiseller
generalization of the model of Chapter 7, where P is a set of potential
buyers of some objects offered for sale by the set Q of potential sellers,
and each seller owns and each buyer wants exactly one indivisible object.
If each seller has a reservation price of zero, then the a,;'s represent each
buyer i’s reservation price for the object offered by seller ;. In this case if
buyer i buys from seller ; at a price D, and if no other monetary transfers
are made or received by / and J, then the resulting utilities to the two
agents are u; = oy;—p and v; = p. More generally, if each seller J hasa
reservation price c;, and each buyer i has a reservation price r;; for object
J, we may take o, to be the potential gains from trade between i and
J; that is o;; = max{0, ri;—¢;]. In this case if buyer i buys object j from
seller j at a price p, and if no other moenetary transfers are made, the util-
ities are wu; =ry—p and v; =p—c;. (It will be convenient to normalize
each seller’s utility function in this way, with the utility of keeping his
own object being zero rather than ¢; as in the previous chapter, so that
these utilities u; and V; sum to a;. There is no loss of generality in doing
$0.) Note that transfers between agents are not restricted to those between
buyers and sellers; for example, buyers may make transfers among them-
selves as in the bidder rings of Section 7.2.1.

Of course, in a similar way we can think of the P- and (J-agents as being
firms and workers, and so on. As in the marriage model, we look here
at the simple case of one-to-one matching, with firms constrained to hire
at most one worker. In such a case, the a;;'s Tepresent some measure of
the joint productivity of the firm and worker, and transfers between a
matched firm and worker represent salary. Transfers can also take place
between workers (as when workers form a labor union in which the dues
of employed members help pay unempioyment benefits to unemployed
members) or between firms.

Note that since money is freely transferable and since each agent’s pref-
erences are assumed to be essentially monetary in nature, we are assum-
ing that no agent has strict preferences. That is, for every pair of objects
and any buyer, there is a pair of prices that makes the buyer indifferent
between purchasing either of the objects.

The evaluation of the maximization problem to determine v(S) for a
given matrix « is called an optimal assignment problem or simply an as-
signment problem, so games of this form are called assignment games.
We will be particularly interested in the value of the coalition PUQ, since
v(PU Q) equals the maximum total payoff available to the players in this
game, and hence determines the Pareto set and the set of imputations.
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Consider the foilowing linear programming (LP) problem P;:

Maximize ¥ a;;*x;;
i
subject to (a) X x;; =<1
i

(b) 2 x;=1
r

ﬁnv Xy =0.

Note that constraints (a), (b), and (c) are almost the same as constraints
(1), (2), and (4) in Theorem 3.2.1. (The difference is that the inequalities
in (a) and (b) allow agents to be unmatched.) So we may interpret x;; as,
for example, the probability that a partnership (/, j) will form, Then the
linear inequalities of type (a), one for each j in g, say that the probability
that j will be matched to some J cannot exceed 1. The inequalities of form
(1), one for each i in P, say the same about the probability that i will be
matched.

[t can be shown as in Section 3.2.4 (seg, e.g., Dantzig 1963, 318) that
there exists a solution of this LP problem that involves only values of
zero and one, (The extreme points of systems of linear inequalities of the
form (a), (b), and (c) have integer values of x;;; i.e., each x;; equals zero
or one.) Thus the fractions artificially introduced in the LP formulation
disappear in the solution and the (continuous) LP problem is equivalent
to the (discrete) assignment problem for the coalition of all players, that
is, the determination of v(PUQ). Then v(PUQ)} =X a;;+Xx;;, where x is
an optimal solution of the LP problem.

Definition 8.1. A feasible assignment for (P, Q, «) is a matrix x = (x;;)
(of zeros and ones) that satisfies (a), (b), and (c) above.

Then using the interpretation of x given above we can say that x; =11if
and j form a partnership and x;; = 0 otherwise. If ¥, x;; =0, then / is un-
assigned, and if T, x;; =0, then j is likewise unassigned. A feasible as-
signment x corresponds exactly to a matching x as defined in Definition
2.1, with p(i) = if and only if x;; =1. And it is equivalent to say that an
agent { or j is unassigned at x or is unmatched (single) at a.

Any solution of the preceding LP problem is calied an optimal as-
signment.

Definition 8.2. A feasible assignment x is optimal for (P, Q, o) if, for
all feasible assignments X', Z; ; oy;+Xi; E DL TR
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>.b assignment problem always has a solution, since there are only a fi-
nite s.:BcQ of assignments. For example, consider the assignment pro-
lem given by

10 12 7
a=| 6 §2]).
559

There are two optimal assignments given by

100 01¢0
x=1010 and x'=( 100
001 co01

with value aptoayton= o+ g+ oy =27,

Definition 8.3.  The pair of vectors (u,v), with u in R" and v in R", is

called a feasible payoff for (P, Q, ) if there is a feasible assignment x
such that

T+l =3 ayex;.
ieP je@ ieP
jeg

In this case we say (u, v) and x are compatible with each other, and we
call ((u,v); x) a feasible outcome. Note again that a feasible payoff vec-
tor may involve monetary transfers between agents who are not assigned
to one another,

As in the models of earlier chapters, the key notion is that of stability.

-u%::mo.: 8.4. A feasible outcome ((u,v);x) is stable {or the payoff
(4, v} with an assignment x is stable) f

() 20, ;20

(i) w+yzay forall (i,/)in PxQ.

Condition (i} (individual rationality) reflects that a player always has the
o.v:o: of remaining unmatched (recall that v{i}=v(j)=0 for all indi-
vidual agents / and ;). Condition (ii) requires that the outcome is not
blocked by any pair: If (ii) is not satisfied for some agents / and J, then it
would pay them to break up their present partnership(s) (either with one
another or with other agents) and form a new partnership together, be-
cause this could give them each a higher payoff.
From the definition of feasibility and stability it follows that
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Lemma 8.5. Let ((u,v),x) be a stable outcome for (P, Q, o). Then
(i) w+v,=ay forall pairs (i, j) such that x;; =1
(i) u; =0 forall unassignedi, and wv; =0 for all unassigned j at x.

Proof: Let R (respectively S) be the set of all unassigned i (respectively
J) at x. Then by feasibility of ((u,v) x):

DuitX =20 (Utux;+ 2 wi+t D ui= 3 a;ex;.

P Q PxQ ieR ies PxQ
Now apply the definition of stability.

The lemma imptlies that at a stable outcome, the only monetary trans-
fers that occur are between P- and (-agents who are matched to each
other. (Note that this is an implication of stability, not an assumption
of the model.)

8.2 The core of the assignment game

Consider the LP problem P} that is the dual of Py, that is, the LP prob-
lem of finding a pair of vectors (u, v) in R7 x R", that minimizes the sum
M u; + MU v;
ieP feQ
subject, for all/ in P and j in Q, to
@9} =20, 1,20
A—u*u :-.+—¢.NQ-......

Because we know that P, has a solution, we know also that Py must
have an optimal solution. A fundamental duality theorem (see Dantzig,
1963, 129) asserts that the objective functions of these dual LP's must at-
tain the same value. That is, if x is an optimal assignment and (u, v) is a
solution of P{, we have that

M u; + M = M Qm‘...-k....,._"tn&ucmv. Amc
ieP ieQ FxQ

This means that ((«, v), x) is a feasible outcome. Moreover, ({1, v), x)
is a stable outcome for (P, O, o) since (a*} ensures individual rationality
and u; +v; = o for all (i, ) in PxQ by (b*),

On the other hand, condition (b*) says that

wty;zv(i,jf) foralliinP, jin Q.

1t follows, by the definition of v(S}, that for any coalition S =8pU Sy,
where Sy is contained in P and S in Q,
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2 ut+ 3 vzv(S). (8.2)
ie .W.T Jje .m.m
But (8.1) and (8.2) are exactly how the core of the game is determined
(recall Proposition 7.1): (8.1) ensures the feasibility of (x, v) and (8.2)en-
sures its nonimprovability by any coalition. Conversely, any payoff vec-
tor in the core, that is satisfying (8.1) and (8.2), satisfies the conditions
for a solution to Pf.
Hence we have shown that

Theorem 8.6 (Shapley and Shubik). Let (P, Q,«) be an assignment
game. Then

(@) the set of stable outcomes and the core of (P, Q, ) are the same.
(b) the core of (P, Q, ) is the fnonempty) set of solutions of the
dual LP of the corresponding assignment problem.

The following two corollaries make clear why, in contrast to the discrete
models considered earlier, we can concentrate here on the payoffs to the
agents rather than on the underlying assignment (matching).

Corollary 8.7.  If x is an optimal assignment, then it is compatible with
anty stable payoff (u,v).

Proof: Immediate from the fact that if («, ») is a stable payoff, then it
satisfies (8.1) for any optimal assignment.

Corollary 8.8. If ((u,v),x) is a stable outcome, then x is an optimal
assignment.

Proof: Immediate from the fact that
M, hb.+M. Q&”m\.ﬁwcmv" M Q_..\.-RQ..
J J i

As in the marriage model, if i/ prefers a stable payoff (u, v) to another
stable payoff (u', v’), his or her mate(s) will prefer (', v’} (recall Corol-
lary 2.21).

Proposition 8.9. Let ((u,v),x) and ((«',v'),x’) be stable outcomes for
(P, Q,a). Then if xj; =1, u/>u; implies vj< ;.

Proof:  Suppose v/ =z v;. Then oy = uf+ v/ > u; + v; = oy, which is a con-
tradiction.
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Just as Proposition 8.9 shows how the interests of P- and ()-agents are op-
posed in the core, the following theorem shows that among ﬂ:nﬂmnu<mm,
the P-agents and (9-agents have common interest in the core. Specifically,
as in the marriage market, the core is a lattice; that is, En.m_.nmﬁﬂ lower
(or least upper) bound to any two points in the core is also in the core (re-

call Theorems 2.16 and 3.8). ny - i
Define the partial order (u',v’)>p(u,v) if 4/ >uy; m.o._. all { in P an
;> u; for at least one i in P. It follows from Eouom&o.: 8.9 that for
stable outcomes, if (u’, v’)>p (1, v) then v/ =v; for all j in Q. Then we

have

Theorem 8.10 (Shapley and Shubik). The core of the %.M.mzﬁm:.. game
endowed with the partial order =p forms a complete lattice (dual to the

latrice with ordering =g).

Proaf- Let (u,v) and (u', v') be any two payoff vectors in the core. Let
x be some optimal assignment. Let
w; =min{u;, uf} v; =minfv;, vf}
i; = max{u;, u}} 7; =max(v;, v}
We will show that ((u, D), x) and ((&, v}, x) are also in the core. For
any { and j we have either
slb.x_..ms.."E_.\.*.ﬂ.‘N:__u.n_lt‘..‘NQ*.._.. or
.«.:.x_l.m‘.. "2_.+mx. Ntw.a_vn\__‘.., WQ.C,.
By Corollary 8.7, (u,v) and (u’,v’) are compatible with x. Qom:.w
u; =0 and 7; = 0. It remains to show that Tiui+L;n= ENC@. But it
is immediate, from Proposition 8.9 and Lemma 8.5, that if x;; =1 then
wi+U=uitvj=oy 01
W&..Tﬁ_‘"":m.fc._.("ﬁn_w..
Hence

ME+MSHMQ¢..H¢HE%C©V.
i J iJ

Analogously, (&, p) is stable. Hence we have shown that the coreis a

lattice. Since it is a convex polytope it is also a compact set, from which it

foliows that it is a complete lattice.

As in the marriage market, this implies the existence of w..mbn Q-optimal
stable outcomes. That is, there is a vertex in the core at which every player
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from one side gets the maximum payoff and every agent from the other
side gets the minimum payoff. There is another vertex with symmetric
properties. This is an immediate consequence of Theorem 8.10 and Prop-
Osition 8.9.

Theorem 8.11 (Shapley and Shubik). There is a P-optimal stable payoff
(U, 1), with the property that for any stable payoff(u,v), Bz uandy<v;
there is a Q-optimal stable payoff (u, ) with symmetrical properties.

83 A multiochject auction mechanism

In this section we will interpret P as a set of bidders and Q as a set of ob-
Jects, Bach object j has a reservation price of ¢;. The value of object j to
bidder f is «;; = 0. A feasible price vector p is a function from QtoR*
such that p; = p(f) is greater than or equal to ¢ ;. As a notational conven-
tion we will also assume in this section that Q contains an artificial “nul
object,” O, whose value q is zero to all bidders and whose price is al-
ways zero. Then if a bidder is unmatched we will say that he or she is as-
signed to O. (More than one bidder may be assigned to 0.) The demand
set of a bidder i at prices p is defined by

Dilpl=1je Q; a;;—p;=max{ay—pl).
ke

The price vector p is called quasi-competitive if there is a matching g
from P to Q such that if u(i) =/ then j is in D;(p), and if { is unmatched
under p then O is in D;(p). Thus at quasi-competitive prices p each buyer
can be assigned to an object in his or her demand set. The matching u is
said to be compatible with the price p. The pair (p, u) is a competitive
equilibrium if p is quasi-competitive, x is compatible with p, and pi=c;
for all j ¢ u(P). Thus at a competitive equilibrium, not only does every
buyer get an object in his or her demand set, but no unsold object has a
price higher than its reservation price. If {p, u) is a competitive equilib-
rium, p will be called a competitive or an equilibrium price vector.

It is easy to verify that if (p, p) is a competitive equilibrium, then the
corresponding payoffs {u, v) are stable (where u;=a;~-pand ;= p; —¢;
for j = u(i)). The existence of a P-optimal stable payoff is equivalent to
the statement that there is a unique vector of equilibrium prices that is
optimal for the P-agents, in the sense that it is at least as small in every
component as any other equilibrium price vector, This price is called the
minimum equilibrium price. We will describe an algorithm for computing
this price, which is an auction mechanism that generalizes the Vickrey sec-
ond-price auction described in Chapter 7. (Note that the Vickrey auction
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of a single object also produces the minimum equilibrium price.) As we
will see in Section 8.4, one important property of the single-object auc-
tion that generalizes to the multiobject case is that submitting true valua-
tions is a dominant strategy for the bidders.

To describe the mechanism, we will make use of the following well-
known result from graph theory. Let B and C be two finite disjoint sets
(e.g., of buyers and objects, respectively). For each i in B, let D; be a sub-
set of C (e.g., D; is i’s demand set at some set of prices). A simple assign-
ment is an assignment of objects to buyers such that each buyer i is as-
signed exactly one object j such that j is in 13;, and each object is assigned
to at most one buyer. (So a simple assignment assigns an object to every
buyer but may not assign every object to a buyer.) Then it is apparent that
if a simple assignment exists, each buyer in every subset B’ of B must be
matched to a different object, so there must be at least as many objects in
D(B"y=;. 5 D; as there are buyers in B’. Hall’s theorem says that this
necessary condition is aiso sufficient,

Theorem 8.12 (Hall’s theorem). A simple assignment exists if and only
if, for every subset B’ of B, the number of objects in D(B’) is at least as
great as the number of buyers in B’.

The auction mechanism for the multobject case that we will now present
produces the minimum price equilibrium in a finite number of steps.

We will take all prices and valuations to be integers. At the first step of
the auction the auctioneer announces an initial price vector, p(1}, equal
to the vector ¢ of reservation prices. Each bidder “bids” by announcing
which object or objects (including the null object O) are in his or her de-
mand set at price p(1).

Step (t+1): After the bids are announced, if it is possible to match each
bidder to an object in his or her demand set at price p(¢) the algorithm
stops. If no such matching exists, Hall’s theorem implies that there is
some overdemanded set, that is, a set of objects such that the number of
bidders demanding only objects in this set is greater than the number of
abjects in the set. The auctioneer chooses a minimal overdemanded set
(i.e., an overdemanded set S such that no strict subset of § is an over-
demanded set) and raises the price of each object in the set by one unit.
All other prices remain at the level p(¢}. This defines p(¢+1). (Note that
the nonexistence of the matching implies the minimal overdemanded set
does not.contain the null object O, since we allow any number of agents
to be matched to O if O is in their demand sets.)

It is clear that the algorithm stops at some step ¢, because as soon as
the price of an object becomes higher than any bidder’s valuation for it,
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no bidder can demand it. It follows that the final price obtained by this
algorithm is a quasi-competitive price vector. Indeed it is the minimum
equilibrium price vector, although this fact is not so obvious.

Theorem 8.13 (Demange, Gale, Sotomayor). Let p be the price vector
obtained from the auction mechanism. Then p is the minimum quasi-
competitive price,

Progf: Suppose instead that there exists a quasi-competitive price ¢ such
that p £ g. Now at step ¢ =1 of the auction we have pily=cso p()<
g. Let ¢ be the last step of the auction at which p{f) =gq and let §;={;;
pi{t+1)>q;). Let S be the minimal overdemanded set whose prices are
raised at stage £ +1, thus S=; pi{t+j)>p;(t)1, so Sy is contained in 3,
Furthermore g; = p;(1) for all j in S, (since we are working with all inte-
gers). We will show that S—S; is nonempty and overdemanded, hence S
is not a minimal overdemanded set, contrary to the rules of the auction.

Define T'= [i; D;(p(¢)) is contained in §). That § is overdemanded
means exactly that

IT}>15]. M

Define Ty = {i e T; the set of objects in §; demanded by i at price p(¢) is
nonempty).

We claim that D,(q) is contained in §, for all / in T). Indeed, choose j
in Sy and in D;(p(1)). If k ¢ S, then i prefers j to k at price p(t) because {
isin 7, but p,(#) < g, and P;(t)=gq;. 8o i prefers j to k at price g. On the
other hand, if & is in $—8), then § likes J at least as well as & at price
p(t), but p (1) < p(t+1) < g, {and, again, pi(t)=gq;)soiprefers fto k
at price g, as claimed. Now since g is quasi-competitive there are no over-
demanded sets at price g so

FAEIE @

Now from (1) and (2), |T=~T}|>|S-S,| so T— T, % G and T— T,={ieT;
Di(p(t))eS—5;}. So S—8§,; =0 and S-S5, is overdemanded, giving the
desired contradiction.

Theorem 8.14 (Demange, Gale, Sotomayor). If p is the minimum quasi-
competitive price, then there is a matching u* such that ( p.ut) is an equi-
librium (so p is a competitive price vector),

Proof: Let u be a matching corresponding to p. Call an object j over-
priced if it is unmatched by » but p; > ¢;. If {p, 1) is not an equilibrium,
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there is at least one overpriced object. We will give a procedure for alter-
ing p s0-as to eliminate overpriced objects. For this purpose we construct
a directed graph whose vertices are PU Q. There are two types of arcs.
If u(i) = there is an arc from i to J. If j is in D;(p) there is an arc from
j to i, Now let k be an overpriced object. Then k& is in D;(p) for some
i, for if not we could decrease p, and still have quasi-competitive prices,
which contradicts the minimality of p. Let PUQ be all vertices that can
be reached by a directed path starting from k.

Case I: P contains an unmatched bidder, i. Let (k, i}, ja, {2, J3, 35 1)
Je, 1) be a path from & to i, Then we may change p by matching i, to &, i;
to ja, ..., 4 t0 jp. The matching is still competitive and & is no longer over-
priced so the number of overpriced objects has been reduced.

Case 2:  Alliin P are matched. Then we claim that there must be some
Jj in O such that p; =c;, for suppose not. By definition of PU Q we know
that if i ¢ P then { does not demand any object in Q. Therefore we can
decrease the price of each object in & by some positive § and still have
quasi-competitiveness, contradicting the minimality of p. So choose j in
Q such that p;=c; and let (k, iy, ja, {3, ..., jr, ig, /). Again change p by
matching ¢, to k, i; to j,, ..., leaving j unmatched. Again the number of
overpriced objects has been reduced.

8.4 Incentives

Denote by (i@, v) the P-optimal stable payoff for the market M = (P, Q,
«). In this section it will continue to be convenient to think of P-agents
as buyers, and (-agents as sellers. (But we will no longer speak of un-
matched buyers as demanding an artificial null object O, nor will we con-
tinue to take all prices to be integers.) For simplicity we will take the res-
ervation prices ¢ to all be zero, so v is the minimum equilibrium price
vector. Let v be the coalitional function of the game, that is, for every §
contained in P and R contained in Q, v(S, R) =max X s g o;; Xy, for all
assignments x. The demand set of buyer { at prices v is defined by D;(v) =
je@ such that o — Yy =0, oy — Yy uamun‘nm@—ougl.ﬁl\._.k:.. (Note that
now that we have dispensed with the null object, the demand set of a
buyer may be empty.)

The following lemma shows a critical way in which the Vickrey second-
price auction is generalized by the mechanism that sets prices equal to v
(i.e., that gives buyers their optimal stable outcome). Both mechanisms
give buyers their marginal contribution to coalitional values.

Lemma 8.15 (Demange; Leonard). Forall iin P,
NM_. = Qm&uu mvlthﬁu|_;. Dv.
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Proof: Let x be an optimal assignment for M = (P, Q, o). Construct a
graph whose vertices are P U (). There are two kinds of arcs. If x;; = 1
there is an arc from / to j. If j is in D;(y) and X;; =0 there is an arc from

' Jtoi. Let j be an object whose price is greater than zerc. Then there is an

oriented path starting from j and ending at an unmatched buyer or at an
object of price zero. To see this, suppose there is no such path, and de-
note by S and T the sets of objects and buyers, respectively, that can be
reached from j. Then g, >0 for all k in S. Furthermore, if i ¢ T, then
there is no object in § that is demanded by i at price v. (If & is demanded
by i then there is an arc from k to i if x;; =0, or an arc from { to k if
xi =1, In both cases, if 7 is not in 7, & cannot be in §.) Then we can de-
crease y, for all k£ in §, and still have an equilibrium, which contradicts
the minimality of v.

So, let {” be any buyer. If i is assigned to some object j,, we may con-
sider a path ¢ beginning at /| and ending at an unmatched buyer /; or at
an object & of price zero. (Note that k might be j,.) That is, ¢ = (j,, |,
Fradz, e Jondsy Or €= (f1, £1, Jas i3y o0y J5s s, k). Consider now the assign-
ment x* in M'= (P —{i'}, Q, «) that assigns j, to i}, j; t0 i3, ..., j; to i,
and that leaves & unmatched if k is in the path, and that otherwise agrees
with x on every buyer in P — {i’} who is not in the path. We claim the out-
come ((#* v);x’') is stable for M, where u? = &; for all i > i”. This is im-
mediate from the fact that x/ =1, je is demanded by J; at price v; for all
t=1,...,5, and ((#,v),x) is stable for (P, Q, «). Then x’ is an optimal
assignment for A, so

T ayx=v(P—{i'}, Q). @
iz
je@

On the other hand,
X oagxj=Xul+Y u=3 &i+3Y u=v(P, Q). (b)
_.um i i izi J
i

From (a) and (b) we obtain & =v(P, @)—uv(P—{i’'], Q), which com-
pletes the proof.

Let x" be any optimal assignment for (P—{i}, O— /], «), where [ is as-
signed to j under the optimal assignment x for (P, Q, «). Then
Y apXpgtoag< Yoo Xt oy,

Ei =i
k=j LN}

from optimality of x. Then
2 XS X Opt Xy )

] i
ke kj
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On the other hand,

2 QX = 3 oy Xy, 2)
1.7 £
k#j k#j

from optimality of x’.
By (1} and (2) we get that

v(P, Q)=ay+u(P—[i},@—{j]), if x;=1 (*)

Note that Lemma 8.15 and (*) together imply that if buyer i gets object
J in the auction,

Oy=oy—[v(P—{i],Q)—v(P-(i}, Q—[/])). (**)
That is, buyer i buys object j at the price
gi=lw(P-{i}, Q) —v(P-[i}, -1/ 1.

The critical observation for the proof of the next theorem is that this
price does not depend on any valuations «;, of buyer /. So as in the Vick-
rey second-price auction for a single object, the price a buyer pays is not
determined by the reserve prices he or she states. This permits us to prove
the following.

Theorem 8.16 (Demange; Leonard). In the multiobject auction mech-
anism, truth telling is a dominant strategy for each buyer.

Proof. If buyer { tells the truth and gets object j at the end of the auc-
tion, his or her profit will be &; = o, — [2(P - [i}, Q) —v(P— i}, Q- [/ ]],
by (**). Suppose the buyer misrepresents his or her valuations. If he or
she is assigned the same object j at the end of the auction under the new
valuations, the buyer’s true payoff will be the same, since he or she will
pay the same price p; [given by (**)] for object j. If assigned to some
other object &, the buyer will pay [v(P—{i}, Q) — v(P—{i], @—~[k])] and
his or her true profit will be &} = oy — [0{P —{i}, Q) —v(P—{i}, O—[&])].
But,
ai +U(P—(i],Q—lk}) =ay+max ¥ a,xp<v(P,Q)
xRy
fxk

by (*). So #; = &}, and buyer / has not profited from misstating his or her
valuations. If buyer / is unmatched, then he or she also does not profit,
since @i =0=< &,
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If buyer / is unmatched under the true valuations, then v(P — {i1,0)=
v(P, O}, so if he or she is matched to & under the misstated valuations,
& = log+v(P—{i}, Q— (KD = v(P, Q) = v(P,Q) - v(P, Q) =0 = ;.
Thus in every case, &; = # and truth telling is a dominant strategy for .

8.5 The effect of new entrants

In this section we return to another question we have previously con-
sidered for the marriage market, namely, What is the effect on the set
of stable outcomes of changing the market by introducing a new agent?
Aside from being able to prove results parallel to those we have seen for
the marriage model, we will see that the special assumptions of the as-
signment model allow us t¢ draw some even stronger conclusions.

Suppose some P-agent i* enters the market M = (P, Q, a). The new
market is then M" = (PU(i*}, Q, "), where o) = ;; for all / in P and j
in Q. The first result, whose proof we will defer until the more general
model of the next chapter (Theorem 9.12), is parallel tc Theorem 2.25
for the marriage market. It compares the optimal stable outcomes of the
two markets.

Proposition 8.17. (a) Let (&, v) and (@', y') be the P-optimal stable pay-
offs for M and M ", respectively. Then @} < I; for alf i in Pand y !z v, for
al jin Q.

(b) Let (u,T) and (', 5’) be the Q-optimal stable payafds for M and
MY, respectively. Then u!<u; for all i in P and bj=0; for all j in Q.

The next result {analogous to Theorem 2.26 for the marriage market)
shows that there will be some P- and Q-agents for whom we can unam-
biguously compare all stable outcomes of the two markets.

Theorem 8.18: Strong dominance (Mo). If i* is matched under some
optimal assignment for M", then there is a nonempty set A of agents in
PUQ such that every Q-agent in A is better off and every P-agent in A is
worse off at any stable outcome of the new market than at any stable out-
come for the old market. That is, for all (u’,v’) and (u, v} stable for M**
and M, respectively, we have

(8) ifaP-agentiisinA, then u;=u}
(b) ifaQ-agentjisin A, then y; < v/,

Before proving this theorem we need to recall Lemma 8.15, which im-
plies that if (%", v’, x*) is the P-optimal stable outcome for MY then il =
V(PU[*}, Q)—v(P, Q).
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Recall that the central idea of the proof of Lemma 8.15 involved show-
ing that if i is assigned by x’ to some agent /|, then there is an oriented
Um.n—,.— C= A.\.H. w._.L..N- _—.N. .....\..: h..q. A.\..n+_:u m—.mHQ.ﬂm from .\.T with the follow-
ing properties. ,

Pl: cends at i if i; is unassigned by x’ or ¢ ends at j,_, if i, is assigned
to js4p by x" and v;,, =0.

P2: i, is assigned by x’ t0 j,,, forall m=1,...,5s—1.

P3: &, + v, = ay,, forall m=1, ..., s (since j,, is in the demand set of
i at prices v’).

Furthermore if x is the assignment (in M) defined by

i) xpm=1foralm=1,...,s,
(ii) x;=1if i and j are not in the path and xi =1,
(iii) if j;4, is in the path he or she is unassigned by x,

then x is an optimal assignment for M and the outcome (&, v’, x) is stable
for M, where &; = i/ for all i in P. Mo calls the path ¢ a “turniover chain,”
with the last element being the “crowd-out” i; or the “draw-in” j,,,. The
idea is that if x and x” are the assignments before and after i* enters the
market, then the agents in the chain ¢ are those whose assignments change.
I, for example, the P-agent i is unassigned by x’, he or she has been
crowded out of the market by the entry of the new P-agent i*.

The existence of the path ¢ will be needed to prove Theorem 8.18. The
following lemma takes advantage of the special assumptions of the as-
signment game, namely, that all payoffs are essentially monetary in na-
ture, to compare the benefits and losses that agents in a turnover chain
experience when a new player enters the game.

For each / in P and j in Q, define the “benefit functions” 5; and B,
as follows. For all pairs of payoff vectors (i, v) and (', v'), with (u, v)
stable for M and (', v') stable for M,

Bi((u, v), (¢, v")) =uj—u;, and
Bi((u,v), (w', 0')) = vf—v;.

Lemma 8.19: Benefit lemma (Mo). Let x’ be an optimal assignment for
MY, If i* is matched to some j, under x’' and (j, iy, j2, izs s Joi bss
(Js+1)) is some oriented path satisfying properties P1, P2, and P3, then

W\N_N‘m&uw...wm\uww. and

s.h..._u
. . V.c-V .
mf. = mﬁql_ = |.W:.

The lemma compares the “benefits” that accrue to agents in a turnover
chain resulting from the entry of the P-agent i*, Looking ahead for a
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moment to when we have completed the proof of Theorem 8.18, we know
that these benefits will be nonnegative for all the Q-agents and nonposi-
tive for all the P-agents in the chain. So the lemma says that the greatest
benefit will come to agent J1, who will be matched to /*, with decreasing
benefits to j, and so on for Q-agents more distant in the chain from i*,
And the greatest harm (i.e., the most negative benefit) will come to agent
i1, who was matched to j, before i* entered the market, with less harm
done to P-agents further down the chain from i* Note that these com-
parisons are rmeaningful here because we are speaking of monetary gains
and losses. (In the marriage medel, no similar comparison is possible,
since it would involve comparisons of, e.g., how a change from my sec-

ondto my third choice mate compares with your change from your sev-

enth to your ninth choice.)

Proof of Lemma 8.19:  Let {a',v", x") be stable for A" and let (u, v, x)
be stable for M, where x is defined from x’ by rules (i)-(iii).
Since x); =1, it follows from the stability of (u, v, x) that

oy =V 2oz =g D
Since xf; =1, the stability of (¢, v, x’) implies
o — VU= ay— U 2
Adding (1) and (2) gives us that v{— v, = v;— vy.
In the same manner, from the fact that x,, =1 and X33 =1, we obtain
vi— Uy = Ui —us.
Repeating this procedure we get that
V= =V — U= e = U= U =0y — Upyqe
In an analogous way we obtain
U—U Su)—lp S - Suj—u,.

Since (u, v) and (u’, v’) are arbitrary, we have concluded the proof.

Froof of Theorem 8.18: Consider any path starting from some partner
of i* under some optimal assignment for M and satisfying properties
PI, P2, and P3. Let A be the union of all agents belonging to all these
such paths. Since /* is matched under some optimal assignment for M,
A#@. It is enough to prove the theorem for any such path in A.
Suppose x* is an optimal assignment for M under which i* is matched
tofy. Let c=(j}, {1, ..., Jou Iss (fi 1)) be some oriented path starting from
J satisfying properties P!, P2, and P3. Let x be the optimal assignment
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for M derived from x’ by rules (i)-(iii). Let (u’,v', x") and (u,v,x) be
stable outcomes for M and M, respectively.

Case I: The path ¢ ends at i;. So i; is unmatched under x'. Then u, =
0 and so i, = u;. Since (u, v) and (u’, v} are arbitrary, B; =0. From
Lemma.8.19 it follows that 8; =0forallm=1,2,...,5s—1. In particular,
Up Sup forallm=1,2,...,5—1. Now, since x,,, =1 for all m=1,...,s,
we have u,, + v, = oy, and ¥}, + v} = o,y by stability, from which it fol-
lows that (v, —v,)+ (1, —u,) =0. We already know that u/, —u,, <0.
Therefore v, — v, =0 for all m=1, ..., s, which concludes the proof for
this case.

Case 2: The path ¢ ends at j;,. So v;,,=0. Then j,,, is not assigned
under x. Hence v, ;=0 and v/, = v,,,, which implies B; , =0. Hence
from Lemma 8.19, B; = 0and in particular, v, — v, =0forallm=1,...,s.
As before, since x; ;4 =1 we obtain that (v, — v/ )+ (#, —u)) =0.

Hence we have that u, —uJ > 0. This implies that B; < 0, which in turn
implies that B; =0forallm=1,...,s. Thenu,,—u,,<0forallm=1,...,s
and the proof is complete.

The final result of this section can be thought of as describing how much
the entry of an agent i* can move the core of the game. There will be some
agents whose worst core payoff in one of the two games (with and without
i*) is exactly equal to their best core payoff in the other,

Corollary 8.20 (Mo). Let (@',v') be the P-optimal stable payolf for
M?". Let {u, ) be the Q-optimal stable payoff for M. If i* is matched
under some optimal assignment for M, there exists a nonempty set A of
agenis in PUQ such that

(8) ifaP-agentiisinA, then i]= yu;
(b) ifaQ-agentjisin A, then =1,

Proof: Construct A in the same way as in Theorem 8.18. We know that
(7, v") is a stable payoff for M, where 1! =, for all { in P. Then, from
the Q-optimality of (u, D) it follows that yi=7 forall je Qand I = y;
for all i e P. Now use Theorem 8.18 (strong dominance) to get

u;ziij=u; foralliinA,
=0; foralljin A,

from which it follows that ¥; = & and 7; = y; for all / and j in 4.
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B.6 Guide to the literature

The assignment game is a model formulated and studied by Shapley and
Shubik (1972). All the initial results presented here are from that paper,
although the proofs are not the same.

Section 8.3 follows the paper of Demange, Gale, and Sotomayor (1986),
The auction mechanism is a version of the Hungarian algorithm for the
assignment problem (see, e.g., Dantzig 1963). Hall’s theorem is due to
P. Hall (1935). Two simple proofs of Hall’s theorem are given by Gale
{1960) in a book that deals with some other linear assignment models. De-
mange, Gale, and Sotomayor (1986) also consider another auction mech-
anism that is a version of the deferred acceptance algorithm proposed
by Crawford and Knoer (1981}, which in turn is a special case of the al-
gorithm of Kelso and Crawford that we considered in Section 6.2. They
make precise the observation of Crawford and Knoer that the outcome of
this algorithm for the discrete case can be made to approximate arbitrarily
closely the buyer-optimal core outcome for the continuous assignment
problem. They showed that the final price obtained in this algorithm has
upper and lower bounds that can be made arbitrarily close to the mini-
mum equilibrium price. Mo (1988b) considers a generalization of the Hun-
garian algorithm in this context by defining an overdemanded set that
contains all minimally overdemanded sets, which he calls the largest pure
overdemanded set. Mo, Tsai, and Lin (1988) observe that Demange, Gale,
and Sotomayor (1986) incorrectly assert that an algorithm in Gale (1960)
computes a minimal overdemanded set, but they show that a variant of
this algorithm computes the largest pure overdemanded set.

Section 8.4 follows the independent work of Leonard (1983) and De-
mange (1982). The proof of Theorem 8.15 presented here follows that of
Demange, whereas our proof of Theorem 8.16 follows Leonard’s paper.

Section 8.5 on new entrants follows the work of Mo (1988a), although
the proofs are somewhat different. Proposition 8.17 will be proved for a
generalization of the assignment model in the next chapter, A particu-
lar case was also proved (for a different generalization of the assignment
model) by Kelso and Crawford {1982). As mentioned in connection with
Theorem 2.25, earlier related results in the context of linear programming
are found in Shapley (1962). Although most of the results in the literature
concern the effect of new entrants on the core of the game, Mo and Gong
(1989) show that the same qualitative effects (i.e., agents on the same side
of the market are substitutes and agents on opposite sides are comple-
ments) are found using the Shapley value. (The Shapley value selects a
unique imputation for each game with side payments; See Shapley 1953b,
and the collection of papers on the subject in Roth 1988b.)
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Becker (1981), who uses the assignment model to study marriage and
household economics, makes use of the fact that stable outcomes all cor-
respond to optimal assignments (and that the optimal assignment is typi-
cally unique) to study which men are matched to which women, for dif-
ferent assumptions about how the assignment matrix is derived.

Rochford (1984) characterized certain points in the interior of the core
of an assignment game as fixed points of a “rebargaining” process, in
which matched pairs are thought of as bargaining over their transfer pay-
ments. In Roth and Sotomayor (1988) it was observed that Tarski’s cele-
brated fixed point theorem (for order-preserving functions from a com-
plete lattice to itself) implies that these interior fixed points in the core
share the lattice property of the core, and have P- and Q-optimal ele-
ments. A similar rebargaining process was explored for a generalization
of the assignment game by Moldovanu (1988). A different formulation
of the bargaining process led Crawford and Rochford (1986) to consider
outcomes outside of the core. A similarly motivated reformulation by
Bennett (1988), however, again led to points in the core, A strategic model
of bargaining and matching that yields core points as equilibria is studied
in Kamecke (1989).

Geometric properties of the core of assignment games have also re-
ceived attention. Some measures of the degree to which the core is “elon-
gated,” reflecting the polarization of interests between the two sides of the
market, have been considered by Quint (1987a). Balinski and Gale (1987)
showed that the number of vertices of the core polytope of the assignment

game is at most Aww v where m=min{|P|, |Q|]. They gave a characteri-

zation of the games that realize these numbers when |P|=|Q| and also
studied games where | P]#|Q)|.

A presentation of the assignment game as part of a general introduc-
tion to game theory is given by Shubik {1984). A number of generali-
zations and related models have been explored, for éxample, by Curiel
(1988), Curiel and Tijs (1985}, Kaneko (1976, 1982), Kaneko and Wooders
(1982), Kaneko and Yamamoto (1986), Kamecke (1987), Quint (1987b,
1988a), and Thompson (1980) (who uses a nonstandard definition of the
core, however). Sotomayor (1986b) uses a standard definition of the core
for Thompson’s model, which allows multiple partners, and observes that
this model differs in many respects from the assignment game.

Sotomayor (1988) considers two generalizations of the assignment game
that allow many-to-many matching. In a model that keeps track of the
individual transactions between each firm and its workers, the results par-
alle} those of Chapter 5. That i3, the relationship between the results for
her model and the results presented in this chapter and the next for the
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one-to-one case are very similar to the relationship we have observed be-
tween the college admissions model and the marriage model. However
when only the aggregate payoffs to each agent are modeled, the core no
longer corresponds to the set of pairwise stable outcomes.

Quint (1988b) considers some conditions under which games with more
than two “sides” may have nonempty cores.

Samet and Zemel (1984) consider the refationship between linear pro-
grams and their duals in connection with the core of side payment games
whose coalitional function value for each coalition is given by a linear
program. See also Owen (1975) who studies games of this kind.




