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1 Introduction
Individuals in society have many potential partners. This situation creates
competition over the potential gains from marriage. In modern societies, explicit
price mechanisms are not observed. Nevertheless, the assignment of partners
and the sharing of the gains from marriage can be analyzed within a market
framework. The main insight of this approach is that the decision to form and
maintain a particular union depends on the whole range of opportunities and not
only on the merits of the specific match. However, the absence of explicit prices
raises important informational issues. There are two main issues distinguishing
the approaches used in the matching literature. The first issue concerns the
information structure and the second relates to the extent of transferability of
resources among agents with different attributes. Specifically, models based
on frictionless matching assume that perfect and costless information about
potential matches is available to all participants; the resulting choices exclusively
reflect the interaction of individual preferences. Such models may belong to
several classes, depending on whether or not compensating transfers are allowed
to take place between individuals and, if so, at what ‘exchange rate’. Still, they
all rely on a specific equilibrium concept, namely stability. Formally, we say
that an assignment is stable if:
(i) There is no married person who would rather be single.
(ii) There are no two (married or unmarried) persons who prefer to form a

new union.
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The interest in stable marriage assignments arises from the presumption
that in a frictionless world, a marriage structure which fails to satisfy (i) and
(ii) either will not form or will not survive.
Models based on frictionless matching are studied in the next three Sections.

An alternative approach emphasizes the role of frictions in the matching process;
in these models, based on search theory, information is limited and it takes time
to find a suitable match. The corresponding framework will be discussed in the
last Section.

2 Stable Matching without transfers: the Gale-
Shapley Algorithm

We begin our analysis of the marriage market assuming that there are no fric-
tions - i.e., that each man and woman knows the potential gains from marrying
any potential mate. Marriage can be viewed as a voluntary matching of males
and females, allowing for the possibility of staying single. We consider here only
monogamic marriages so that each person can have at most one spouse of the
opposite sex. These assignments can be presented by matrices with 0/1 entries
depending upon whether or not male i is married to female j. Since we consider
only monogamic marriages, there is at most one none zero entry in each column
and row. An illustration of such a representation with 4 men and 3 women,
where man 1 is married to woman 3, man 2 is married to woman 1, man 3 is
single and man 4 is married to woman 2 is shown in Example 7.1:

Example 7.1

1 2 3
1 0 0 1
2 1 0 0
3 0 0 0
4 0 1 0

We first study matching when agents cannot make transfers between each
other. We thus assume that a marriage generates an outcome for each partner
that is fully determined by the individual traits of the partners; this outcome
cannot be modified by one partner compensating the other for his or her deficient
traits. Although somewhat extreme, this assumption captures situations where,
because of public goods and social norms that regulate within family allocations,
there is limited scope for transfers, so that the success of a marriage mainly
depends on the attributes of the partners. However, an undesired marriage can
be avoided or replaced by a better one. Although there is no scope for trade
within marriage, there is margin for trade across couples.
Let there be a given number of men, M , and a given number of women,

N . We designate a particular man by i and a particular woman by j. Assume
that each man has a preference ranking over all women and each woman has
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a preference ordering over all men. Such preferences can be represented by a
M × N bi-matrix with a pair of utility payoffs, (uij , vij) in each cell. For a
given j, the entries vij describe the preference ordering of woman j over all
feasible males, i = 1, 2...M . Similarly, for a given i, the entries uij describe
the preference ordering of man i over all feasible women j = 1, 2...N . We may
incorporate the ranking of the single state by adding a column and a row to
the matrix, denoting the utility levels of single men and women by ui0 and v0j ,
respectively. The preferences of men and women are datum for the analysis.
However, the representations of these preferences by the utility payoffs are only
unique up to monotone transformations. An illustration of such a representation
with 4 men and 3 women is shown in Example 7.2:

Example 7.2

1 2 3 0
1 u11, v11 u12, v12 u13, v13 u10
2 u21, v21 u22, v22 u23, v23 u20
3 u31, v31 u32, v32 u33, v33 u30
4 u41, v41 u42, v42 u43, v43 u40
0 v01 v02 v03

Gale and Shapley (1962) were the first to demonstrate that a stable matching
always exists, and suggested an algorithm which generates a stable outcome. For
simplicity, we assume here that all rankings are strict. To begin, let each man
propose marriage to his most favored woman. A woman rejects any offer which
is worse than the single state, and if she gets more than one offer she rejects all
the dominated offers; the non rejected proposal is put on hold (‘engagement’).
In the second round, each man who is not currently engaged proposes to the
woman that he prefers most among those women who have not rejected him.
Women will reject all dominated offers, including the ones on hold. The process
stops when no male is rejected. Convergence is ensured by the requirement that
no woman is approached more than once by the same man; since the number
of men and women is finite, this requirement implies that the process will stop
in finite time. The process must yield a stable assignment because women can
hold all previous offers. So if there is some pair not married to each other it is
only because either the man did not propose (implying that he found a better
mate or preferred staying single) or that he did and was rejected (implying that
the potential wife had found a better mate or preferred staying single).
The stable assignment that is realized in the way just described need not be

unique. For instance, a different stable assignment may be obtained if women
make the offers and men can reject or store them. Comparing these stable
assignments, it can be shown that if all men and women have strict preferences,
the stable matching obtained when men (women) make the proposal is weakly
preferred by all men (women). This remarkable result shows that social norms of
courting can have a large impact on matching patterns (see Roth and Sotomayor
1990, ch. 2).
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As an example, let there be 3 men and 3 women and consider the matrix of
utility payoff in Example 7.3: (setting the value of being single of all agents to
zero)

Example 7.3

Women

Men

1 2 3
1 3,2 2,6 1,1
2 4,3 7,2 2,4
3 1,1 2,1 0,0

Note that, in this case, there is divergence of preferences among men; man
1 ranks woman 1 above women 2 and 3, while men 2 and 3 both put woman 2
at the top of their ranking. Similarly, there is divergence of preferences among
women; man 1 is the most attractive match for woman 2, while women 1 and 3
both consider man 2 as the best match. There is also a lack of reciprocity; man
1 would rather marry woman 1 but, alas, she would rather marry man 2. As a
consequence there are two possible stable assignments, depending on whether
men or women move first.
If men move first, man 1 proposes to woman 1, and men 2 and 3 both propose

to woman 2, who rejects man 3, but keeps man 2. In the second round, man
3 proposes to woman 1 who rejects him. In the last round, man 3 proposes to
woman 3 and is not rejected so that the procedure ends up with the outcome
emphasized in bold letters in the matrix below:

Women

Men

1 2 3
1 3,2 2,6 1,1
2 4,3 7,2 2,4
3 1,1 2,1 0,0

One can check directly that this assignment is stable. Men 1 and 2 obtain
their best option and do not wish to change spouse, while man 3 cannot find a
better match who is willing to marry him.
Now, if women move first, woman 2 proposes to man 1 and women 1 and

3 both propose to man 2, who rejects woman 3, but keeps woman 1. In the
second round, woman 3 proposes to man 1 who rejects her. In the last round,
woman 3 proposes to man 3 and is not rejected so that the procedure ends up
with the outcome emphasized in bold letters in the matrix below:

Women

Men

1 2 3
1 3,2 2,6 1,1
2 4,3 7,2 2,4
3 1,1 2,1 0,0

Again, one can check directly that this assignment is stable. Women 1 and
2 obtain their best option and do not wish to change spouse, while woman 3
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cannot find a better match who is willing to marry her. It is seen that the first
assignment, in which men move first is better for all men (except for man 3 who
is indifferent) and the second assignment, in which women move first is better
for all women (except for woman 3 who is indifferent).
A very special case arises if women and men can be ranked by a single male

trait x and a single female trait y. This assumption introduces a strong common-
ality in preferences, whereby all men agree on the ranking of all women and vice
versa. Specifically, let us rank males and females by their marital endowment
(i.e., xi+1 > xi and yj+1 > yj ), and let us assume that there exists a “house-
hold output function” h(xi, yj) that specifies the marital output as a function
of the attributes of the two partners.1 This output is then consumed jointly as
a public good, or shared between the partners in some rigid fashion (equally for
instance) in all marriages. A natural question is: Who marries whom? Would a
stable assignment associate a male with a high marital endowment to a female
with high marital endowment (what is called positive assortative mating)? Or,
to the contrary, will a highly endowed male be matched with a low endowment
female (negative assortative mating)? The answer obviously depends on the
properties of the function h(x, y). It is easy to show that if h(x, y) is strictly in-
creasing in both traits, the unique stable assignment is one with perfect positive
assortative mating. To see that, suppose that men propose first. In the first
round, all men will propose to the woman with the highest female attribute and
she will reject all offers but the one from the best man. In the second round,
all remaining men will propose to the second best woman and she will reject all
but the second best man and so on. The situation when women propose first
is identical. Symmetrically, if the male and female traits have opposing effects
on output, the unique stable assignment is one with perfect negative assortative
mating.
In addition to the identification of stable assignments, one can use the Gale-

Shapley algorithm to obtain simple comparative static results. Allowing for
unequal numbers of men and women, it can be shown that a change in the sex
ratio has the anticipated effect. An increase in the number of women increases
the welfare of men and harms some women. The same result holds in many to
one assignment.

3 StableMatching with transferable utilities: the
Becker-Shapley-Shubik model

3.1 The basic framework

The properties of the previous model heavily depend on the assumption that
transfers are impossible, so that a person cannot ‘compensate’ a potential part-

1This “household output function” should be distinguished from the standard household
production function described in the previous sections, which take the attributes of the spouses
as fixed. Here we are interested in a reduced form that depends only on attributes after all
relevant activities have been chosen so as to achieve intrahousehold efficiency.
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ner for marrying him or her despite some negative traits. In practice, this
assumption is hard to maintain. Whenever some commodities are privately
consumed, a spouse can reduce his\her private consumption to the partner’s
benefit, which de facto implements a compensation. We now consider the op-
posite polar case in which not only transfers are feasible, but there is a medium
of exchange that allows partners to transfer resources between them at a fixed
rate of exchange; that is, we assume that utilities are transferable (see Chapter
3).
Instead of introducing two matrices u = (uij) and v = (vij) as in the case of

non-transferable utility, we now consider a unique output matrix with entries
ζij which specifies the total output of each marriage. Given the assumption of
transferable utility, this total output can be divided between the two partners.
We denote the utility payoff of the husband by uij and the utility payoff of the
wife by vij . Thus, by definition, if i and j form a match we have

uij + vij = ζij (1)

As in the previous section with no transfers, we are interested only in stable
matching. The question is: for a given matrix ζ =

¡
ζij
¢
, which are the stable

assignments, and what are the corresponding allocations of output (or imputa-
tions) within each marriage. Note that the question is, in a sense, more difficult
than in the case with no transfers, since the distribution of output between
members is now endogenous and has to be determined in equilibrium. Still, it
is relatively easy to apply the criteria for stability in the case of transferable
utility. Specifically, one can show that a stable assignment must maximize total
output over all possible assignments. It is this simple and powerful result that
makes the assumption of transferable utility attractive in matching models.

3.1.1 Two examples

To understand this result, consider first the simplest possible case. Let there be
two people of each sex. Assuming that marriage dominates the single state (i.e.
if any two individuals remain unattached they can gain by forming a union),
there are two possible assignments: Man 1 marries woman 1 and man 2 marries
woman 2, or man 1 is married to woman 2 and man 2 is married to woman 1.
In testing for stability we treat the potential marital outputs ζij as given and
the divisions uij and vij as variables. Suppose, now, that the assignment in
which man 1 marries woman 2 and man 2 marries woman 1 (the off diagonal
assignment) is stable. Then, the following inequalities must hold

u12 + v21 ≥ ζ11 (2a)

u21 + v12 ≥ ζ22 (2b)

If the first inequality fails to hold then male 1 and female 1, who are currently
not married to each other, can form a union with a division of utilities which
will improve upon their current situations, defined by u12 and v21. If the second
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inequality does not hold then man 2 and woman 2, who are presently not married
to each other, can form a union and divide utilities so as to improve over the
current values u21 and v12. From equation 1 we have ζ12 = u12 +v12 and
ζ21 = u21 +v21 so that equation (2a) can be rewritten as

ζ12 − v12 + ζ21 − u21 ≥ ζ11. (2a’)

Adding conditions (2a’) and (2b) we obtain

ζ12 + ζ21 ≥ ζ11 + ζ22 (3)

By a similar argument, an assignment along the main diagonal will be stable
only if (3) is reversed. Condition (3) is not only necessary but also sufficient
for stability of the off diagonal assignment. For if it is satisfied we can find
values of u and v such that (2a) and (2b) hold. Such imputations support the
stability of the assignment since it is then impossible for both partners to gain
from reassignment. More generally, for an arbitrary number of men and women,
if there are any two alternative assignments, such that under one assignment
the aggregate output is lower then that assignment cannot be stable, because
for any division of the marital outputs there must be at least two individuals in
different marriages who can gain by forming a new union.
To illustrate the implications of the transferable utility assumption and the

implied maximization of aggregate marital output, let us consider a second ex-
ample. There are 3men and 3 women and consider the matrix of marital outputs
below:

Example 7.4

Women

Men

1 2 3
1 5 8 2
2 7 9 6
3 2 3 0

Notice that the entries in this matrix are just the sums of the two terms
in Example 7.3 discussed above. In this regard, non transferable utility can
be thought of as a special case of transferable utility, where the division of the
output in each marriage is predetermined and cannot be modified by transfers
between spouses. For instance, if each partner receives half of the marital output
in any potential marriage, the Gale Shapley algorithm yields the unique stable
outcome, which is on the diagonal of this matrix. In contrast, with transferable
utility, the unique assignment that maximizes aggregate marital output is not
on the diagonal as indicated by the bold numbers in the matrix below. This
assignment yields aggregate output of 16, compared with an aggregate output
of 14 on the diagonal.
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Women

Men

1 2 3
1 5 8 2
2 7 9 6
3 2 3 0

Though all men would obtain the highest marital output with woman 2,
and all women would obtain the highest output with man 2 (implying that ζ22
is the largest entry in the marital output matrix 7.4), the best man and the
best woman are not married to each other. With transfers, the assignment on
the diagonal is no longer stable, because if couple 1, 1 and couple 2, 2 exchange
partners, there is an aggregate gain of 1 unit of the transferable good. Then
man 1 can, despite his lower contribution to the marital output, bid away the
best woman by offering her a larger amount of private consumption and still be
better off than in the initial match with woman 1. Similarly, woman 1 can bid
away the best man by offering him a larger share of private consumption and
still be better off than in the initial match with man 1. The higher aggregate
output achievable when man 2 and woman 2 are not married to each other
implies that, for any division of the marital output of 9 that these partners
can obtain together, at least one of the partners can be made better off in an
alternative marriage.

3.1.2 Stable matching with a finite number of agents

Let us now consider the general assignment problem with M males and N
females. Let ζij denote the total output of a marriage between male i and
female j, and let ζi0 (resp. ζ0j) be the utility that person i (resp. person j)
receives as single (with ζ00 = 0 by notational convention). Then the difference
zij = ζij − ζi0− ζ0j is the marital surplus that male i and female j generate by
marrying each other.
We define assignment indicators, aij , such that aij = 1 if and only if i is

married with j and aij = 0 otherwise. We also define ai0 = 1 if and only if i
is single, and similarly a0j = 1 if and only if j is single. Then, following Gale
(1960, chapters 1 and 5) and Shapley and Shubik (1972), we may describe the
stable assignment as a solution to an integer linear programming problem:

max
aij

MX
i=0

NX
j=0

aijζij (4)

subject to

NX
j=0

aij = 1, i = 1, 2., .M , (5i)

MX
i=0

aij = 1, j = 1, 2., .N. (5j)
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A first remark is that since a0j = 1−
MX
i=1

aij and ai0 = 1−
NX
j=1

aij the program

can be rewritten as

max
aij

MX
i=1

NX
j=1

aij
¡
ζij − ζi0 − ζ0j

¢
+ C = max

aij

MX
i=1

NX
j=1

aijzij + C (4’)

subject to

NX
j=1

aij ≤ 1, i = 1, 2., .M, (5i’)

MX
i=1

aij ≤ 1, . j = 1, 2., .N, (5j’)

where C =
MX
i=1

ζi0 +
NX
j=1

ζ0j is the aggregate utility of singles. Therefore, the

maximization of aggregate marital output over all possible assignments is equiv-
alent to the maximization of aggregate surplus and, without loss of generality,
we can normalize the individual utilities by setting ζi0 = ζ0j = 0 for all i and j.
Secondly, one can actually assume that in the problem above, the aij can be

real numbers in the (M − 1)-dimensional simplex (instead of constraining them
to be integers). Intuitively, aij can then be interpreted as the probability that
Mr. i marries Mrs. j. Note, however, that given the linearity of the structure,
the solution of this generalized problem is anyway attained with all aij being
either zero or one.
The basic remark, at that point, is that the program thus defined is a stan-

dard, linear programming problem; i.e., we want to find a vector (aij) that
maximizes the linear objective (4) (or (4’)) subject to the linear constraints (5i)
and (5j) (resp. (5i’) and (5j’)). We can therefore use the standard tools of linear
programming - specifically, duality theory. Associated with the maximization of
aggregate surplus which determines the assignment is a dual cost minimization
problem that determines the set of possible divisions of the surplus. Specifically,
one can define a dual variable ui for each constraint (5i’) and a dual variable vj
for each constraint (5j’); the dual program is then:

min(
ui,vj

MX
i=1

ui +
NX
j=1

vj) (6)

subject to

ui + vj ≥ zij , i ∈ {1, ...,M}, j ∈ {1, ..., N} (7)

ui ≥ 0, vj ≥ 0.
The optimal values of ui and vj can be interpreted as shadow prices of the

constraints in the original maximization problem (the primal). Thus, ui + vj =

9



zij if a marriage is formed and ui+vj ≥ zij otherwise.2 This result is referred in
the literature as the complementarity slackness condition, see for instance Gale
(1978). It has a very simple interpretation. Any man i is a resource that be
can allocated to any woman, but only one woman, in society. Similarly woman
j is a resource that can be allocated to any man in society, but only one man.
The shadow price of each constraint in 5’ describes the social cost of moving a
particular man (woman) from the pool of singles, where he (she) is a potential
match for others. The sum of these costs ui + vj is the social cost of matching
man i and woman j and zij is the social gain. Thus if ui + vj > zij , the costs
exceed the gains and the particular marriage would not form. However, if a
marriage is formed then ui + vj = zij and each person’s share in the resulting
surplus equals the opportunity costs of the two spouses in alternative matches.
The crucial implication of all this is that the shadow price ui is simply the

share of the surplus that Mr.i will receive at the stable match (and similarly for
vj); consequently, conditions (7) are nothing else than the stability conditions,
stating that if i and j are not matched at the stable match, then it must be the
case that the surplus they would generate if matched together (i.e. zij) is not
sufficient to increase both utilities above their current level!
These results have a nice interpretation in terms of decentralization of the

stable match. Indeed, a stable assignment can be supported (implemented) by
a reservation utility vector, whereby male i enters the market with a reservation
utility ui and is selected by the woman that gains the highest surplus zij − ui
from marrying him. Similarly, woman j enters with a reservation utility vj and
is selected by the man who has the highest gain zij − vj from marrying her. In
equilibrium, each agent receives a share in marital surplus that equals his\her
reservation utility. In a sense, ui and vj can be thought of as the ‘price’ that
must be paid to marry Mr. i or Mrs. j; each agent maximizes his/her welfare
taking as given this ‘price’ vector.
It is important to note that the informational requirements for implementing

a stable assignment with transferable utility is quite different than for the Gale-
Shapley no transfer case. For the latter, we only require that each person can
rank the members of the opposite sex. With transferable utility, the planner
needs to know the surplus values of all possible matches and each agent should
know the share of the surplus that he\she can receive with any potential spouse.
In general, there is a whole set of values for ui , vj that support a stable as-

signment. For instance, the stable assignment for example 7.4 can be supported
by the three (of many) imputations denoted by a, b and c listed below.

Women Men
a b c

v1 2 2 1
v2 5 4 3
v3 1 0.5 0

a b c
u1 3 4 5
u2 5 5.5 6
u3 0 0 1

2Conversely, aij can be seen as the dual variable for constraint (7). In particular, if aij > 0,
then the constraint must be binding, implying that ui + vj = zij .
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Women

Men

1 2 3
1 5 8 2
2 7 9 6
3 2 3 0

The reader can readily check that each of these imputations supports a stable
match. That is, ui + vj ≥ zij , with equality if a marriage forms and inequality
otherwise. Note that as we move from a to b to c, the share of the husband in the
marital surplus rises (or does no change) while the share of the wife declines (or
does not change) in all of the three stable marriages. The next chapter provides
an extensive discussion on the division of the surplus in a stable assignment.

3.1.3 Extension: continuum of agents

Finally, although the previous argument is presented in a finite setting, it is fully
general, and applies to continuous models as well. From a general perspective,
we only need that the set of men and the set of women, denoted X and Y , be
complete, separable metric spaces equipped with Borel probability measures F
and G; note that no restriction is imposed on the dimension of these spaces
(it may even be infinite). There exists a surplus function h (x, y) which is only
assumed to be upper semicontinuous. The problem can be stated as follows.
Can one find a measure Φ on X × Y such that:

• The marginals of Φ on X and Y are F and G, respectively.

• The measure Φ solvesmaxΦ
R
X×Y h (x, y) dΦ (x, y), where the max is taken

over the set of measures satisfying the previous conditions.

A complete analysis of this problem is outside the scope of this book; the
reader is referred to Chiappori, McCann and Neishem (2010) or Ekeland (2010)
for recent presentations. Let us just mention that the existence of a stable
match obtains in general; this comes from the fact that the linear optimization
problem does have a solution under very general assumptions.

3.2 Assortative mating

3.2.1 The basic result

Suppose, as above, that each male is endowed with a single characteristic, x,
and each female is endowed with a single characteristic, y, which positively
affects the family’s output. When can we expect the stable assignments to
exhibit either positive or negative assortative mating? Again, the answer is
quite different from the no transfer case. It follows in the present case from
the observation that a stable assignment must maximize the aggregate marital
output (or surplus) over all possible assignments.
Specifically, let, as above,
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ζij = h(xi, yj) (9)

be the household output function that specifies the marital output as a function
of the attributes of the two partners. We say that a function h(xi, yj) is super
modular if x0 > x and y 0 > y always imply that

h(x0, y0) + h(x, y) ≥ h(x0, y) + h(x, y0), (10)

and it is sub modular if inequality (10) is always reversed. This definition
captures the idea of complementarity and substitution as usually understood.
Rewriting (10) in the form

h(x0, y0)− h(x0, y) ≥ h(x, y0)− h(x, y), (10’)

we see that the requirement is that the contribution to marital output of a given
increase in the female attribute rises with the level at which the male trait is held
fixed. By a similar rearrangement, the impact of a given increase in the male’s
attribute rises in the female’s attribute. Note also that if h is twice differentiable
then h is super (sub) modular if the second cross derivative hyx is always positive
(negative).3 The condition that hyx is monotonic is sometimes called the single
crossing or the Spence-Mirrlees condition; indeed, a similar condition is crucial
in contract theory, signalling models (a la Spence) and optimal taxation (a la
Mirrlees).
The basic result is that complementarity (substitution) in traits must lead

to a positive (negative) assortative mating; otherwise aggregate output is not
maximized. Assuming that h(x, y) is increasing in x and y, we obtain that in the
case of positive assortative mating, the best man marries the best woman, and
if there are more women than men the women with low female quality remain
single.4 If there is negative assortative mating, the best man marries the worst
woman among the married women but if there are more women than men, it

3 Indeed, for any given (m, f) define

H(m0, f 0) = h(m0, f 0) + h(m,f)− h(m0, f)− h(m,f 0).

Then
Hm0(m0, f 0) = hm0(m0, f 0)− hm0 (m0, f)

which is positive for f 0 > f if hmf ≥ 0 (since hm is then increasing in f). Similarly,

Hf 0(m
0, f 0) = hf0(m

0, f 0)− hf 0(m, f 0) ≥ 0
for m0 > m if hmf ≥ 0. Hence H is increasing in its arguments, and H(m,f) = 0; we conclude
that H(m0, f 0) ≥ 0 whenever m0 > m and f 0 > f and hmf ≥ 0.

4Let m̄ and f̄ denote the endowments of the "best" man and woman and suppose that
they are not married to each other and instead man m̄ marries some woman whose female
attribute is f 0 < f̄ and woman f̄ marries some man whose attribute is m0 < m̄. Then stability
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is the women with the lower female attributes who remain single. 5 In other
words, who marries whom depends on second order derivatives of h(x, y) but
who remains single depends on the first order derivatives of h(x, y). If there is
no interaction in traits and the marginal contribution of each agent is the same
in all marriages, any assignment is (weakly) stable and it does not matter who
marries whom, because whichever way we arrange the marriages the aggregate
output of all marriages remains the same.
We may explain these results intuitively by referring again to the basic idea

of a stable assignment. Complementarity (substitution) implies that males with
high x will be willing to pay more (less) for the female attribute. Thus, if x
stands for money and y stands for beauty, the wealthy men will be matched with
the pretty women if and only if their (marginal) willingness to pay for beauty
is higher. If there is negative interaction between money and beauty, the most
wealthy man will not marry the most pretty woman, because whichever way
they divide their gains from marriage, either he is bid away by a less pretty
woman or she is bid away by a poorer man.
This result is in a sharp contrast to the no transferable case, where monotonic-

ity in traits is sufficient to determine the outcome.6 The consequence is that

of these matches requires the existence of divisions such that

um̄,f 0 + vm0,f̄ ≥ h(m̄, f̄),

um0,f̄ + vm̄,f ≥ h(m0, f 0),
um̄,f0 + vm̄,f0 = h(m̄, f 0),
um0,f̄ + vm0,f̄ = h(m0, f̄),

which implies that
h(m̄, f 0) + h(m0, f̄) ≥ h(m0, f 0) + h(m̄, f̄)

and contradicts (strict) super modularity. Thus complementarity implies that the best man
must marry the best woman. Eliminating this couple, and restricting attention to the next
best pair, we see that it must marry too and so on.

5 Suppose that are more women than men. Then there must be some woman fm such that
all woman with lesser quality are single. Otherwise, there must be a married woman with
a lower quality than some single woman, which under monotonicity implies that aggregate
output is not maximized. Now man m̄ and fm must marry each other. If they are not married
to each other and, instead, man m̄ marries some woman whose female attribute is f 0 > fm
and woman fm marries some man whose attribute is m0 < m̄, then stability of these matches
requires the existence of divisions such that

um̄,f0 + vm0,fm ≥ h(m̄, fm),

um0,fm + vm̄,f ≥ h(m0, f 0),
um̄,f0 + vm̄,f0 = h(m̄, f 0),

um0fm + vm0,fm = h(m0, fm),

which implies that
h(m̄, f 0) + h(m0, fm) ≥ h(m0, f 0) + h(m̄, fm)

and contradicts (strict) sub modularity. Eliminating this couple, and restricting attention to
the next best pair, i.e. the second best man among men and the second worst woman among
all married women must marry too, and so on.

6However, monotonicity may fail to hold when super modularity holds. A potentially
important case is when preferences are single peaked in the attribute of the spouse. In such
cases, we can have assortative mating in the sense that married partners have similar traits,
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assortative (negative or positive) mating is more prevalent in the absence of
transfers, because it is impossible for agents with less desirable traits to com-
pensate their spouses through a larger share of the marital output (see Becker,
1991, ch. 4 and Becker and Murphy, ch. 12). The sad message for the econome-
trician is that, based on the same information, namely the household production
function, one can get very different outcomes depending on the ability to com-
pensate within households, a feature that we usually cannot directly observe.
Finally, the impact of traits on the value of being single does not affect these

considerations, because the welfare of each person as single depends only on his
own traits. Therefore, in the aggregate, the output that individuals obtain as
singles is independent of the assignment. Although the value of being single
does matter to the question who marries, it does not affects who marries whom,
in equilibrium.

3.2.2 Examples

In many models, the surplus function takes a specific form. Namely, the two
traits x and y can often be interpreted as the spouses’ respective incomes. Fol-
lowing the collective approach described in the previous Chapters, we may as-
sume that a couple consisting of a husband with income x and a wife with
income y will make Pareto efficient decisions; then it behaves as if it was max-
imizing a weighted sum of individual utilities, subject to a budget constraint.
The important remark is that the constraint only depends on the sum of indi-
vidual incomes. Than the Pareto frontier - or in our specific case the value of
the surplus function h (x, y) which defines it - only depends on the sum (x+ y)7 ;
i.e.:

h (x, y) = h̄ (x+ y)

The various properties described above take a particular form in this con-
text. For instance, the second cross derivative hxy is here equal to the second
derivative h̄00. It follows that we have assortative matching if h̄ is convex, and
negative assortative matching if h̄ is concave. The interpretation is as above:
a convex h̄ means that an additional dollar in income is more profitable for
wealthier people - meaning that wealthier husbands are willing to bid more
aggressively for a rich wife than their poorer competitors. Conversely, if h̄ is
concave then the marginal dollar has more value for poorer husbands, who will
outbid the richer ones.
In models of this type, the TU assumption tends actually to generate convex

output functions, hence assortative matching. To see why, consider a simple
model of transferable utility in the presence of public good. Preferences take

but individuals with extreme traits may fail to marry. The interested reader may consider the
case in which the marital surplus is given by g − (m− f)2.

7Of course, while the Pareto set only depends on total income, the location of the point
ultimately chosen on the Pareto frontier depends on individual incomes - or more specifically
on the location of each spouse’s income within the corresponding income distribution. These
issues will be analyzed in the next Chapter.
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the form
ui = cig(q) + fi(q), (2)

where c and q denote private and public consumption, respectively. The Pareto
frontier is then

ua + ub = h(Y ) = max
q
[(Y − q)g(q) + f(q)],

where f(q) = fa(q) + fb(q) and Y = x+ y. By the envelope theorem, h0 (Y ) =
g(q) and therefore,

h00 (Y ) = g0(q)
dq

dz
=

−(g0(q))2
(y − q)g00(q)− 2g0(q) + f 00(q)

> 0.

The denominator must be negative for the second order conditions for a max-
imum to hold. Hence, if there is an interior solution for q, the household pro-
duction function is convex in family income, Y , implying that the two incomes
x and y must be complements.
As an illustration, recall examples 2.1 and 2.2 from Chapter 2. In example

2.1, the spouses pool their (fixed) incomes and share a public good. Individual
preferences where of the form ui = ci.q, compatible with (2). If we now rank
men and women by their incomes we have a situation in which the household
production function is h(x, y) = (x+y)2

4 . This is a convex function of total income;
there is a positive interaction everywhere, leading to assortative sorting.
In contrast, for example 2.2, in which division of labor has led to marital

output given by max(wi, wj) - which is not a function of total income. Here, we
obtain negative assortative mating. This holds because a high wage person is
more useful to a low wage person, as indicated by the submodularity of h(x, y) =
max(x, y).8 For instance, if man i has wage i and woman j has wage j, the output
matrix for the 3 by 3 case is:

Example 7.5

Women

Men

1 2 3
1 1 2 3
2 2 2 3
3 3 3 3

8For all m0 ≥ m and f 0 ≥ f , we have max (m0, f 0) + max (m, f) ≤ max (m0, f) +
max (m, f 0) .Going over the six possible orderings of four numbers m0m,f ’, f 0 satisfying
m0 ≥ m and f 0 ≥ f , we see that

m0 ≥ m ≥ f 0 ≥ f ⇒ m0 +m ≤ m0 +m,
m0 ≥ f 0 ≥ m ≥ f ⇒ m0 +m ≤ m0+, f 0,
m0 ≥ f 0 ≥ f ≥ m ⇒ m0 + f ≤ m0 + f 0,
f 0 ≥ f ≥ m0 ≥ m ⇒ f 0 + f ≤ f + f 0,
f 0 ≥ m0 ≥ f ≥ m ⇒ f 0 + f ≤ m0+, f 0,
f 0 ≥ m0 ≥ m ≥ f ⇒ f 0 +m ≤ m0 + f 0.
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implying three stable assignments; the opposite diagonal (in bold), one close to
it in which couples (1,3) and (2,2) exchange partners (emphasized), and a sym-
metric one in which couples (3,1) and (2,2) exchange partners. The assignment
also depends on the location of the wage distribution for each gender. As an
extreme case, let the worst woman have a higher wage than the best man. Then
in all marriages the female wage determines the outcome and all assignments
are equally good.
Note, finally, that in the absence of any interaction, we have h(x, y) = x+y;

this describes a situation where the two spouses simply pool their incomes and
consume only private goods. Since the output is a linear function of both in-
comes, any assignment of men to women is stable. It is interesting that although
the assignment is completely indeterminate, the set of imputations shrinks sub-
stantially and is given by

vi = xi + p, (11)

uj = yj − p,

for some fixed p. Thus, in the absence of interaction in traits, the same transfer
p occurs in all marriages and we may interpret it as a common bride price or
dowry, depending on whether p is positive or negative in equilibrium.9 As we
shall show in the next Chapter, if there is interaction in traits, this single price
is replaced by an intrahousehold allocation rule that depends on the attributes
of both partners.

3.3 Matching with a continuum of agents

The discussion above shows that a crucial feature of the problem is the inter-
action in the traits that the two partners bring into marriage. We shall for
the time being focus here on situations where income is the only marital trait
and individual incomes are complement in the household output function - i.e.,
h(x, y) is super modular, or hxy(x, y) > 0. Moreover, we assume here that there

9Consider any two couples, (i, j) and (r, s), in a stable assignment. Then, using the duality
results,

ui + vj = mi + fj

ur + vs = mr + fs,

because the imputations for married couples exhaust the marital output. Also, because couples
(i, s) and (r, j) are not married to each other

ui + vs ≥ mi + fs

ur + vj ≥ mr + fj

But none of these inequalities can be strict, because their sum must equal to the sum of the
equalities above. It then follows that in all marriages on any stable assignment

ui − ur = mi −mr

vj − vs = fj − fs,

which is equivalent to (11).
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exists a continuum of men, whose incomes x are distributed on [0, 1] according
to some distribution F , and a continuum of women, whose incomes y are dis-
tributed on [0, 1] according to some distribution G. The measure of all men in
the population is normalized to 1, and the measure of women is denoted by r.
We allow different income distributions for men and women.
The assumed positive interaction implies a positive assortative matching.

Therefore, if a man with income x is married to a woman with income y, then
the set of men with incomes above x must have the same measure as the set
of women with incomes above y. Thus, for all x and y in the set of married
couples,

1− F (x) = r (1−G (y)) . (13)

Hence,
x = Φ [1− r (1−G (y))] =̄φ (y) , (14)

where Φ = F−1, or equivalently,

y = Ψ

·
1− 1

r
(1− F (x))

¸
=̄ψ (x) , (15)

where Ψ = G−1 and ψ = φ−1.
If r = 1, the assignment matches men and women of the same quntile in

their respective income distributions. Condition (13) modifies this rule when
the male and female populations are of unequal size. The sex ratio r and the
differences in the male and female income distributions determine the husband’s
and wife’s incomes for each pair that marries. All men and women are married
if there is an equal measure of men and women, r = 1. All women are married
if there is scarcity of women, r < 1, implying that men with income x less than
x0 = Φ(1 − r) remain single. All men are married if there is scarcity of men,
r > 1, implying that women with income y less than y0 = Ψ (1− 1/r) remain
single. If r > 1, then the function y = ψ (x) determines the income of the
wife for each man with income x in the interval [0, 1]. Similarly, if r < 1, then
the function x = φ (y) determines the husband’s income of each woman with
income y in the interval [0, 1]. We shall refer to these functions as the matching
functions and to the resulting assignment as the assignment profile.
In Figure 1 we show the matching function ψ (x) for the case in which x is

distributed uniformly on [0, 1], y is distributed uniformly on [0, σ], σ < 1 and
r > 1. Applying (13) and solving

1− x = r(1− y

σ
),

we obtain
ψ (x) =

σ

r
(r − 1 + x).

We see that women with incomes y such that y ≤ y0 =
σ
r (r − 1) remain single.

Women with incomes in the range [y0, y0] = [σr (r− 1, σr (r − 1 + x0)] marry men
with incomes in the range [0, x0]. Finally, women with incomes in the range
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Figure 1: Positive Assortative Mating

[y00, σ] = [σr (r − 1 + x00), σ] marry men with incomes in the range [x00, 1]. Thus
women with higher incomes marry men with higher incomes. Note the equality
in the measures of women and men in these intervals, as indicated by the areas
of the corresponding rectangulars. For instance the rectangular with base x0
and height 1 has the same area as the rectangular with base r

σ and height
σ
r (r − 1 + x0)− σ

r (r − 1). Such equality of measures must hold throughout the
assignment profile.
The slope of each matching function is related to the local scarcity of men

relative to women. Men are locally scarce if there are more women than men at
the assigned incomes (φ (y) , y) = (x, ψ (x)) . Or, equivalently, if an increase in
the husband’s income is associated with a smaller increase in the income of the
matched wife. That is,

dx

dy
= φ0 (y) = r

g(y)

f(φ (y))
> 1, (16)

dy

dx
= ψ0 (x) =

1

r

f(x)

g(ψ (x))
< 1.
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Men are locally abundant if these inequalities are reversed.

3.4 Multidimensional matching

The previous discussion explicitly refers to a one-dimensional framework. Assor-
tative matching is harder to define when several dimensions (or several traits)
are involved; moreover, conditions like supermodularity or single-crossing do
not have an obvious extension to a multidimensional setting. Still, they can be
generalized; again, the reader is referred to Chiappori, McCann and Neishem
(2010) or Ekeland (2010) for recent presentations. The main insights can briefly
be described as follows. Assume that X and Y are finite dimensional. Then:

1. The Spence-Mirrlees condition generalizes as follows: if ∂xh (x0, y) denotes
the superdifferential of h in x at (x0, y), then for almost all x0, ∂xh (x0, y1)
is disjoint from ∂xs(x0, y2) for all y1 6= y2 in Y. This is the ‘twisted buyer’
condition in Chiappori, McCann and Neishem 2010.

2. If the ‘twisted buyer condition is satisfied, then the optimal match is
unique; in addition, it is pure, in the sense that the support of the optimal
measure Φ is born by the graph of some function y = φ (x); i.e., for any x
there exists exactly one y such that x is matched with y with probability
one.

3. There exists a relaxation of the ‘twisted buyer’ condition (called the ‘semi-
twist’) that guarantees uniqueness but not purity.

The notion of ‘superdifferential’ generalizes the standard idea of a linear
tangent subspace to non differentiable functions. If h is differentiable, as is the
case is most economic applications, then ∂xh (x0, y) is simply the linear tangent
(in x) subspace to h at (x0, y), and the condition states that for almost all
x0, there exists a one to one correspondence between y and ∂xh (x0, y). Note
that if X and Y are one-dimensional, then ∂xh (x0, y) is fully defined by the
partial ∂h/∂x (x0, y), and the condition simply requires that ∂h/∂x (x0, y) be
strictly monotonic in y - i.e., the sign of ∂2h/∂x∂y be constant, the standard
single-crossing condition, Similarly, if X and Y are one-dimensional, then purity
imposes a one-to-one matching relationship between x and y; if this matching
is continuous, it has to be monotonic, i.e. matching must be either positive or
negative assortative (in that sense, purity is a generalization of assortativeness
to multi-dimensional settings).
In general, purity rules out situations in which a subset of agents (with a

positive measure) randomize between several, equivalent matches. Such sit-
uations may be frequent in practice; in particular, Chiappori, McCann and
Neishem (2010) show that they are likely to occur when agents are located on
an Hotelling-type circle. Finally, only recently have empirical models of mul-
tidimensional matching been developed; the main reference, here, is Galichon
and Salanié (2009).
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4 Matching with general utilities
In the previous two sections, the matching process is studied in specific and
somewhat extreme settings: either transfers cannot take place at all, or they
can be made at a constant exchange rate (so that reducing a member’s utility
by one ‘unit’ increases the spouse’s utility by one unit as well). We now consider
the general case, in which although transfers are feasible, there is no commodity
that allows the partners to transfer utilities at a fixed rate of exchange. Then the
utility frontier is no longer linear and it is impossible to summarize the marital
output from a match by a single number. In this more general framework,
stability is defined in the same manner as before, that is, an assignment is stable
if no pair who is currently not married can marry and choose an allocation of
family resources that yields a result which is better for both of them than under
the existing assignment and associated payoffs. Observe that the assignment
and payoffs are simultaneously restricted by this definition. However, it is no
longer true that aggregate marital output must be maximized - actually, such
an ‘aggregate output’ is not even defined in that case. Mathematically, the
matching model is no longer equivalent to an optimization problem.
Still, it is in principle possible to simultaneously solve for the stable assign-

ment and the associated distribution(s) of surplus. The interested reader is
referred to Roth and Sotomayer (1990, ch. 6), Crawford (1991), Chiappori and
Reny (2006) and Legros and Newman (2007). To give a quick idea of how the
general problem can be approached with a continuum of agents, let us assume,
as above, that each agent is characterized by one trait, and let’s assume that
this trait is income (assumed to be exogenous). Male income is denoted by x
and female income is denoted by y. We no longer assume transferable utility;
hence the Pareto frontier for a couple has the general form

u = H(x, y, v) (3)

with H(0, 0, v) = 0 for all v.
As above, if a man with income x remains single, his utility is given by

H(x, 0, 0) and if a woman of income y remains single her utility is the solution
to the equation H(0, y, v) = 0. By definition, H(x, y, v) is decreasing in v;
we assume that it is increasing in x and y, i.e. that a higher income, be it
male’s or female’s, tends to expand the Pareto frontier. Also, we still consider a
continuum of men, whose incomes x are distributed on [0, 1] according to some
distribution F , and a continuum of women, whose incomes y are distributed on
[0, 1] according to some distribution G; let r denote the measure of women.
Finally, let us assume for the moment that an equilibrium matching exists

and that it is assortative. Existence can be proved under mild conditions using
a variant of the Gale-Shapley algorithm; see Crawford (1991), Chiappori and
Reny (2006). Regarding assortativeness, necessary conditions will be derived
below. Under assortative matching, the ‘matching functions’ φ and ψ are defined
exactly as above (eq. 13 to 15).
Let u (x) (resp. v (y)) denote the utility level reached by Mr. x (Mrs. y) at
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the stable assignment. Then it must be the case that

u (x) ≥ H (x, y, v (y))

for all y, with an equality for y = ψ (x). As above, this equation simply trans-
lates stability: if it was violated for some x and y, a marriage between these
two persons would allow increasing both utilities. Hence:

u (x) = max
y

H(x, y, v (y))

and we know that the maximum is actually reached for y = ψ (x). First order
conditions imply that

∂H

∂y
(φ (y) , y, v (y)) + v0 (y)

∂H

∂v
(φ (y) , y, v (y)) = 0.

while second order conditions for maximization are

∂

∂y

µ
∂H

∂y
(φ (y) , y, v (y)) + v0 (y)

∂H

∂v
(φ (y) , y, v (y))

¶
≤ 0 ∀y.

This expression may be quite difficult to exploit. Fortunately, it can be
simplified using a standard trick. The first order condition can be written as:

F (y, φ (y)) = 0 ∀y
where

F (y, x) =
∂H

∂y
(x, y, v (y)) + v0 (y)

∂H

∂v
(x, y, v (y)) . (4)

Differentiating:
∂F

∂y
+

∂F

∂x
φ0 (y) = 0 ∀y,

which implies that

∂F

∂y
≤ 0 if and only if

∂F

∂x
φ0 (y) ≥ 0.

The second order conditions can hence be written as:µ
∂2H

∂x∂y
(φ (y) , y, v (y)) + v0 (y)

∂2H

∂x∂v
(φ (y) , y, v (y))

¶
φ0 (y) ≥ 0 ∀y.

Here, assortative matching is equivalent to φ0 (y) ≥ 0; this holds if
∂2H

∂x∂y
(φ (y) , y, v (y)) + v0 (y)

∂2H

∂x∂v
(φ (y) , y, v (y)) ≥ 0 ∀y.

Since v0 (y) ≥ 0, a sufficient (although not necessary) condition is that
∂2H

∂x∂y
(φ (y) , y, v (y)) ≥ 0 and ∂2H

∂x∂v
(φ (y) , y, v (y)) ≥ 0.
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Figure 2: The slope condition

One can readily see how this generalizes the transferable utility case. In-
deed, TU implies that H (x, y, v (y)) = h (x, y) − v (y). Then ∂2H

∂x∂v = 0 and

the condition boils down to the standard requirement that ∂2H
∂x∂y =

∂2h
∂x∂y ≥ 0.

General utilities introduces the additional requirement that the cross derivative
∂2H
∂x∂v should also be positive (or at least ‘not too negative’). For instance, a
homothetic expansion of the Pareto set will typically satisfy this requirement.
Geometrically, take some point on the Pareto frontier, corresponding to some
female utility v, and increase x - which, by assumption, expands the Pareto set,
hence shifts the frontier to the North East (see Figure 2). The condition then
means that at the point corresponding to the same value v on the new frontier,
the slope is less steep than at the initial point.
The intuition is that whether matching is assortative depends not only on the

way total surplus changes with individual traits (namely, the usual idea that the
marginal contribution of the husband’s income increases with the wife’s income,
a property that is captured by the condition ∂2H

∂x∂y ≥ 0), but also on how the
‘compensation technology’ works at various income levels. With general utilities,
while the technology for transferring income remains obviously linear, the cost
(in terms of husband’s utility) of transferring utility to the wife varies with
incomes. The second condition implies that, keeping the wife’s utility level fixed,
a larger income alleviates the cost (in terms of husband’s utility) of providing
an additional unit of utility to the wife. Then wealthy males have a double
motivation for bidding aggressively for wealthy women: they benefit more from
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winning, and their ‘bidding costs’ are lower. They will thus systematically win.
Note, however, that when the two partials ∂2H

∂x∂y and
∂2H
∂x∂v have opposite signs,

the two aspects - benefits from winning and cost of bidding - vary with income
in opposite directions. Assume, for instance, that ∂2H

∂x∂y ≥ 0 but ∂2H
∂x∂v ≤ 0.

Then the outcome is uncertain because while wealthy males still value wealthy
females more than poor males do, they are handicapped by their superior cost
of bidding.

5 Search
We now turn to the alternative approach that stresses that in real life the
matching process is characterized by scarcity of information about potential
matches. The participants in the process must therefore spend time and money
to locate their best options, and the set of potential partners they actually meet
is partially random. The realized distribution of matches and the division of
the gains from each marriage are therefore determined in an equilibrium which
is influenced by the costs of search and the search policies of other participants.

5.1 The basic framework

The main ingredients of the search model are as follows. There is a random
process which creates meetings between members of society of the opposite sex.
When a meeting occurs the partners compare their characteristics and evaluate
their potential gains from marriage. Each partner anticipates his share in the
joint marital output. If the gains for both partners from forming the union
exceed their expected gain from continued search then these partners marry.
Otherwise, they depart and wait for the next meeting to occur (see Mortensen,
1988).
We assume that meetings occur according to a Poisson process. That is, the

waiting times between successive meetings are i.i.d exponential variables with
mean 1/λ. Within a short period h, there is a probability of a meeting given by
λh+o(h) and a probability of no meeting given by 1−λh+o(h), where, o(h)/h
converges to zero as h approaches zero. The arrival rate λ is influenced by
the actions of the participants in the marriage market. Specifically, imagine an
equal number of identical males and females, say N , searching for a mate. Let
si denote the ”search intensity” (i.e. number of meetings per period) initiated
by a particular male. If all females search at the same intensity sf , they will
generate Nsf contacts per period distributed randomly across all males. In this
case, the probability that male i will make a contact with some female, during
a short interval, h, is (sf + si)h. If all males search at a rate sm and all females
at a rate sf then the rate of meetings between agents of opposite sex is

λ = sm + sf . (31)

The key aspect in (31) is that activities on both sides of the market determine
the occurrence of meetings. A limitation of the linear meeting technology is
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that the number of searchers, N , has no effect on the arrival rate λ. Each
participant who searches actively and initiates meetings must bear a monetary
search cost given by ci(s), i = m, f, where we allow the costs of search to differ
by sex. The total and the marginal costs of search increase as search intensity
increases. When a meeting occurs the marital output (quality of match) that the
partners can generate together is a random variable, z, drawn from some fixed
distribution, F (z). Having observed z, the couple decides whether to marry or
not. With transferable utility, the decision to marry is based on the total output
that can be generated by the couple within marriage relative to the expected
total output if search continues. Hence, a marriage occurs if and only if

z ≥ vm + vf , (32)

where, vm and vf denote the value of continued search for the male and female
partners, respectively. These values depend, in equilibrium, on the search in-
tensity that will be chosen if the marriage does not take place. Specifically, for
i = m, f ,

rvi =Max
s
{(s+ sj)

∞Z
vm+vf

(wi(z)− vi)dF (z)− ci(s)}, (33)

where r is the instantaneous interest rate and wi(z) denote the shares of the
gains of marital output that male and female partners expect.10

By definition,

wm(z) + wf (z) = z. (34)

Equation (33) states that the value of being an unattached player arises from
the option to sample from offers which arrive at a rate s+ sf and are accepted
only if (32) holds. Each accepted offer yields a surplus of wi(z)− vi for partner
i. Integration over all acceptable offers yields expected gain from search. Since
each participant controls his own intensity of search, he will choose the level of

10This equation can be derived by using the following standard argument. Let h be a short
time interval. Then, the Bellman equation for dynamic programming is

vi = Max
s

e−rh{λh(s+ sj)[p(z ≥ vm + vf )(Ez(Max(vi, wi(z)|z ≥ vm + vf )]

+[1− λh(s+ sj)]vi}+ o(h).

Note that, due to the stationarity of the Poisson process and the infinite horizon, vi and and
wi(z) do not depend on time. Approximating e−rh ' 1 − rh , cancelling terms that do not
depend on h and rearranging, we obtain

Max
s
{λh(s+ sj)[p(z ≥ vm + vf )Ez(Max(vi, wi(z)|z ≥ vm + vf )− vi]

+[1− λh(s+ sj)]vi − rh2λ(s+ sj)[(p(z ≥ vm + vf )Ez(Max(vi, wi(z)|z ≥ vm + vf )− vi]}
+o(h) = rhvi.

Dividing both sides of this equation by h, we obtain (33) as the limit when h approach zero.
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s that maximizes his value in the unattached state. Therefore, with identical
individuals in each gender,

∞Z
vm+vf

(wi(z)− vi)dF (z) = c0i(s), i = m, f. (35)

The marginal benefits from search, the L.H.S of (35), depend on the share
that a person of type i expects in prospective marriages. As wi(z) rises, holding
z constant, he or she searches more intensely. Hence, the equilibrium outcome
depends on the allocation rules that are adopted. The literature examined two
types of allocation rules. One class of allocation rules relies on Nash’s axioms
and stipulates

wi(z) = vi + γi(z − vm − vf ), (36)

where, γi ≥ 0 and γm + γf = 1, i = m, f . The parameter γi allows for
asymmetry in the bilateral bargaining between the sexes due to preferences or
social norms. The crucial aspect of this assumption, however, is that outside
options, reflected in the market determined values of vm and vf , influence the
shares within marriage.
Wolinsky (1987) points out that a threat to walk out on a potentially prof-

itable partnership is not credible. Rather than walking away, the partners ex-
change offers. When an offer is rejected, the partners search for an outside
opportunity that would provide more than the expected gains from an agree-
ment within the current marriage. Hence, during the bargaining process the
search intensity of each partner is determined by

∞Z
y

(wi(x)− wi(y))dF (x) = c0i(s), i = m, f, (37)

where, y is the quality of the current marriage and wi(y) is the expected share in
the current marriage if an agreement is reached. Since y ≥ vm+vf and wi(y) ≥
vi, a person who searches for better alternatives during a bargaining process
will search less intensely and can expect lower gains than an unattached person.
The threat of each partner is now influenced by two factors: The value of his
outside opportunities (i.e., the value of being single), which enters only through
the possibility that the other partner will get a better offer and leave; The
value of continued search during the bargaining process, including the option
of leaving when an outside offer (whose value exceeds the value of potential
agreement) arrives. Therefore, the threat points, vi , in (36) must be replaced by
a weighted average of the value of remaining without a partner and the value of
continued search during the bargaining (the weights are the probabilities of these
events). Given these modified threat points, the parameters γi that determine
the shares depend on the respective discount rates of the two partners and the
probabilities of their exit from the bargaining process. The logic behind this
type of formula, due to Rubinstein (1982), is that each person must be indifferent
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between accepting the current offer of his partner or rejecting it, searching for
a better offer and, if none is received, return to make a counter offer that the
partner will accept.
Given a specification of the share formulae, one can solve for the equilibrium

levels of search intensities and the values of being unattached. For instance,
if the shares are determined by (36) and γi is known, then equations (35) and
(36) determine unique values for sm, sf , vm, and vf . Because of the linear
meeting technology, these equilibrium values are independent of the number of
searchers. Observe that although the share formulae depend on institutional
considerations, the actual share of marital output that each partner receives
depends on market forces and is determined endogenously in equilibrium.
We can close the model by solving for the equilibrium number of unattached

participants relative to the population. Suppose that each period a new flow
of unattached persons is added to the population and the same flow of married
individuls exit. To maintain a steady state, this flow must equal the flow of new
attachments that are formed from the current stock of unattached. The rate of
transition into marriage is given by the product of the meeting rate λ and the
acceptance rate 1− F (z0), where z0 is the reservation quality of match. Using
(31) and (32), we obtain

u(sm + sf )(1− F (vm + vf )) = e (38)

where, u is the endogenous, steady state, rate of non-attachment and e is the
exogenous constant rate of entry and exit.
The meeting technology considered thus far has the unsatisfactory feature

that attached persons "do not participate in the game". A possible extension is
to allow matched persons to consider offers from chance meetings initiated by
the unattached, while maintaining the assumption that married people do not
search. In this case divorce becomes an additional option. If an unattached per-
son finds a married person who belongs to a marriage of quality z and together
they can form a marriage of quality y then a divorce will be triggered if y > z.
The search strategies will now depend on the relative numbers of attached and
unattached persons. Specifically, (33) is replaced by

rvi = Max
s
{u(s+ sj)

∞Z
vm+vf

(wi(z)− vi)dF (z) + (39)

(1− u)s

∞Z
vm+vf

∞Z
y

(wi(z)− wi(y)− vi)dG(z)dF (y)− ci(s)},

where, G(z) is the distribution of quality of matched couples.11 Observe that
the expected returns from meeting an attached person are lower than those of
11The second term in equation (39) is derived from the following argument. Suppose i is

a male and he meets a married woman who together with her current husband has marital
output y. Together with i, the marital output would be z, where z ≥ y . The threat point of
this woman in the bargaining with man i is what she would receive from her current husband
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meeting with an unmarried one. Therefore, the higher is the aggregate rate of
non-attachment the higher are the private returns for search.
Assuming that partners are ex-ante identical, the search models outlined

above do not address the question who shall marry whom. Instead, they shift
attention to the fact that in the process of searching for a mate there is al-
ways a segment of the population which remains unmatched, not because they
prefer the single state but because matching takes time. A natural follow up
to this observation is the question whether or not there is "too much" search.
Clearly, the mere existence of waiting time for marriage does not imply ineffi-
ciency since time is used productively to find superior matches. However, the
informational structure causes externalities which may lead to inefficiency. One
type of externality arises because in deciding on search intensity participants
ignore the higher chance for meetings that others enjoy. This suggests that
search is deficient. However, in the extended model which allows for divorce
there is an additional externality operating in the opposite direction. When
two unattached individuals reject a match opportunity with z < vm + vf , they
ignore the benefits that arise to other couples from a higher non attachment
rate. Thus, as in a related literature on unemployment, it is not possible to
determine whether there is too much or too little non attachment.
An important aspect of equation (39) is the two way feedback between in-

dividual decisions and market outcomes. The larger is the proportion of the
unattached the more profitable is search and each unattached person will be
more choosy, further increasing the number of unattached. As emphasized by
Diamond (1982) such reinforcing feedbacks can lead to multiplicity of equilibria.
For instance, the higher is the aggregate divorce rate the more likely it is that
each couple will divorce. Therefore, some societies can be locked into an equilib-
rium with a low aggregate divorce rate while others will settle on a high divorce
rate. There are some additional features which characterize search for a mate
and can be incorporated into the analysis. First, as noted by Mortensen (1988),
the quality of marriage is revealed only gradually. Moreover, each partner may
have private information which is useful for predicting the future match qual-
ity (see Bergstrom-Bagnoli, 1993). Second, as noted by Oppenheimer (1988),
the offer distribution of potential matches varies systematically with age, as
the number and quality of available matches change and the information about
a person’s suitability for marriage sharpens. Finally, meetings are not really
completely random. Unattached individuals select jobs, schools and leisure ac-
tivities so as to affect the chances of meeting a qualified person of the opposite
sex (see Goldin, 2006).

5.2 Search and Assortative Mating

Models of search add realism to the assignment model, because they provide an
explicit description of the sorting process that happens in real time. Following

when she threatens to leave him, which is y− vf . Thus, the total surplus of the new marriage
is z − (y − vm) − vm . Hence, following bargaining, man i will receive in the new marriage
vm + γm(z − y) = vm + wi(z)−wi(y).See Mortnesen (1988).
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Burdett and Coles (1999), consider the following model with non transferable
utility whereby if man m marries woman f, he gets f and she gets m. Assume
a continuum of men, whose traits m are distributed on [0, m̄] according to some
distribution F , and a continuum of women, whose traits f are distributed on£
0, f̄

¤
according to some distribution G. To bring in the frictions, assume that

men and women meet according to a Poisson process with parameter λ. Upon
meeting, each partner decides whether to accept the match or to continue the
search. Marriage occurs only if both partners accept each other. A match that
is formed cannot be broken. To ensure the stationary of the decision problem,
we assume a fixed and equal number of infinitely lived men and women.
Each man chooses an acceptance policy that determines which women to

accept. Similarly, each woman chooses an acceptance policy that determines
which men to accept. These policies are characterized by reservation values, R,
such that all potential partners with a trait exceeding R are accepted and all
others are rejected. The reservation value that each person chooses depends on
his\her trait. In particular, agents at the top of the distribution of each gender
can be choosier because they know that they will be accepted by most people
on the other side of the market and hence continued search is more valuable for
them. Formally,

Rm = bm +
λµm
r

f̄Z
Rm

(f −Rm)dGm(f), (40)

Rf = bf +
λµf
r

m̄Z
Rf

(m−Rf )dFf (m),

where, the flow of benefits as single, b, the proportion of meetings that end in
marriage, µ, and the distribution of "offers" if marriage occurs, all depend on
the trait of the person as indicated by the m and f subscripts. The common
discount factor, r, represents the costs of waiting.
In equilibrium, the reservation values of all agents must be a best response

against each other, yielding a (stationary) Nash equilibrium. The equilibrium
that emerges is an approximation of the perfect positive assortative mating
that would be reached without frictions. Using the Gale-Shapley algorithm to
identify the stable outcome, we recall that, in the absence of frictions, this model
generates a positive assortative mating. Thus, if men move first, all men will
propose to the best woman and she will keep only the best man and reject all
others. All rejected men will propose to the second best woman and she will
accept the best of these and reject all others and so on. This outcome will also
emerge here if the cost of waiting is low or frictions are not important, because
λ is high. However, if frictions are relevant and waiting is costly, agents will
compromise. In particular, the "best" woman and the "best" man will adopt
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the policies

Rm̄ = bm̄ +
λ

r

f̄Z
Rm̄

(f −Rm̄)dGm(f), (40’)

Rf̄ = bf̄ +
λ

r

m̄Z
Rf̄

(m−Rf̄ )dFf (m).

Thus, the best man accepts some women who are inferior to the best woman
and the best woman accepts some men who are inferior to the best man, because
one bird at hand is better than two birds on the tree.
The assumption that the rankings of men and women are based on a single

trait, introduces a strong commonality in preferences, whereby all men agree on
the ranking of all women and vice versa. Because all individuals of the opposite
sex accept the best woman and all women accept the best man, µ is set to 1
in equation (40’) and the distribution of offers equals the distribution of types
in the population. Moreover, if the best man accepts all women with f in the
range [Rm̄, f̄ ] then all men who are inferior in quality will also accept such
women. But this means that all women in the range [Rm̄, f̄ ] are sure that all
men accept them and therefore will have the same reservation value, Rf̄ , which
in turn implies that all men in the range [Rf̄ , m̄] will have the same reservation
value, Rm̄. These considerations lead to a class structure with a finite number
of distinct classes in which individuals marry each other. Having identified
the upper class we can then examine the considerations of the top man and
woman in the rest of the population. These individuals will face µ < 1 and a
truncated distribution of offers that, in principle, can be calculated to yield the
reservation values for these two types and all other individuals in their group,
forming the second class. Proceeding in this manner to the bottom, it is possible
to determine all classes.
With frictions, there is still a tendency to positive (negative) assortative

mating based on the interactions in traits. If the traits are complements, in-
dividuals of either sex with a higher endowment will adopt a more selective
reservation policy and will be matched, on the average, with a highly endowed
person of the opposite sex. However, with sufficient friction, it is also possible
to have negative assortative mating under complementarity. The reason for this
result is that, because of the low frequency of meetings and costs of waiting,
agents in a search market tend to compromise. Therefore, males with low m,
expect some women with high f to accept them, and if the gain from such a
match is large enough, they will reject all women with low f and wait until a
high f woman arrives.
The class structure result reflects the strong assumption that the utility that

each partner obtains from the marriage depends only on the trait of the other
spouse, so that there is no interaction in the household production function
between the traits of the two spouses. In general, there will be some mingling
of low and high income individuals, but the pattern of a positive assortative
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mating is sustained, provided that the complementarity in traits is large enough
to motivate continued search for the "right" spouse. Smith (2006) provides a
(symmetric) generalization of the problem where if man m marries woman f
he receives the utility payoff v = π(m,f) and she receives the utility payoff
u = π(f,m). It is assumed that this function is increasing in its second argument,
π2(x, y) > 0, so that all men prefer a woman with a higher f and all women
prefer a man with a higher m, but individuals can differ in the intensity of their
ordering.12 He then shows that a sufficient condition for positive assortative
mating, in the sense of a higher likelihood that a rich person will have a rich
spouse, is that log[π(m, f)] be super modular. That is, m > m0 and f > f 0
imply that

π(m, f)π(m0, f 0) > π(m, f 0)π(m0, f). (41)

The reason for such a condition is that one needs sufficiently strong complemen-
tarity to prevent the high types from accepting low types, due to impatience.
Surprisingly, the assumption of transferable utility loses some of its edge in

the presence of frictions. In particular, it is no longer true that the assignment is
determined by the maximization of the aggregate marital output of all potential
marriages. To see why, consider the following output matrix:

Example 7.6

Women

Men

1 2 3
1 4 1 0
2 1 0 1
3 0 1 4

where aggregate output is maximized on the main diagonal. With frictions,
this assignment is in general not stable, because man 2 and woman 2 will prefer
continued search to marriage that yield, 0, even if the value of being single is 0.
The reason is that they can marry other men and women with whom they can
obtain 1, who might be willing to marry them if the arrival rate of offers is low
or the cost of waiting is high.
Generally speaking, the nature of the assignment problem changes, because

of the need to consider the cost of time spent in search, as well as the ben-
efits from matching. An additional complication, relative to the case of non-
transferable utility, is the presence of rents. As we have seen, when meetings are
random, and agents adopt reservation polices for accepted matches, the realized
match will generally exceed the outside options of the married partner so that
the rules for dividing the rents enter into the analysis. As a consequence, one
generally needs stronger conditions to guarantee assortative matching. Shimer
and Smith (2000) provide an analysis of the degree of complementarity that
must hold to guarantee positive assortative mating if rents are divided equally
in all marriages. Positive assortative mating, in the sense that a high m male is

12 Intensity is a meaningful concept because given the risky environment agents are endowed
with a Von Neumann Morgenstern utility function that is unique up to a linear transformation.
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more likely to match with a high f female (on the average) requires, in addition
to the supermodularity of h(m, f), the supermpdularity of the logs of its par-
tial derivatives and the log of the cross derivative hmf (m, f). This means that
the simple predictions of the frictionless model carry over only under restrictive
assumptions. For instance, h(m, f) = (m+f)2

4 , which, as we have shown, arises
naturally in the presence of public goods, does not satisfy these requirements.13

6 Bargaining In Marriage (BIM)
As we have just seen, search models with random and intermittent meetings
provide a natural framework to deal with rents and bargaining over rents in
the marriage market. However, if marriage specific capital, such as children, is
generated during marriage, then rents and bargaining can arise even without
uncertainty and frictions. As is well known from models of specific human
capital (see Becker (1993 ch. 3)) the accumulation of capital that is useful only
in a particular relation makes the division of the gain from marriage partially
insulated from competition. There is, therefore, a scope for bargaining over such
rents.
It has been recently pointed out by Lundberg and Pollak (2009) that if

the division resulting from bargaining in marriage is fully anticipated prior to
marriage and if, in addition, binding contracts cannot be made at marriage,
then the assignment into marriage must be based on the Gale Shapley algorithm.
Specifically, Lundberg and Pollak contrast their ‘BIM’ (Bargaining In Marriage)
framework with the standard, ‘BAMM’ (Binding Agreements on the Marriage
Market) model, which is one of the possible foundation of the Becker-Shapley-
Shubik construct. In a BIM world, any promise I may make before marriage
can (and therefore will) be reneged upon minutes after the ceremony; there is
just no way spouses can commit beforehand on their future behavior. Moreover,
‘upfront’ payments, whereby an individual transfers some money, commodities
or property rights to the potential spouse conditional on marriage, are also
excluded. Then the intrahousehold allocation of welfare will be decided after
marriage, irrespective of the commitment made before. Marriage decision will
therefore take the outcome of this yet-to-come decision process as given, and
we are back in a non transferable utility setting in which each partner’s share
of the surplus is fixed and cannot be altered by transfers decided ex ante.
This result is an outcome of the assumed inability to credibly bid a person

prior to marriage either by payments up-front or by short term commitments.
This argument raises some important modeling issues about the working of the
marriage market. A first remark is that it is not clear why premarital contract-
ing is assumed away. Historically, contracts specifying what one brings into

13Specifically, the partial derivatives m+f
2

are not log super modular because m > m0 and
f > f 0 imply that

(m+ f)(m0 + f 0) < (m+ f 0)(m0 + f).
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marriage and what the husband and wife take away upon divorce were univer-
sal (see Anderson, 2007). In modern societies prenuptial contracts still exist,
although they are less prevalent. One possibility is that formal contracting and
the associated enumeration of contingencies would "crowd out" the emotional
trust on which the partners rely. This argument, however, has somewhat am-
biguous implications, because the mere existence of such emotional trust seems
to imply the existence of at least some minimum level of ’emotional commitment’
- an idea that has been formalized by Browning (2009). Another important is-
sue is verification. Typically it is difficult for the courts to verify the division
of consumption or work within families. It must however be emphasized that
commitment on intrahousehold allocation is not needed to implement a BAMM
solution. Any transfer that (i) is decided ex ante, i.e. before marriage, and (ii)
can be used to alter the spouse’s respective bargaining positions after marriage,
can do the trick. For instance, if the husband can, at (or just before) marriage,
sign a legally enforceable contract specifying the transfers that would occur in
case of separation, then we are back to a BAMM framework: I can now ‘bid’
my wife by offering her a very advantageous contract, because even if we do not
ultimately divorce, the additional bargaining power provided to her by the ex
ante contract will allow her to get a larger share of household resources - and is
therefore equivalent to an ex post cash transfer. An even more striking example
is the ‘payment for marriage’ situation, in which the husband can transfer a
predetermined amount to his wife upon marriage (say, by offering her an ex-
pensive ring, or putting the couple’s residence under her name, or even writing
a check). Again, the size of the transfer can be used in the bidding process,
and the relevant concept is again BAMM. Conversely, the BIM framework ba-
sically requires that no ex ante contract can ever be signed, and no conditional
payment can ever be made.
A second concern is that even if we accept the total absence of commitment,

Gale-Shapley still needs not be the relevant equilibrium concept. To see why,
consider the extreme situation in which marriage can be done and undone at
very low cost. Then at any moment of marital life, each spouse has a many
close substitutes on the market, and the intrahousehold allocation will typically
reflect this fact. Although, technically, this is not a BAMM situation (no binding
agreement can be signed by assumption), the relevant concept is still the TU
model a la Becker-Shapley-Shubik, because each spouse receives exactly her/his
reservation value and the latter is fully determined by market equilibrium forces
(at least when the number of potential spouses is ‘large enough’). In other
words, even in the extreme no transfer/no commitment case, the BIM framework
applies only insofar as marriage decision can only be reversed at some cost, and
only within the limits defined by this cost.
It is clear, in practice, that entry into marriage is a major decision that can

be reversed only at some cost. However, as in any modeling choice, "realism"
of the assumptions is not the only concern. Equally important is to have a
tractable model that allows one to predict the marriage market outcomes under
varying conditions. In this regard, the presence of transaction costs is quite
problematic. To see this, consider again our example 7.3. Suppose that a new
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woman, 4, unexpectedly enters a marriage market that has been in one of the
two equilibria discussed in section 1.1. Let the new payoffs matrix be as below:

Example 7.3a

Women

Men

1 2 3 4
1 3,2 2,6 1,1 2,1
2 4,3 7,2 2,4 5,4
3 1,1 2,1 0,0 .5,.5

By assumption, woman 4 is preferred to woman 3 by all men and one would
expect that in the new assignment woman 3 will become single. Suppose, how-
ever, that all existing couples bear a transaction cost of .75. Then it is easy
to see that if the original equilibrium was the one in which men moved first,
no man will marry woman 4 and she will remain single. In contrast, if the
original equilibrium was the one in which women moved first then man 2 will
take woman 4 and his ex-wife (woman 1) will first propose to man 1 who will
reject her and then to man 3 who will accept her, so that woman 3 will become
single. Thus, in general, it is impossible to predict what would happen when a
new player enters the market, without knowing the bargaining outcomes in all
marriages, the potential bargaining outcome that the entrant will have with all
potential existing partners and the relational capital accumulated in all existing
marriages. Such information is never available to the observer. In contrast, the
Becker-Shapley-Shubik framework can predict the outcome very easily, using
only information about the place of the new woman in the income distribution
of women and the form of the household production function that specifies the
within couple interaction between men and women of different attributes.
Given the different implications of alternative models of the marriage market,

it seems prudent to consider several alternatives, depending on the application.
In subsequent chapters we shall apply search models to analyze marriage and
divorce when match quality is uncertain, and we shall apply the standard assign-
ment model to discuss the determination of the division of gains from marriage
when men and women differ in their attributes.
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