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There is a consensus today that the the main lesson of the Aharonov-Bohm effect is that a
picture of electromagnetism based on the local action of the field strengths is not possible in quantum
mechanics. It is argued here that this statement is correct only when a quantum particle is considered
together with classical system(s). If all systems are considered in the framework of quantum theory,
everything can be explained without the notion of potentials. The core of the Aharonov-Bohm effect
is the same as the core of quantum entanglement: the quantum wave function describes all systems
together.
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Before the Aharonov-Bohm effect [1] (AB) had been
discovered, the general physical picture was that particles
change their motion due to fields in their locations, the
fields created by other particles. The main revolutionary
aspect of the AB effect was that this is not generally true,
i.e. that there can be situations in which two particles,
prepared in identical states, move in a region with the
same fields but end up in different final states. In par-
ticular, there can be zero electromagnetic field in every
place where the electron has been, but its motion is af-
fected by the electromagnetic interaction. The AB effect
states that the motion of an electron is completely de-
fined by the potentials in the region of its motion and not
just by the fields. The potentials depend on the choice
of gauge, which cannot affect the motion of particles,
but there are gauge invariant properties of the potentials
(apart from the fields) that specify the motion of parti-
cles. The validity and the meaning of the AB effect has
been extensively discussed [2–14]. I believe that the ef-
fect is correct, but that the essential mechanism which
leads to the effect is different from what is commonly
accepted and that we should change our understanding
of the nature of physical interactions back to that of the
time before the AB effect was discovered. The quantum
wave function changes due to local actions of fields.

The discussion will be on the level of gedanken experi-
ments, without questioning the feasibility of such exper-
iments in today’s laboratory. Consider a Mach-Zehnder
interferometer with an electron tuned in such a way that
it always ends up in detectorB, see Fig. 1. We can change
the electric potential in one arm of the interferometer in
such a way that there will be no electromagnetic field
in the location of the wave packets of the electron but,
nevertheless, the electron will change its behavior and
sometimes (or it can be arranged that always) will end
up in detector A. This is the electric AB effect. Alterna-
tively, in the magnetic AB effect, the interference picture
can be changed due to a solenoid inside the interferome-
ter which produces no electromagnetic field outside.

Let us start our analysis with the electric AB effect.
In the original proposal, the potential was created using

conductors, capacitors etc. While those are closer to a
practical realization of the experiment, a precise theoret-
ical description of such devices is difficult. I consider,
instead, two charged particles, the fields of which cancel
each other at the location of the electron.

For simplicity of presentation, instead of the Mach
Zehnder interferometer, I shall consider a one dimen-
sional interferometer, see Fig. 2. (In fact, for an observer
moving with constant velocity in a perpendicular direc-
tion, this interferometer looks very much like the Mach
Zehnder interferometer described above.) The electron
wave packet starts moving to the right toward a barrier
which transmits and reflects equal weight wave packets
toward mirrors A and B. After reflection from the mir-
rors, the wave packets split again on the barrier. The
interferometer is tuned in such a way that the electron
reaches mirror B with certainty.

Another modification is designing special mirrors for
the electron which make it spend a long period of time τ
“touching” the mirror. A simple model for the mechan-

FIG. 1: Mach-Zehnder interferometer with electron as
a test bed of the AB effect. Introducing relative electric
potential between the arms of the interferometer or introduc-
ing a solenoid inside the interferometer spoils the destructive
interference in detector A.
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FIG. 2: A realization of the electric AB effect. Identical
charges brought symmetrically to the electron wave packet
in the left arm of the interferometer create potential for the
electron without creating electric field in its location.

ical potential energy of the electron as a function of the
distance from the mirror is shown on Fig. 3. It goes to
infinity at the surface of the mirror, smoothly becomes
constant value V at x ∈ (0, d), and smoothly goes to
zero for x > d. The energy of the electron is only slightly
higher than V . The dimensions of the interferometer are
much larger than d and I say that the electron “touches”
the mirror when x ∈ (0, d).

The source of the AB potential will be two particles
of mass M and charge Q placed symmetrically on the
perpendicular axis at equal large distances from mirror
A. They have equal initial velocities toward the location
of mirror A. At equal distance r from the mirror, the
charged particles bounce back due to other similarly de-
signed mirrors, which make the charges spend a period
of time T “touching” these mirrors. This happens dur-
ing the time the electron’s wave packets “touch” their
mirrors, T < τ .

We can approximate the potential that the electron
in the left arm feels as −2eQ

r for the period of time T .

FIG. 3: The potential of the mirror forces. A parti-
cle with an energy slightly higher than V spends long time
“touching” the mirror, i.e. being at a distance less than d
from it.

Indeed, when the charges are far away their potential can
be neglected, and the time the charges travel toward and
from the mirror is much smaller than T . Thus, the phase
difference between the two wave packets of the electron
is:

φAB =
−2eQT

r~
. (1)

The electron does not feel an electric field in any place
where its wave packet passed, but it shows an interfer-
ence pattern which is different from the pattern obtained
in such an experiment by an “electron” without electric
charge.

How can this result be understood if we consider all
particles? There are two branches. In the first one the
electron is on the left and in the other it is on the right.
The energy in the left and in the right branches are equal,
so energetic considerations cannot explain the phase dif-
ference. The electron does not experience any electric
force so it cannot provide the source of the effect. The
charges Q, however, do feel different forces in different
branches. Thus, their wave packets in the left branch are
slightly shifted relative to their wave packets in the right
branch.

Let us calculate the shift of position of the wave packet
of one charge Q due to its electromagnetic interaction
with the electron. The shift is developed during the time
T when the charge Q “touches” its mirror. The inter-
action with the electron leads to a small perturbation in
the motion of the charge and, since d � r, the velocity
of the charge during this time, v, can be considered to be
constant. The change in the kinetic energy of the charge
due to its interaction with the electron allows us to find
the change in its velocity and thus the shift δx we are
looking for:

−eQ
r

= δ(
Mv2

2
) 'Mvδv ⇒ δx =

−eQT
Mvr

. (2)

To observe the interference in the AB experiment, this
shift should be made much smaller than the position
uncertainty of the charges. It is comparable to the de
Broglie wavelength of the charge λ = h

Mv . Both charges
Q are shifted in the same way creating the AB phase:

2
δx

λ
2π = φAB . (3)

Note that entanglement between the electron and the
charges, which could have been created if the uncertainty
in the velocity of the charges when they “touch” their
mirrors is smaller than δv, disappears when the charges
travel far away.

It is interesting to consider a particular value of the
charge of the external particles, Q = 4e. What is spe-
cial about this choice is that, in the configuration of the
two charges Q and the electron in between, the total
electric field at the location of each particle created by
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other particles is zero. So, apparently, we get the AB ef-
fect without fields at the locations of the particles. This,
however, is not so. The charges Q do feel fields: not in
the left branch in which the electron is near the charges,
but in the right branch, in which the electron is far away.
The charges Q feel the fields of each other which are not
canceled by the field of the electron.

Let us make an additional modification. Now, the
charges Q do not automatically perform their motion
toward mirror A and back, but only when the electron
on the path A triggers this motion, i.e., only in the left
branch. In this case, neither the electron, nor the charges
Q feel an electromagnetic field in any of the branches.
There will be no AB effect in this setup in spite of the
fact that the electron of the left branch has an electric
potential, while the electron of the right branch has not.
The original treatment of the AB effect is invalid since
we do not have here a motion of an electron in a classi-
cal electromagnetic field. It is an example of a recently
introduced “private potential” [15].

Let us turn now to the magnetic AB effect. I will show
that the AB effect arises from different shifts of the wave
packets of the source which feels different local electric
fields created by the left and the right wave packets of
the electron.

Consider the following model. The solenoid consists
of two cylinders of radius r, mass M , large length L,
and charges Q and −Q homogenously spread on their
surfaces. The cylinders rotate in opposite directions with
surface velocity v. The electron encircles the solenoid
with velocity u in superposition of being in the left and
in the right sides of the circular trajectory of radius R,
see Fig. 4.

The flux in the solenoid due to the two cylinders is:

Φ = 2 πr2
4π

c

Qv

2πrL
=

4πQvr

cL
. (4)

Thus, the AB phase, i.e., the change in the relative phase
between the left and the right wave packets due to the
electromagnetic interaction is:

φAB =
eΦ

c~
=

4πeQvr

c2L~
. (5)

To simplify the alternative calculation based on direct
action of the electromagnetic field, we assume r � R �
L. Before entering the circular trajectory, the electron
moves toward the axis of the solenoid and thus it provides
zero total flux through any cross section of the solenoid.
During its motion on the circle, the electron provides
magnetic flux through a cross section of the solenoid seen
at angle θ, see Fig. 5:

Φ(θ) =
πr2eu cos3 θ

cR2
. (6)

By entering one arm of the circle, the electron changes
magnetic flux and causes an electromotive force on the

FIG. 4: The magnetic AB effect. The electron wave
packet coming directly toward the solenoid splits into a super-
position of two wave packets and, after encircling the solenoid
in the center, interfere on the beamsplitter toward detectors
A and B.

charged solenoids which changes their rotational velocity.
In order to calculate this change in the velocity we have
to integrate the impulse exerted on all thin slices of the
charged cylinder. The integration on the angle at which
the slice is seen yields:

δv =
1

M

∫
πr2eu cos3 θ

c2R2

1

2πr

R

cos2 θ
2πr

Q

2πrL
dθ =

uQer

c2MRL
.

(7)
Then, the shift of the wave packet of a cylinder during
the motion of the electron is:

δx = δv
πR

u
=

πQer

c2ML
. (8)

I consider here the rotational cylinder motion as a linear

FIG. 5: The magnetic field of the electron at the cross
section of the solenoid. The infinitesimal slice of the
solenoid is seen at angle θ.
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motion. The relevant wavelength of de Broglie wave of
each cylinder is λ = h

Mv . For calculating the AB phase we
should take into account that both cylinders are shifted
and that they are shifted (in opposite directions) in both
branches. This leads to a factor 4 and provides the cor-
rect expression for the AB phase:

4
δx

λ
2π = φAB . (9)

If the uncertainty in the velocity of the cylinders is
smaller than δv, then, during the electron circular mo-
tion, the electron and the cylinders become entangled.
But when the electron leaves the circular trajectory, it
exerts an opposite impulse on the cylinders and this en-
tanglement disappears.

In all our examples, when all systems are considered
in the framework of quantum mechanics, the AB effect is
explained through actions of local fields on the quantum
wave function. The explanation of the AB effect is as
follows. The electron in a superposition of two states
|L〉e and |R〉e causes, via action of its electromagnetic
field, different evolutions for the quantum state of the
source: |ΨL〉S and |ΨR〉S . At the end of the process, the
difference between the states of the source is just the AB
phase. In the total wave function of the electron and the
source,

1√
2

(|L〉e|ΨL〉S + |R〉e|ΨR〉S) , (10)

the AB phase belongs to all systems and thus it can be
observed in the interference experiment of the electron.

The most common manifestation of a quantum wave
function for a combined system is the nonlocal correla-
tions which are generated by entangled states. The AB
effect is conceptually different, since the effect can appear
even if in the state (10) there is almost no entanglement
at all times.

I believe that we can find an explanation of the kind
presented above for any model of the AB experiment.
However, the pictorial explanation of the creation of rel-
ative phase due to spatial shifts of wave packets disap-
pears when we go beyond the physics of moving charges.
We can replace charged cylinders by a line of polarized
neutrons producing magnetic flux due to quantum spins.
In this case there will be no spatial shift of wave packets
and the magnetic field of the electron changes the phase
of the neutrons directly. This is also an explanation of
the Aharonov-Casher (AC) effect [16]: the local field act-
ing on the neutron is responsible for appearance of the

AC phase. But it does not lead to a classical lag of the
center of mass of the neutron [17, 18].

The AB effect shows that the description of the evolu-
tion of a quantum particle in a classical electromagnetic
field can be done by describing potentials at all locations
where the wave function of the particle does not vanish
(and cannot be done by describing fields at these loca-
tions). But, the classical description of the electromag-
netic interaction is just an approximation (which some-
times provides exact results) of an underlying quantum
reality. The present work states that the evolution of a
composite system of charged particles can be described
completely by fields at locations of all particles. The
potentials are just a useful auxiliary mathematical tool
after all.
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