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Causality puts certain constraints on the change of the electromagnetic field due to the change in
motion of charged particles. Naive calculations of the electromagnetic energy and the work

performed by the electromagnetic fields which take these constraints into account might lead to
paradoxes involving the apparent nonconservation of energy. A few paradoxes of this type for the
simple motion of two charges are presented and resolved in a quantitative way providing deeper
insight into various relativistic effects in classical electromagnetic theory20@ American Association

of Physics Teachers.

[DOI: 10.1119/1.1512901

[. INTRODUCTION (i) We move both particles toward each other by the dis-
) ] ) . L tancex/2. We move them simultaneously and fast enough
Starting from Einstein's work on special relativityt has  sych that the motion of each particle ends before the signal
become clear that classical electromagnetic theory is consighout this motion can reach the location of the other particle.
tent with relativity, and no true paradoxes can be foundn this case, the external work done should be the sum of the

However, several apparent paradoxes have been extensivelihounts of work performed by external forces exerted on the
discussed and these discussions have enriched our und@fr particles calculated as if the other particle has not

standing of electromagnetic theory. Some of these controveingyed:
sial topics include hidden momentunfeynman’s disk, the
Trouton—Noble experimefitand the 4/3 factor for the self-
energy of an electronHere we discuss some examples of

[ —x/2
the simple motion of two charged particles which, when ana- . . L
lyzed naively, lead to paradoxical conclusions. Our analysis After the procedure is ended, we obtain the same situation

is relevant to recent discussions of covariance in electroma%a?t?é:;gﬁﬁi\?vﬁ” we applied less work when we moved both

netic theony~1° _ .
We present our examples in the form of five paradoxes, e can obtain energy equal to the wakk back from the

the resolution of which is based on four different effects. WeSystem when we reverse proce§s moving one of the

present the paradoxes without giving hints to the effects tha¢harges to the original separatibriWe can repeat the cycle

resolve them, and we ask readers who spot the effects imm&0nsisting of procesi) and the reversed proce§ggaining

diately to bear with us because they still may find the quan€ach time the energy:

titative resolution of the paradoxes interesting. The first two _ g2

paradoxes are based on the same effect. We present them in W'—W"~ IR (3

Secs. Il and Il and resolve them in Secs. IV and V. In Sec.

VI we again analyze the setup of Paradox Il and presenOf course, there must be an error in the above argument. We

Paradox I, which we resolve in Sec. VII. In Secs. VIII-XI have not taken all relevant effects into account. However,

we present and resolve the last two paradoxes and we surbefore explaining this paradox, we present and resolve Para-

marize our results in Sec. XII. dox I, which is simpler to analyze and the resolution of

which follows from the same effect.

2 2
W"=W1+W2=2( g —ql—). 2)

II. PARADOX I: GAINING ENERGY FROM I1l. PARADOX Il: CONSERVATION OF ENERGY
RETARDATION OF ELECTRIC FIELD FOR TWO STOPPING PARTICLES
Consider two particles of chargeand massn located on

thex axis and separated by the distamhctey are moving in
the x direction with a constant velocity. At time t;=0, we

Two particles of chargg are initially separated by a dis-
tancel. We consider two ways of bringing the particles, ini-
tially and finally at rest, to a smaller distante x (see Fig.

1). stop the first particle and at timg=t we stop the second
(i) We move one particle the distangetoward the other ~Particle (see Fig. 2 The timet is sufficiently small so that
particle. The work required for this move is signals about the change of the velocity of the first particle

) ) cannot reach the _second while it is s_t|II moving. We also
W=U— U _a g (1) require thatr, the time of deceleration, is very small. These
new  FoldTy_y - requirements impose the following constraint:
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! wherex is the change in the separation between the charges:

X=vt.

| I=x | When a particle moves with constant velocity, the total

force exerted on it is zero. Therefore, the force it exerts on an

external system is equal to the electromagnetic force the

other particle exerts on it. Because the distance between the

particles igl in the laboratory frame, in the Lorentz frame in

which the charges are at rest, the distance between them is

) (Where y=1/J1—0v?/c?). In the reference frame in which

@ the charges are at rest, the force is given by Coulomb’s law,

and the Lorentz transformation between the force inxhe

P direction in the rest frame and the force in the laboratory
frame isF,=F, . Hence, the forces the particles exert on the

I-x external systems are

"""""""""" o
COE
% Thus, the workW is

~ a2x

W= - ——. 8
(u) ! ! (yl )2 ( )
Therefore, Eq(5) for the conservation of energy becomes:
Fig. 1. Space—time diagram of the motion in the two proces@gsine qz q2x
particle moves(ii) two particles move. o + + + _
Ei,=2mc = T Wit W, I 9
The initial energyE;, obviously does not depend on Due
| to causality, the work/; andW, do not depend om either.
T<t< . (4)  Therefore, Eq(9) represents a paradox: it must be true for
c+tv all allowed values ofx, but it cannot, because the two
Let us consider conservation of energy for this processx-dependent terms do not balance each other.
The initial energy should be equal to the final energy plus th‘?v RESOLUTION OF PARADOX II: INTEREERENCE
work done by the forces that the particles exert on externabl': RADIATION '
systems:

Fix=—Fa (7)

~ Because of the constraind), the process of stopping
Ein=Efint Wy + W+ W, (5 charged particles cannot be arbitrarily slow. Therefore, we
whereW; and W, are the work of the forces that the par- sht_)uld expect a significant contribution .due to radiation
. . e which we have not taken into account. During the process of
ticles exert during the process of stoppiny;is the work  go5ning, the magnitude of the acceleration of the charges is
performed by the second particle moving with velodity  5— /7 According to the Larmor formula, the total energy

during the time that the other parti_cle is at rest. Of course, N4 giated by a single charge during the whole process of stop-
work is performed when both particles are at rest, and the ”‘Hing is

work vanishes during the time when both particles are mov-
ing with velocityv.

For a relativistic analysis, we include the rest mass energy.
Thus, the final energy of the system is
2

q
Efin: 2m CZ+ m y

2 q2a2 2 qZUZ

3 8 3¢ (10
It is easy to see that thedependent term in Ed9), which

©6) we have to balance, is much smaller tiRpandR,. How-
ever, everything that happens in the close vicinity of the
charges cannot depend &nand, in particular, the radiation
that each charge emits does not depend,@o how can the
radiation energy balance thedependent terms in the equa-
tion of conservation of energy? The effect is due to the in-
terference of the radiation. The total radiated energy is

----------------------- Rit= Ry + Ro+ Ryt 11

The interference term depends »and restores the balance.
Next we will show this effect in detail.
In our quantitative analysis we show that the leading
X x-dependent term of Eq(9) is canceled by the leading
o x-dependent term dR;,;. We expand the-dependent terms
of Eqg. (9) and find

2 1 9  o’x q

Fig. 2. Space—time diagram of the motion of the two particles. l—x (yh)? 1 cd? E

Ri=Ry=

~

2 202 g2x2
vQ q (12
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rately. At the interval[ (60— 56),(6+ 86)], the overlap in-
creases and then decreases linearly. Therefore, the interfer-
ence term of the radiation energy is

R _Zqzazsin2 02 o fﬁﬁ 50—|¢|
0 int™ 4chr2 mr Slr( )rT _s0 80 ¢
ct _ qzvzsinz 0

= =% (19

If we use sik § =1—sir?(6—=/2) and Eq(16) and expand
to lowest order in the parametetl ~v/c, we obtain:

q202 q2X2 q2U2 q2X2
A(l-x) (1-x3 A 13
Thus, we see that up to ordef/c?, the x dependent term

(14) is canceled. This reasoning resolves Paradox .

Fig. 3. Electromagnetic radiation of the two stopping particles. The area of Another paradox_ of energy noncc_’nse.rvat'on for a system

constructive interference of the radiation field is painted in black. of two charged particles when radiation is neglected has been
considered in Ref. 12, but the resolution of their paradox by
taking into account radiation was shown only qualitativély.

Rin= (20

Due to the constrain4), we have V. RESOLUTION OF PARADOX |
lv The radiation energyl0) is much larger than the ter(3)
UT<X<C+U . (13 which we have to compensate. However, we would like to

have a quantitative resolution of this paradox that shows how
Therefore, we will considex to be the same order of mag- the missing tern(3) arises from the calculation of the radia-
nitude aslv/c. In this caseq?v?x/c?1?<q?x?/13, and the tion energy. To obtain a quantitative result we specify how
leading term that has to be canceled due to the radiation isve perform the processes described in Sec. Il.
In case(i), we accelerate particle 1 for a small timeintil
(14) it reaches velocityy. Then it moves the distance with
constant velocity. Finally, it stops in the same manner as it

The radiation of the stopping charge propagates inside ¥2S accelerated. In cagi), both particles reach speecand
spherical shell of widttrcr, and the energy flus is given stop at timet after going th.e d|stqnod2. The timet is short
byt enough such that during its motion, each particle cannot re-

ceive a signal about the motion of the other particle. Thus,

q2x2

. g%a’sir’ 0. 15 %
= Anci? " (19 ret= <. (21)

relative to thex axis. Because we have two acceleratedqye to the acceleration and due to the stopping of the particle

charges, the radiation fields due to the two charges interfergng, therefore, it is twice the amount given by the Larmor
in the region of the overlagsee Fig. 3. A complete overlap  formula (10):

takes place at an angkdefined by 5
. 4Qq
T ct cx R=3 = (22)

2] 1=ot v(l—x)° (1) o
In case(ii) there are four events in which the velocity of a
Because the width of the shells ds,, the overlap vanishes particle is changed by amountand, therefore, there are four
once the deviation exceeds spherical shells of radiation field of widthc (see Fig. 4.
The radiation energy is four times the Larmor enefgg)
_ o 17) with a correction due to interference. The interference is due
(I—x)sing’ to the radiation emitted during the acceleration of the two
o ) ) ) ) particlesR,,, the deceleration of the two particl&gy, the
which is obtained by equatingr to the differential of the  5cceleration of the first and deceleration of the sedaggd

sin( 60—

o0

difference between the paths of the two fields: and the acceleration of the second and deceleration of the
T first Ry,. These four terms can be calculated in the same way
cr=0|(I— x)sin( 0— 5 } =[(I—=x)sing]56. (18 as we have calculated the interference of the radiation energy

of two stopping charged patrticles in Sec. IV.

Because the amplitudes of the fields in the region of the Because the accelerations of the particles are performed
overlap are approximately equal, the total energy radiated igimultaneously, the direction of the interferenBg, is ¢
the direction of the overlap is twice as much, due to the= /2. This is the direction of maximal power of radiation
interference, than if the two charges were radiating sepaenergy, see Eq15). The range of the angles for which there
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Now we are able to analyze Paradox | taking into account
the radiation energy. In cage the work performed by the
external forces should include the radiation ene(gg).
Thus, instead of Eq1), we obtain:

) ) 2 2 4 2v2
WI:UnEW_U0|d+RI=|(i_X_q|_+§C::TT' (28)

In case(ii) we have to calculate the work taking into ac-
count the causality argument: each particle “does not know”
* that the other particle moved. Therefore, the work against the

field and the radiated energy should be calculated as if the
other particle had not moved. The work is twice the amount
of work in case(i) with the change ok— x/2. Thus, instead

of Eq. (2), we obtain:

2
Wi =W, +W,=2 —qx -

qZ 4 q202
Thye | @

2
Fig. 4. Electromagnetic radiation of the two charged particles which are . . .
simultaneously accelerated toward each other and afterttstwpped, case _Clearly we cannot gain energy by constructlng_a machine
(i). The shadowed area signifies destructive interference and the areawith a cycle of processii) and reversed process). The

painted in black signifies constructive interference. work required for the reversed procg$sis
2 2 2.2
~ q q 4 q v
W=—— ——+ - ——. 30
I I—x 3 c°7 (30

is interference is given by Eq17) and, thus, similarly to the . .
derivation of Eq.(20), we find that the interference term due Thus, the work during the whole cycle is
to simultaneous acceleration is 2

~ " 2 4 2U2
9°v? W W W= = (5
Raa=— 2 (23)
c RE P 4 q%?
where the minus sigridestructive interferengeoccurs be- + < |—+ 3 c3r
cause particles accelerate in opposite directions. The second | — =
term of Eq.(20) does not appear because simultaneity corre- 2
sponds tox=0 in the notation of Sec. IV. The interference 9?x2  4q*v?
term due to simultaneous deceleration is the saRg, ~— o ta, (32)

=R,..
The interference between acceleration of the first and deFhis work is greater than zero, because the radiation term is
celeration of the second particle takes place in the directiomuch larger than the gain in the potential energy, as can be

9, defined by seen explicitly using Eq(21). However, even if we collect
! the radiation energy, we still cannot gain energy. Indeed, the
il o m| ct 24 total radiation energy is
SN 01— 5 =t (24  4q%? 8q? g
— R i— _ _ —
and the interference between acceleration of the second par- Ro=R+R 3G 33 218
ticle and deceleration of the first particle takes place in the 5 2 2o
direction 8, defined by _4av ax 32)
. cir 213
T c
sinf 5 = 62| = Trol (25 Our calculations have showmp to ordery?/c?) that during

the complete cycl&V,,,= R,;- This reasoning completes the
Now we can use Eq19) again, taking into account that the analysis of Paradox I.

particles stop after going the distance=x/2. We make an

appropriate approximation and obtain: VI. PARADOX Ill: ANOTHER LOOK AT THE
q2U2 q2x2 CONSERVATION OF ENERGY FOR TWO STOPPING
Rad=Raa=—c27 ~ 715 (26 PARTICLES
If we sum all the contributions, we find that the radiation Let us return to Paradox Il in which two moving particles
energy for proces§i) is stop at different times. We have resolved one apparent con-
s 2 s 2 2 2 2.2 tradiction concerning the conservation of energy, but we
R“=§ Qv® 297 5 RIS have not checked if there are other difficulties. We next
3c3r cll  4I° present another problem that appears in plausible but naive
59 oo calculations.
= § auv._ax 27) The equation of conservation of ener® should be cor-
3 c®r E rected by adding the radiation enerBy
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q? g°x stresses in a model of a charged particle, and that these

Ein=2mc*+ T—x TWitW,— (TJF R. (33)  stresses solve the problem of covariance of the energy and
Y momentum for such a mod#l.

Our approach to finding the initial energy is to find the total To obtain the correct transformation of the electromag-

energy of the charges in their rest frafig and multiply it  netic energy from the rest frame to the moving frame, we

by the factory: consider two charges connected by a rigid rod. The energy of
the whole system, charges and rod, transforms according to
E=vE,. (34) Eq. (34). Therefore, the anomalous term in the transforma-

In the rest frame of the moving particles the distance betion of the electromagnetic energy equals the negative of the

tween the particles igl. Therefore, the total initial energy is anomalous part in the mechanical energy of the rod. The
5 latter is easier to calculate and we will do it now.

E =+ 2me+ 9 To calculate the expression for the transformation of the
in= 7Y Yl energy of the rod, we express the energy as a volume integral

We now consider the situation in which particle 2 stopsOf the energy density udv and use the Lorentz transforma-

just before information about the stopping of particle 1 cantIon for the energy density, the component of the energy-

reach it. This situation corresponds to stress tensof oo

. (39

U2

vl 2 ’ v ’ ’
—pt= U=y u'+ 5SS~ 70yl (41
Xx=vt cto (36) c 2 Ixx
For this choice ok there is no interference between radiationWhereS is the energy flux andr is the stress tensor. The
fields from different particles. Indeed, the overlap of the ra-ransformation of the energy due to the first term leads to the
diation fields takes place only in the directiom- 7, and in ~ usual expressio(84); the energy density is multiplied by?,
this direction the amplitude of the radiation field vanishesbut due to the Lorentz contraction the volume is multiplied

(see Eq(15)). Therefore, by the factory 1. The second term does not contribute be-
B cause the energy flux in the rest frame vanishes. Therefore,
R=R;+R,. (37 only the last term contributes to the anomalous term. The

We substitute Eqs(35)—(37) into Eq. (33) and obtain the tension in the rod prevents the charges, separated by the
following equation of conservation of energy for two par- distanceyl, from moving; therefore, it equatg/ y?12. Thus,

ticles: in the rest frame of the rod, the stress tensor component is
2 2 2
v
Zymc2+q|—=2mc2+q|— T4 o]+ Wt W, U;X=%, (42)
q’(v v? wheres is the cross section of the rod. Therefore, the contri-
“TleT a2t Ri+Ry. (38 Dbution to the energy in the laboratory frame due to the ten-

sion of the rod is
We can test the consistency of E§8) with the equations

of conservation of energy for each patrticle: y?v? , yv? , v?o?
- 5 O'XXdU:——ZO'X)JS:—Tl. (43)
ymc2=mc+W; +R;, (393 c c ¢
ymZ=mE+W,+R,. (39h The correction to the electromagnetic energy is the negative

) of Eqg. (43), and, therefore, the total initial energy(iastead
If we subtract Eq(39) from Eq.(38), we find that the energy of Eq. (35)):

at the end of the process is larger than the energy at the

. . 2 2
1%
begmznlsg by a factor E. — y2mc+ ql_ 1+ -l (44)
q-v
[c2 ° (40 The correction cancels the unbalanced té46) and resolves
. Paradox llI.
We have obtained another paradox.
VIl. RESOLUTION OF PARADOX Ill: LORENTZ VIIl. PARADOX IV: ACCELERATING PARTICLES
TRANSFORMATION FOR ELECTROMAGNETIC FROM REST

ENERGY Let us now consider the simultaneous acceleration of two

Paradox Il arises from the error that we made in the calcharged particles from rest to velocity. In the frame of
culation of the initial energy. Equatio(84) is, of course, reference moving with velocity, this process is the decel-
correct when the system is an elementary particle. It also isration of the particles from velocity to rest that we ana-
true for a compositasolated system, but the two charges lyzed above. However, the transformation from one frame to
moving with constant equal velocities are not an isolatecanother might be a difficult task, and, as in many other
system. We have to consider the whole system, the chargexamples?~1" an analysis in a different Lorentz frame al-
together with the external system that keeps the distance b&sws one to see new physical phenomena; in our case it
tween the charges unchanged. Note the similarity with th@rovides yet another possibility of making an error leading to
Poincareobservation that there must be nonelectromagnetia paradox.
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_ The equation pf conservation of energy for the two partime t’, particle 1 covers the distancgé=uvt’ in the static
ticles that takes into account the radiation enefgympare  field of particle 2. Therefore, the contribution to the work

with Eq. (5)) is from particle 1 is
Ein=Epn+ Wy + W, + W+ Ry + Ry Ry (45) R L 51
The initial energy of the particles is bl
92 The work performed by particle 2 until timg has two
Ei,=2mc*+ T (46)  parts. Until timet, it is
Because the final state of the particlesotion with velocity q_z_ 9° __ U_qz (52)
I

v and separation) is identical to the initial state of the | —x cl’

particles in the setup discussed in Sec. VII, the final energ)é . . . .

Eq is equal to the right-hand side of E@4). etween timet andt’, it feels a constant field so the contri-
Because the charges start to move together, it seems th%'l’t'on to the work is

the net work is done only during the acceleration interval, q° 2022

that is, () —t)=—
72|2U(t t) T (53

wW=0. (47 |f we sum all the contributions, Eq¢&51)—(53), we find that
The radiated energy during the acceleration should be thée net work performed by the particles during the motion
same as in the process of stoppiisge Eq(20)). For simul-  With constant velocity is
taneous acceleration=0, and hence the interference term is -
~ 2veq
q2U2 W= — —CZI— (54)
(48)

Rint: 21 -
¢ This term cancels the unbalanced term, &4), and restores
The equations of conservation of energy for each particle arthe balance in the equation of conservation of energy.

mc=ymc+W,;+R;, (493

mc=ymc®+W,+R,. (49b) X. PARADOX V: ACCELERATING PARTICLES

Then, by substituting for all the terms in E@5) and sub- MOVING IN PARALLEL

tracting the single-particle equatioi49), we find that the
energy at the end of the process is larger than the initiail
energy by a factor

Let us consider the acceleration of two charged particles
ined up along the axis (transverse configuratipimstead of
along thex axis (longitudinal configuration The particles
20202 accelerate simultaneously from rest to the velogity the x
— (50 direction. The expression for the initial energy is again given

le by Eq. (46). However, the final energy is different:

We have reached another paradox.

q2
IX. RESOLUTION OF PARADOX IV: RETARDED Indeed, in the rest frame of the moving particles, the distance
FIELDS between them i$. In this case the electromagnetic energy is

transformed in the usual way as in E@®4) because the

The error we made in Sec. VIII is more transparent. Itenergy of the composite system of charges and the rod con-
appears in the sentence stating that the only net work of theecting the charges is transformed according to(B4), and
charges is done during the acceleration interval. It is true thahe energy of the rod with the tension in tlgedirection is
in the case of particles moving with constant velocity, the netransformed according to E¢34). The anomalous behavior
work of moving charges vanishes. However, at the beginningf the rod in the previous case followed from the presence of
of the motion, the fields in the vicinity of the charges arethe o,, component of the stress tensor, which vanishes in the
different from the field of the uniformly moving charges: present transverse configuration.

each particle feels thetaticfield of the other particléthat is, The interference term of the radiation energy also is modi-
as if it has not moveduntil the signal from the motion of the fied. In the longitudinal configuration, the interferenitee
other particle can arrive. overlap of the radiation fieldsakes place in the directions

Let us calculate the contribution to the work due to thethat have an angl@= /2 relative to the direction of the
forces between the particles. Particle 2 moves in the statigcceleration. In the transverse configuration, the interference
field of particle 1 during the timé=1/(c+v) after which it s in the directions perpendicular to thexes, and the angle
feels the field of moving particle 1, which ¥ y?12. Simi- ¢ attains all values. Therefore, the intensity of the radiation
larly, particle 1 moves in the static field of particle 2 during fields is not always maximal, and instead, it is proportional
the timet’ =(l/c)—v, after which it feels the field of mov- to sir? 6 (see Eq.(15)). Averaging overd reduces the inter-
ing particle 2. After timet’, there is no contribution to the ference term relative to that of the longitudinal configuration,
net work due to the forces between the two particles. UntiEqg. (48), by a factor of 2:
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v2g? Eq. (60). Note that in the longitudinal configuration, the
Rint=5 2y - (56)  work of the radiation fields vanishes because the radiation
2c?l . X ; .
fields at the locations of the particles vanish.
During the uniform motion the charges do not exert forces
in the direction of motion, bu'g |n.the transition period, when XIl. CONCLUSIONS
the charges move in the static field, there is a small compo-
nent of the force in the direction of motion. The particles We have analyzed some relativistic features of classical

move in the static field during the tintewhich satisfies electromagnetic theory and demonstrated quantitatively the
——— relevance of several effects due to the conservation of en-
ct= I +tv=. (57) ergy. These effects af@) the interference of radiation fields,
The solution of Eq(57) is ct= yl. Therefore, the total work (il the anomalous transformation of energy, the retarda-
that the two particles perform is tion 01_‘ the_ electric field, andiv) the work performed by the_
radiation field. Paradoxes | and Il were caused by neglecting
~ q° q? the interference of radiation field. Paradox Il was based
W=2(|—— ﬁ) (58)  on the anomalous transformation of enef@y. Paradox IV

was based on field retardatigii ). Finally, Paradox V was
Of course, the single-particle equations of conservation obased on a surprisingly significant effect of the work per-
energy remain the same. Thus, if we include all the contriformed by the radiation fields.

butions to the conservation of energy equatiés and sub- We provided quantitative resolution of the paradoxes up to
tract Eq.(49), we find: second order i/c. Is it a simple task to demonstrate con-
2 2 2 2 2 servation of energy to a higher orderdfc? It is not difficult
a° _ v9® 29 1) g% i i i
B o B B F _ (590 to expand the algebraic expressions we have to a higher or-
| | | 2c2| der, but such an expansion is not enough. We have used more

@pproximations, in particular, the expressions for the radia-
dion of the charged particles are correct only in the approxi-
mation of small acceleration and small velocities. Indeed,
Eqg. (10) cannot be universally correct, because it says that by
reducingr, the time of stopping the charged particle, we can
2 2, o . L . obtain an unlimited amount of radiation energy: clearly we
utzeszv C]2/C |, and the mterferencg of radiation contributes should not get more energy than the initial kinetic energy of
v“q/2ctl. All terms together contribute the particle. Higher order calculations of the equation of con-
20202 servation of energy are an elaborate task that goes beyond
— (60)  the scope of this paper.
cl We believe that presenting the effects in the form of
We have reached another paradox. paradoxes helps to achieve a deeper understanding of the
subject. Obtaining quantitative resolutions of paradoxical
situations bolsters our confidence in applying the equation of
conservation of energy for indirect calculations of various
Xl. RESOLUTION OF PARADOX V: THE WORK OF effects.
THE RADIATION FIELDS

We again find a contradiction: The energy at the end of th

second-order in?/c?, we find three contributions. The in-
crease in the potential energy contribute&?/2c?l, the
work of the static fields during the transition period contrib-
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BEGINNINGS OF RADAR

In the 1930’s, microwave research was heavily cloaked in secrecy and was simultang
being developed under wraps in military and industrial laboratories in America, England, Fr
and Germany. The basic principle, that, radio waves had optical properties and could “re|
solid objects, had been demonstrated in 1888 by the German scientist Heinrich Hertz. A wi
device for the detection of ships, based on his experiments, was tested in the early 1900
little was done to exploit the discovery, even though as far back as 1922, Guglielmo Marcor
urged the development of short radio waves for the detection of obstacles in the fog or dar
It was not until the 1930’s, when airplanes came of age as a military weapon—a threat
terrifyingly real by the damage inflicted by German and Italian bombers on Spain between
and 1938—that the technology of radar finally began to be developed in earnest. Most
countries exploring radar concentrated their early efforts on “the beat method,” or the Do
method, which used ordinary continuous radio waves and required at least two widely sep
and bulky stations, one for transmitting and one for receiving. Airplanes that penetrated be
the transmitter and receiver were detected by the Doppler beat between the directfsdgméhe
transmitter to the receiveand the signal scattered by the targehich traveled a longer route
from the transmitter to the plane and then to the recgilémfortunately, the equipment was fairl
limited in its effectiveness. The sharpness of the system’s vision—its ability to distinguish
rately the echoes from two targets close together and at the same distance from the 1
depended on the sharpness of the radar beam. For a given antenna, the beam width was
tional to the wavelength and would become sharper as the wavelength decreased. Loomis |
that if sharp radar beams were ever to be produced by an antenna not too large to carry
airplane, they would have to develop a generator of much shorter wavelengths than wa
known. It was speculative, to be sure, but the unexplored microwave spectrum promised Nng
to allow radar sets to become much smaller and more portable, but also to prove better at Ig
low-flying aircraft and to be able to distinguish targets with far greater accuracy.

Jennett Conanfluxedo ParkSimon & Schuster, New York, NY, 2002pp. 130—-131.

2ously
ance,
flect”
brking
s. But
i had
kness.
made
1936
of the
ppler
arated
tween

sepa-
adar—
propor-
ealized
in an
s then
t only
cating

1223 Am. J. Phys., Vol. 70, No. 12, December 2002

A. Kislev and L. Vaidman

1223



