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Measurement of the Negative Kinetic Energy of Tunnelling Particles
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We consider measurements of kinetic energy performed on particles from a “pre- and post-selected”
ensemble. The particles are prepared in a bound state; next, kinetic energy measurements are performed;
and finally, we perform a measurement selecting particles which are far inside the tunnelling region. We
prove that for all these particles the readings of the kinetic energy measuring device cluster around a
negative value! This value is the weak value recently introduced by Aharonov, Albert and Vaidman for
description of systems in pre- and post-selected ensembles. Tunnelling provides a striking example of a
weak value obtained from a measurement which is not “weak”.

1. Introduction

The phenomenon of barrier penetration, such as tun-
nelling through a potential barrier, is an outstanding ex-
ample of quantum behavior. Quantum particles can be
found 1n regions where a classical particle could never go,
since it would have negative kinetic energy. But in quan-
tum theory, too, the eigenvalues of kinetic energy cannot
be negative. How, then, can a quantum particle “tunnel”?
The apparent paradox is resolved by noting that the wave
function of a tunnelling particle only partly overlaps the
forbidden region. There is no wave function that repre-
sents a particle restricted to a region where its potential
energy is larger than its total energy.

Nevertheless, we will show that actual measurements
of kinetic energy can yield negative values, and that, un-
der proper conditions, a remarkable consistency appears
in these apparent errors. In a model experiment, we mea-
sure the kinetic energy of a bound particle to any de-
sired precision. We then attempt to localize the parti-
cle within the classically forbidden region. The attempt
rarely succeeds, but whenever it does, we find that the
kinetic energy measurements gave an “unphysical”’ neg-
ative result; moreover, these results cluster around the
appropriate value, the difference between the total and
the potential energy. This consistency, which seems to
come from nowhere — a background of errors — suggests
strongly that the notion of a quantum observable is richer
than the one generally accepted. The negative values of
kinetic energy realize the recently introduced concept of
a weak valuel'?) of a quantum variable.

2.  Analysis of errors in measurement
We begin by reviewing the standard von Neumann®

theory of measurement in non-relativistic quantum me-
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chanics. Suppose we wish to measure a dynamical quan-
tity A. We choose a measuring device with an interaction
Hamiltonian

Hint = g(t)PA (1)

where P is a canonical momentum of the measuring de-
vice; the conjugate position () corresponds to the position
of a pointer on the device. The time-dependent coupling
constant ¢(¢) is nonzero only for a short time interval cor-
responding to the measurement, and is normalized so that

/g(t)dt —il ()

When the time interval is very short, we call the mea-
surement impulsive. For an impulsive measurement, H;n;
dominates the Hamiltonians for the particle and the mea-
suring device. Then, since @ = %[H,-M,Q] = g(t)A, we
obtain (in the Heisenberg representation) the result

inn 5 Qi'n =A (3)

where Qfin and Q;n denote the final and initial settings
of the pointer.

In an ideal measurement the initial position of the
pointer is precisely defined, say @i, = 0, and so from
its final position we read the precise value of A. But in
practice, measurements involve uncertainty. To make this
uncertainty explicit, we can take the initial state of the
pointer to be

(@) = (@)@ (4)
The uncertainty in the initial position of the pointer pro-
duces errors of order ¢ in the determination of A; when
e — 0 we recover the ideal measurement. Suppose that
the system under study is initially in an eigenstate of A
with eigenvalue a. Ideal measurements can yield only the
result a. But when the pointer itself introduces an un-
certainty, other results are possible, indeed a scatter of
results, with a spread of about ¢, and peaked at the eigen-
value a. If the measuring device works as described, then
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any measured value is possible, although large errors are
exponentially suppressed. There is no mystery in the ap-
pearance of such errors; they are expected, given the un-
certainty associated with the measuring device. Measure-
ments of a positive definite operator such as p? could even
yield negative values. Of course, the dial of the measur-
ing device might have a pin preventing negative readings,
but let us assume that it does not. Even if the nega-
tive values themselves are unphysical, they are part of a
distribution representing the measurement of a physical
quantity. They should not be thrown out, since they give
information about the distribution and contribute to the
best estimate of the peak value.

The standard theory of measurement not only allows
errors, 1t also prescribes their interpretation: they consti-
tute scatter around a true physical value which can only
be one of the eigenvalues of the operator measured. Since
these errors originate in the measuring device, and not in
the system under study, it seems that they cannot depend
on any property of the system. However, closer analysis of
these errors in the context of sequences of measurements
reveals a pattern which, far from being random, clearly
reflects properties of the system under study.

We shall show a correlation between position mea-
surements and prior kinetic energy measurements: nearly
all particles found far outside the potential well yielded
negative values of kinetic energy. The correlation, how-
ever, works one way only. Nearly all particles that yielded
negative values of kinetic energy are still found inside the
well. The latter ensemble is much larger than the former.

3. The weak value

Consider a system which has been pre-selected in a
state |¥;,) and shortly afterwards post-selected in a state
|¥ rin). The weak value of any physical variable A in the
time interval between pre-selection and post-selection is

defined to be

4, = Ysin|A[¥in) (5)
(¥ sin|Win)

Let us show briefly how these values emerge from a mea-
suring procedure with a sufficiently weak interaction. We
consider a sequence of measurements: a pre-selection of
|¥;.), (weak) measurement interaction of the form of
Eq.(1), and a (successful) post-selection measurement of
the state | U s, ). The state of the measuring device after
this sequence is given (up to normalization) by

3 in(Q) = (Y pinle #F A|Ti)e @2 (6)

After simple algebraic manipulation we can rewrite it (in
the P-representation) as

B fin(P) = (T fin|Pin) et AwP —c2P?/2h
= (iP/R)" 2 p2
(il i) 3 CE (), ()P0 ()

n!
n=2 L

If € is large enough (which corresponds to an imprecise
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measurement ), then we can neglect the second term of (7)
when we Fourier transform back to the Q-representation.
Large € corresponds to weak measurement in the sense
that the interaction Hamiltonian (1) is small. Thus, in
the limit of weak measurement, the final state of the mea-
suring device (in the Q-representation) is

¢in(Q) = (627r)_1/48_(Q—Aw)2/2€2 ] (8)

This state represents a measuring device pointing to the
result A,,! We have showed that weak enough measure-
ments on pre- and post-selected ensembles yield, instead
of eigenvalues, a “weak” value which might lie far outside
the range of eigenvalues.

From (7) we can derive the weakness condition:?)

I'(n/2)

en(n — 2)!
We see that if (A™),, and (A, )™ are approximately equal,
then the condition on the weakness of the measurement
interaction is not severe, i.e. the uncertainty e need not
be very large. In fact, there are examples in which a
measurement yields a weak value (5) while the measuring
iteraction is not weak at all.*®) As we show next, mea-

surement of the kinetic energy of tunnelling particles is
one such example.

[(A")w — ()"l <1 . (9)

4. Negative kinetic energy

Our example may be summarized as follows: we pre-
pare a sufficiently large ensemble of particles bound in a
potential well, in an eigenstate of energy, and measure the
kinetic energy of each particle to a given precision. Then
we measure the position of each particle and select only
those cases where the particle is localized within some
region “far enough” from the well — with “far enough”
depending on how precisely the kinetic energy was mea-
sured. It turns out that for almost all such post-selected
particles the measured kinetic energy was negative. Not
only are the measured values negative, they also cluster
around a particular negative value, the weak value of the
kinetic energy for this pre- and post-selected ensemble.
Also, the spread of the clustering is €, the characteristic
spread for kinetic energy measurements with this device.

The initial state is a ground state of a particle in a
smooth potential well. The Hamiltonian is

2
i P2 R U - / (10)

2m  cosh®(az)

where Uy = o?h*/m. In order to simplify the following
expressions we choose m=1 and use units such that A = 1.
The ground state then, with energy Fy = —a?/2, will be

af2

cosh(axz)

Uin(z) = |Eo) = (11)

The final measurement is a post-selection on a Gaus-
sian located far from the potential well:

U pin(a) = (%)—‘/%—‘f—“)z ; (12)

with o > 1,1/a. Then, the weak value of the kinetic
energy can be obtained immediately:
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. _ (Yyin|(E = V)| Eo) a?
Iy = ~ Fy—V(zg) ~—— . (13
w (\I’finlEO) 0 ( 0) 9 ( )
We can also calculate it using the kinetic energy operator
K= —%%. For ¢ > 1/a we have 1/ cosh(az) ~ 2¢°%%,
Thus,
AG=) il EF 1
B et =il mmea et 6P (14)
S [fe sk —L1 __dz O,
cosh(az)

This method is also appropriate for calculation of (K™):

T— Z\n n
e, i) cate ¢ =

[l Pt 7

cosh(az) 2

(15)
Therefore, for zg >> 1/a, i.e. for particles found deep in
the classically forbidden region, we have

(K™)w ~ (Ku)™ . (16)

Equation (16) is exactly the condition for normal
measurement with good precision to yield (negative!)
weak values for kinetic energy. Tunnelling presents a novel
situation in which whatever the strength of the measure-
ment, we can find an appropriate post-selection (large
enough zo) such that condition (9) is fulfilled. We see
that normal, “strong” measurements can yield weak val-
ues. This fact increases the significance of weak values
while making the name “weak” less appropriate.

5. Conclusions

We have seen that kinetic energy measurements on
a particle in a potential well can yield negative values
consistently. From the standpoint of the standard logic
of quantum mechanics, all that we have described here
is a game of errors of measurement. Ideal measurements
of kinetic energy can yield only positive values, since all
eigenvalues of the kinetic energy operator are positive.
But in practice, measurements are not exact, and even
if their precision is very good, sometimes — rarely — they
yield negative values. If particles are subsequently found
far enough from the potential well, the measured kinetic
energy of these particles comes out consistently negative.
Regularly, large measurement “errors” appeared, produc-
ing a distribution peaked at an “unphysical” negative
value. Mathematically, this distribution arises from an
unusual interference.’) What emerges from this interfer-
ence is an approximate Gaussian centered on the appro-
priate negative value, with a characteristic spread of the
measuring device, i.e. the pointer of the measuring device
shows the (negative) weak value.

We have shown that the “game of errors” displays a
remarkable consistency; and this consistency allows nega-
tive kinetic energies to enter physics in a natural way. The
statement, “The kinetic energy of a particle in a classically
forbidden region is negative” has a consistent meaning,
namely, “The weak value of kinetic energy of a particle in
a classically forbidden region is negative”. We arrive at a
new language for describing quantum processes.
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The language of weak values provides us with a new
intuition. The operators of total energy, kinetic energy
and the potential energy do not commute. Therefore, we
do not have an analog of the classical formula E = K + V.
However, for the weak values, it follows trivially from the
definition that F,, = K, +V,. Thus, weak values allow us
to apply a kind of classical intuition in many problems. In
fact, we have applied it in calculating the weak value of ki-
netic energy in Eq.(13). Weak values yield a classical pic-
ture in the following sense: In our pre- and post-selected
ensemble we could perform several kinetic energy mea-
surements, and even several measurements of total energy
and potential energy as well. If the particle is finally found
far from the potential well, i.e. if it belongs to our ensem-
ble, and if all these measurements were not too strong,
then the kinetic energy measurements yield results clus-
tered around the weak value, the total energy measure-
ments yield values clustered around Ey (E, = Ep), and
the potential energy measurements yield values close to
zero (Vy, ~ 0).

The new language also provides new intuition about
local properties of a particle in a quantum state. Intu-
itively, we can say that negative values of kinetic energy
arise as the local value of the kinetic energy operator.
In our example, the pre-selected bound state is projected
onto a post-selected state localized far from the well. The
combination of pre- and post-selection concentrates the
measurement on a region outside the potential well. We
note a surprising extension of this result: measurements
that yield negative kinetic energy, like other impulsive
measurements, are independent of the Hamiltonian of the
system under study. We could neglect the Hamiltonians
for the system and measuring device, and treat only their
interaction. It follows that we can observe particles with
negative kinetic energy even if there is no binding po-
tential at all. What matters is only the shape of the
pre-selected wave function of the particle in the region
of overlap with the post-selected wave function.

The example of a particle in a potential well is a limit-
ing case of quantum tunnelling, when the barrier becomes
very broad. The interpretation offered here applies to fi-
nite barriers, too. However, more precise measurements of
kinetic energy require post-selected states farther into the
classically forbidden region; for narrow barriers, negative
kinetic energies may be hard to observe.
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