
Chapter 26
Derivations of the Born Rule

Lev Vaidman

Abstract The Born rule, a cornerstone of quantum theory usually taken as a
postulate, continues to attract numerous attempts for its derivation. A critical review
of these derivations, from early attempts to very recent results, is presented. It is
argued that the Born rule cannot be derived from the other postulates of quantum
theory without some additional assumptions.

Keywords Quantum probability · Born rule · Many-worlds interpretation ·
Relativistic causality

26.1 Introduction

My attempt to derive the Born rule appeared in the first memorial book for Itamar
Pitowsky (Vaidman 2012). I can only guess Itamar’s view on my derivation from
reading his papers (Pitowsky 1989, 2003, 2006; Hemmo and Pitowsky 2007).
It seems that we agree which quantum features are important, although our
conclusions might be different. In this paper I provide an overview of various
derivations of the Born rule. In numerous papers on the subject I find in depth
analyses of particular approaches and here I try to consider a wider context that
should clarify the status of the derivation of the Born rule in quantum theory. I
hope that it will trigger more general analyses which finally will lead to a consensus
needed for putting foundations of quantum theory on solid ground.

The Born rule was born at the birth of quantum mechanics. It plays a crucial
role in explaining experimental results which could not be explained by classical
physics. The Born rule is known as a statement about the probability of an outcome
of a quantum measurement. This is an operational meaning which corresponds to
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numerous very different statements about ontology in various interpretations of
quantum theory. Von Neumann’s description of quantum measurement includes, at
some stage, a collapse of the quantum state corresponding to a particular result of
the measurement and the Born rule provides the probability of getting this result.
In this framework there is no definition of when exactly it happens (where is
the quantum-classical boundary?), so the Copenhagen interpretation and its recent
development in the form of QBism (Caves et al. 2002) do not specify the ontology,
leaving the definition of the principle on the operational level. In the framework
of the Bohmian interpretation (Bohm 1952), which is a deterministic theory given
the initial Bohmian positions of all particles, the Born rule is a postulate about the
probability distribution which governs these random initial Bohmian positions. It is
a postulate about the genuinely random stochastic collapse process in the framework
of physical collapse theories (Ghirardi et al. 1986). In Aharonov’s solution to the
measurement problem (Aharonov et al. 2014), it is a postulate about the particular
form of the backward evolving wavefunciton. In the framework of the many-worlds
interpretation (MWI) (Everett III 1957), it is a postulate about experiences of an
observer in a particular world (Vaidman 2002). So, in all interpretations, the Born
rule is postulated, but the question of the possibility of its derivation is considered
to be of interest, and it is still open (Landsman 2009).

A rarely emphasized important fact about the Born rule is that it might be
even more relevant for explaining physics phenomena in which the probability is
not explicitly manifested. Quantum statistical mechanics which leads to quantum
thermodynamics heavily uses the Born rule for explaining everyday observed
phenomena. There is nothing random when we observe a blue sky or reddish sun
at sunset. The explanation includes scattered photons of various colors absorbed by
cones in the eye with their color depended efficiency of the absorption. The ratio of
the number of events of photon absorption in different cones corresponds to different
experiences of the color of the sky and the sun, and we have to use the Born rule
to explain our visual experience (Li et al. 2014). In this explanation we consider
the cone photoreceptor in an eye as a single-photon detector and light from the sun
scattered by molecules of air as a collection of photons. The quantum nature of
light coming from modern artificial light sources is even more obvious. An observer
looks on a short flash of a fluorescent soft white bulb and announces the color she
has seen. The spectrum of the light from this bulb consists of red, green and blue
photons, but nobody would say that she saw red light or that she saw green light from
the fluorescent bulb. The Born Rule is needed to calculate the ratio of the signals
from the cones. The large number of events of photon detection by cones explains
why nobody would say they saw a color different from white, since the Born rule
provides an almost vanishing probability for such event. The Born rule also tells us
that there is an astronomically small probability that we will see a red sky and a blue
sun, but it is not different from other quantum tiny tails which we neglect when we
explain the classical world we observe through underlying quantum reality.
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26.2 Frequentist Approach

One of the early approaches relied on consideration of infinite series of repeated
measurements. In the frequentist approach to probability, we consider the ratio of
particular outcomes to the total number of measurements. The probability acquires
its meaning only in the infinite limit. The important milestones were the works
of Hartle (1968) and Farhi et al. (1989). Then the program was extended by
replacing infinite tensor products of Hilbert spaces by continuous fields of C�-
algebras (Van Wesep 2006; Landsman 2008). The core feature of these arguments
involves taking a limit of an infinite number of quantum systems. Aharonov and his
collaborators (Aharonov and Reznik 2002; Aharonov et al. 2017) presented, in my
view, the simplest and the most elegant argument based on this type of infinite limit.

Consider a large number N of identical systems all prepared in the same state

|Ψ 〉 =
∑

i

αi |ai〉, (26.1)

which is a superposition of nondegenerate eigenstates of a variable A. Consider the
“average” variable Ā ≡ 1

N

∑N
n=1 An. Applying the universal formula (Aharonov

and Vaidman 1990)

A|Ψ 〉 = 〈Ψ |A|Φ〉 |Ψ 〉 + ΔA|Ψ⊥〉, (26.2)

where 〈Ψ |Ψ⊥〉 = 0, we obtain

Ā

N∏

n=1

|Ψ 〉n = 〈Ψ |A|Ψ 〉
N∏

n=1

|Ψ 〉n + ΔA

N

N∑

k=1

∏

n �=k

|Ψ 〉n|Ψ⊥〉k. (26.3)

The amplitude of the first term in the right hand side of the equation is of order
1 while the amplitude of the second term (the sum) is proportional to 1√

N
, so in

the limit as N tends to infinity, the second term can be neglected and the product
state

∏N
n=1 |Ψ 〉n can be considered an eigenstate of the variable Ā with eigenvalue

〈Ψ |A|Ψ 〉.
Now consider the measurement of Ā followed by measurements of A of each

of the individual systems. Ni is the number of outcomes A = ai . The probability
of outcome ai is defined as the limit pi ≡ limN→∞ Ni

N
. To derive the Born rule

we consider the shift of the pointer of the measuring device measuring Ā, in two
ways. First, since in the limit, the state is an eigenstate with eigenvalue 〈Ψ |A|Ψ 〉,
the pointer is shifted by this value. Second, consider the evolution backward in time
given that we have the results of individual measurements of variable A of each
system. Then the shift has to be

∑N
i=1

aiNi

N
. In the limit we obtain 〈Ψ |A|Ψ 〉 =∑

i |αi |2ai = ∑N
i=1 aipi . This equation can be generally true only if pi = |αi |2 for

all eigenvalues ai . This proves the Born rule.
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The legitimacy of going to the limit N → ∞ in the earlier proofs was questioned
in Squires (1990), Buniy et al. (2006) and Aharonov’s approach was analyzed in
Finkelstein (2003). I am also skeptical about the possibility of arguments relying on
the existence of infinities to shed light on Nature. Surely, the infinitesimal analysis
is very helpful, but infinities lead to numerous very peculiar sophisticated features
which we do not observe. I see no need for infinities to explain our experience.
Very large numbers can mimic everything and are infinitely simpler than infinity.
The human eye cannot distinguish between 24 pictures per second and continuous
motion, but infinite information is required to describe the latter. There is no need
for infinities to explain all what we see around.

Another reason for my skepticism about possibility to understand Nature by
neglecting vanishing terms in the infinite limit is the following example in which
these terms are crucial for providing common sense explanation. In the modification
of the interaction-free measurement (Elitzur and Vaidman 1993) based on the Zeno
effect (Kwiat et al. 1995) we get information about the presence of an object without
being near it. The probability of success can be made as close to 1 as we wish
by changing the parameters. Together with this, there is an increasing number of
moments of time at which the particle can be absorbed by the object with decreasing
probability of each absorption. In the limit, the sum of the probabilities of absorption
at all different moments goes to zero, but without these cases the success of the
interaction-free measurement seems to contradict common sense. These are the
cases in which there is an interaction. Taking the limit in proving the Born rule
is analogous to neglecting these cases.

The main reason why I think that this approach cannot be the solution is that I
do not see what is the additional assumption from which we derive the Born rule.
Consider a counter example. Instead of the Born rule, the Nature has “Equal rule”.
Every outcome ai of a measurement of A has the same probability given that it
is possible, i.e., αi �= 0 . Of course, this model contradicts experimental results,
but it does not contradict the unitary evolution part of the formalism of quantum
mechanics. I do not see how making the number of experiments infinite can rule
out Equal rule. Note that an additional assumption ruling out this model is hinted in
Aharonov and Reznik (2002) “the results of physical experiments are stable against
small perturbations”. A very small change of the amplitude can make a finite change
in the probability in the proposed model. (This type of continuity assumption is
present in some other approaches too.)

26.3 The Born Rule and the Measuring Procedure

The Born rule is intimately connected to the measurement problem of quantum
mechanics. Today there is no consensus about its solution. The Schrödinger equation
cannot explain definite outcomes of quantum measurements. So, if it does not
explain the existence of a (unique) outcome, how can it explain its probability?
It is the collapse process (which is not explained by the Schrödinger equation) that
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provides the unique outcome, so it seems hopeless to look for an explanation of the
Born rule based on the Schrödinger equation.

What might be possible are consistency arguments. If we accept the Hibert
space structure of quantum mechanics and we accept that there is probability for
an outcome of a quantum measurement, what might this probability measure be?
Itamar Pitowsky suggested to take it as the basis and showed how Gleason’s theorem
(Gleason 1957) (which has its own assumptions) leads to the Born rule (Pitowsky
1998). He was aware of “two conceptual assumptions, or perhaps dogmas. The
first is J. S. Bell’s dictum that the concept of measurement should not be taken
as fundamental, but should rather be defined in terms of more basic processes.
The second assumption is that the quantum state is a real physical entity, and that
denying its reality turns quantum theory into a mere instrument for predictions”
(Bub and Pitowsky 2010). In what followed, he recognized the problem as I do:
“This last assumption runs very quickly into the measurement problem. Hence,
one is forced either to adopt an essentially non-relativistic alternative to quantum
mechanics (e.g. Bohm without collapse, GRW with it); or to adopt the baroque
many worlds interpretation which has no collapse and assumes that all measurement
outcomes are realized.” The difference between us is that he viewed “the baroque
many worlds interpretation” as unacceptable (Hemmo and Pitowsky 2007), while I
learned to live with it (Vaidman 2002).

Maybe more importantly, we disagree about the first dogma. I am not ready to
accept “measurement” as a primitive. Physics has to explain all our experiences,
from observing results of quantum measurements to observing the color of the sun
and the sky at sunset. I do believe in the ontology of the wave function (Vaidman
2016, 2019) and I am looking for a direct correspondence between the wave function
and my experience considering quantum observables only as tools for helping to find
this correspondence. I avoid attaching ontological meaning to the values of these
observables. It does not mean that I cannot discuss the Born rule. The measurement
situation is a well defined procedure and our experiences of this procedure (results
of measurements) have to be explained.

The basic requirement of the measurement procedure is that if the initial state
is an eigenstate of the measured variable, it should provide the corresponding
eigenvalue with certainty. Any procedure fulfilling this property is a legitimate
measuring procedure. The Born rule states that the probability it provides should
be correct for any legitimate procedure, and this is a part of what has to be proved,
but let us assume that the fact that all legitimate procedures provide the same
probabilities is given. I will construct then a particular measurement procedure
(which fulfills the property of probability 1 for eigenstates) which will allow me
to explain the probability formula of the Born rule.

Consider a measurement of variable A performed on a system prepared in the
state (26.1). The measurement procedure has to include coupling to the measuring
device and the amplification part in which the result is written in numerous quantum
systems providing a robust record. Until this happens, there is no point in discussing
the probability, since outcomes were not created yet. So the measurement process
is:
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|Ψ 〉
∏

m

|r〉MD
m →

∑

i

αi |ai〉
∏

m∈Si

|�〉MD
m

∏

m/∈Si

|r〉MD
m , MD

m〈r|�〉MD
m = 0 ∀m

(26.4)

where “ready” states |r〉MD
m of the numerous parts m of the measuring device,

m ∈ Si , are changed to macroscopically different (and thus orthogonal) states
|�〉MD

m , in correspondence with the eigenvalue ai . For all possible outcomes ai , the
set Si of subsystems of the measuring device which change their states to orthogonal
states has to be large enough. This part of the process takes place according to all
interpretations. In collapse interpretations, at some stage, the state collapses to one
term in the sum.

This schematic description is not too far from reality. Such a situation appears
in a Stern-Gerlach experiment in which the atom, the spin component of which is
measured, leaves a mark on a screen by exciting numerous atoms of the screen.
But I want to consider a modified measurement procedure. Instead of a screen in
which the hitting atom excites many atoms, we put arrays of single-atom detectors
in the places corresponding to particular outcomes. The arrays cover the areas of
the quantum uncertainty of the hitting atom. The arrays are different, as they have
a different number Ni of single-atom detectors which we arrange according to
equation Ni = |αi |2N . (We assume that we know the initial state of the system.)

In the first stage of the modified measuring procedure an entangled state of the
atom and sensors of the single-atom detectors is created:

|Ψ 〉
∏

n

|r〉senn →
∑

i

αi√
Ni

|ai〉
∑

ki

|�〉senki

∏

n �=ki

|r〉senn , (26.5)

where |r〉senn represents an unexcited state of the sensor with label n running
over sensors of all arrays of single-photon detectors. N is the total number of
detectors. For each eigenvalue ai there is one array of Ni detectors with sensors
in a superposition of entangled states in which one of the sensors ki has an excited
state |�〉senki

. At this stage the measurement has not yet taken place. The number of
sensors with changed quantum state might be large, but no “branches” with many
systems in excited states has been created. We need also the amplification process
which consists of excitation of a large number of subsystems of individual detectors.
In the modified measurement, instead of a multiple recording of an event specified
by the detection of ai , we record activation of every sensor ki by excitation of a
large (not necessarily the same) number of quantum subsystems m belonging to
the set Sik . Including in our description these subsystems, the description of the
measurement process is:

|Ψ 〉
∏

n

|r〉senn

∏

m

|r〉MD
m → 1√

N

∑

i

|ai〉
∑

ki

|�〉senki

∏

n �=ki

|r〉senn

∏

m∈Sik

|�〉MD
m

∏

m/∈Sik

|r〉MD
m .

(26.6)

Here we also redefined the states |�〉senki
to absorb the phase of αi to see explicitly

that all terms in the superposition have the same amplitude. Every term in the
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superposition has macroscopic number of subsystems of detectors with states which
are orthogonal to the states appearing in other terms. This makes all the terms
separate. We have N different options. They consist of sets according to all different
possible eigenvalues when the set corresponding to eigenvalue ai has Ni elements.
Assuming that all options are equiprobable, we obtain the Born rule. The probability
of a reading corresponding to eigenvalue ai is pi = Ni

N
= |αi |2. And this procedure

is a good measurement according to our basic requirement: If the initial state is an
eigenstate, we will know it with certainty.

In Fig. 26.1, we demonstrate such a situation for a modified Stern-Gerlach
experiment with the initial state |Ψ 〉 = √

0.4|↑〉 + √
0.6|↓〉. There are N = 5

single-photon detectors. The description of the measurement process (represented
for a general case by [26.6]) is now:

(√
0.4|↑〉 + √

0.6|↓〉
) 5∏

n=1

|r〉senn

∏

m

|r〉MD
m →

1√
5

(
|↑〉|�〉sen1

∏

1

+|↑〉|�〉sen2

∏

2

+|↓〉|�〉sen3

∏

3

+|↓〉|�〉sen4

∏

4

+|↓〉|�〉sen5

∏

5

)
,

(26.7)
where

∏

i

≡
∏

n �=i

|r〉senn

∏

m∈Si

|�〉MD
m

∏

m/∈Si

|r〉MD
m .

We obtain a superposition of five equal-amplitude states, each corresponding to one
detector clicks and others are not. It is natural to accept equal probabilities for clicks
of all these detectors and since there are two detectors corresponding to the outcome
‘up’ and three detectors corresponding to the outcome ‘down’ we obtain the Born
rule probabilities for our example.

An immediate question is: how can I claim to derive pi = |αi |2 when in my
procedure I put in by hand Ni

N
= |αi |2? The answer is that making another choice

would not lead to a superposition of orthogonal terms with equal amplitudes, so
with another choice the derivation does not go through.

This derivation makes a strong assumption that in the experiment, the firing of
each sensor has the same probability. It is arranged that all these events correspond
to terms in the superposition with the same amplitude, so the assumption is that
equal amplitudes correspond to equal probabilities. It is this fact that is considered
to be the main part in the derivation of the Born rule. I doubt that the formalism
of quantum mechanics by itself is enough to provide a proof for this statement, see
also Barrett (2017). In the next section I will try to identify the assumptions added
in various proofs of the Born rule.

Without the proof of the connection between amplitudes and probabilities, the
analysis of the experiment I presented above is more of an explanation of the Born
rule than its derivation. We also use an assumption that all valid measurement
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Fig. 26.1 Modified Stern-Gerlach experiment specially tailored for the state
√

0.4|↑〉 + √
0.6|↓〉.

There are two detectors in the location corresponding to the result ‘up’ and three detectors in the
location corresponding to the result ‘down’

experimental procedures provide the same probabilities for outcomes. The modified
procedure has a very natural combinatorial counting meaning of probability. It can
be applied to the collapse interpretations when we count possible outcomes and in
the MWI where we count worlds. The objection that the number of worlds is not a
well defined concept (Wallace 2010) is answered when we put weights (measures
of existence) on the worlds (Vaidman 1998; Greaves 2004; Groisman et al. 2013).

26.4 Symmetry Arguments

In various derivations of the Born rule, the statement that equal amplitudes lead to
equal probabilities relies on symmetry arguments. The starting point is the simplest
(sometimes named pivotal) case

|Ψ 〉 = 1√
2
(|a1〉 + |a2〉). (26.8)

The pioneer in attempting to solve this problem was Deutsch (1999) whose work
was followed by extensive development by Wallace (2007), a derivation by Zurek
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(2005), and some other attempts such as Sebens and Carroll (2016) and also my
contribution with McQueen (Vaidman 2012; McQueen and Vaidman 2018). The
key element of these derivations is the symmetry under permutation between |a1〉
and |a2〉. It is a very controversial topic, with numerous accusations of circularity
for some of the proofs (Hemmo and Pitowsky 2007; Barnum et al. 2000; Saunders
2004; Gill 2005; Schlosshauer and Fine 2005; Lewis 2010; Rae 2009; Dawid and
Thébault 2014).

In all these approaches there is a tacit assumption (which I also used above)
that the probability of an outcome of a measurement of A does not depend on
the procedure we use to perform this measurement. Another assumption is that
probability depends only on the quantum state. In the Deutsch-Wallace approach
some manipulations, swapping, and erasures are performed to eliminate the dif-
ference between |a1〉 and |a2〉, leading to probability half due to symmetry. If the
eigenstates do not have internal structure except for being orthogonal states, then
symmetry can be established, but it seems to me that these manipulations do not
provide the proof for important realistic cases in which the states are different in
many respects. It seems that what we need is a proof that all properties, except
for amplitudes, are irrelevant. I am not optimistic about the existence of such a
proof without adding some assumptions. Indeed, what might rule out the “Equal
rule”, a naive rule according to which probabilities for all outcomes corresponding
to nonzero amplitudes are equal, introduced above?

The assumption of continuity of probabilities as functions of time rules Equal
rule out, but this is an additional assumption. The Deutsch-Wallace proof is in
the framework of the MWI, i.e. that the physical theory is just unitary evolution
which is, of course, continuous, but it is about amplitudes as functions of time. The
experience, including the probability of self-location of an observer, supervenes
on the quantum state specified by these amplitudes, but the continuity of this
supervenience rule is not granted.

Zurek made a new twist in the derivation of the Born rule (Zurek 2005). His key
idea is to consider entangled systems and rely on “envariance” symmetry. A unitary
evolution of a system which can be undone by the unitary evolution of the system it
is entangled with. For the pivotal case, the state is

|Ψ 〉 = 1√
2
(|a1〉|1〉 + |a2〉|2〉), (26.9)

where |1〉, |2〉 are orthogonal states of the environment. The unitary swap
|a1〉 ↔ |a2〉 followed by the unitary swap of the entangled system |1〉 ↔ |2〉 brings
us back to the original state which, by assumption, corresponds to the original
probabilities. Other Zurek’s assumptions are that a manipulation of the second
system does not change the probability of the measurement on the system, while
the swap of the states of the systems swaps the probabilities for the two outcomes.
This proves that the probabilities for the outcomes in the pivotal example must be
equal.
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In my view, the weak point is the claim that swapping the states of the system
swaps the probabilities of the outcomes. This property follows from the quantum
formalism when the initial state is an eigenstate, but in our case, when the
mechanism for the choice of the outcome is unknown, we also do not know how
it is affected by unitary operations. Note, that it is not true for the Stern-Gerlach
experiment in the framework of Bohmian mechanics.

Zurek, see also Wallace (2010), Baker (2007), and Boge (2019), emphasises the
importance of decoherence: entanglement of environment with eigenstates of the
system. Indeed, decoherence is almost always present in quantum measurements
and its presence might speed up the moment we can declare that the measurement
has been completed, but, as far as I understand, decoherence is neither necessary,
nor sufficient for completing a quantum measurement. It is not necessary, because it
is not practically possible to perform an interference experiment with a macroscopic
detector in macroscopically different states even if it is isolated from the environ-
ment. It is not sufficient, because decoherence does not ensure collapse and does not
ensure splitting of a world. For a proper measurement, the measuring device must
be macroscopic. It is true that an interaction of the system with an environment,
instead of a macroscopic measuring device, might lead to a state similar to (26.4)
with macroscopic number of microscopic systems of environment “recording” the
eigenvalue of the observable. It, however, does not ensure that the measurement
happens. It is not clear that macroscopic number of excited microsystem causes a
collapse, see analysis of a such situation in the framework of the physical collapse
model (Ghirardi et al. 1986) in Albert and Vaidman (1989) and Aicardi et al. (1991).
In the framework of the many-worlds interpretation we need splitting of worlds. The
moment of splitting does not have a rigorous definition, but a standard definition
(Vaidman 2002) is that macroscopic objects must have macroscopically different
states. Decoherence might well happen due to a change of states of air molecules
which do not represent any macroscopic object.

What I view as the most problematic “symmetry argument proof” of probability
half for the pivotal example is the analysis of Sebens and Carroll (2016), see also
Kent (2015). Sebens and Caroll considered the measurement in the framework of the
MWI and apply the uncertainty of self-location in a particular world as a meaning
of probability (Vaidman 1998). However, in my understanding of the example
they consider, this uncertainty does not exist (McQueen and Vaidman 2018). In
their scenario, a measurement of A on a system in state (26.8) is performed on a
remote planet. Sebens and Caroll consider a question: What is the probability of
an observer who is here, i.e., far away from the planet, to be in a world with a
particular outcome? This question is illegitimate, because he is certainly present in
both worlds, there is no uncertainty here. This conclusion is unavoidable in the MWI
as I understand it (Vaidman 2002), which is a fully deterministic theory without any
room for uncertainty. However, uncertainty in the MWI is considered in Saunders
(2004) and Saunders and Wallace (2008), so if this program succeeds (see however
Lewis 2007), then the Sebens-Caroll proof might make sense. Another way to make
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sense of the Sebens-Caroll proof was proposed by Tappenden (2017) based on
his unitary interpretation of mind, but I have difficulty accepting this metaphysical
picture.

A scenario in which an observer is moved to different locations according to
an outcome of a quantum measurement without getting information about this
outcome (Vaidman 1998), allows us to consider the probability based on observer’s
ignorance about self-location and without uncertainty in the theory. This by itself,
however, does not prove the probability half for the pivotal case. The proof
(McQueen and Vaidman 2018), which is applicable to all interpretations, has two
basic assumptions. First, it is assumed that space in Nature has symmetry, so we
can construct the pivotal case with symmetry between the states |a1〉 and |a2〉. We
do not rely on permutation of states, we rely on the symmetry of physical space
and construct a symmetric state with identical wave packets in remote locations
1 and 2. The second assumption is that everything fulfills the postulate of the
theory of special relativity according to which we cannot send signals faster than
light. Changing probability by a remote action is sending signals. This proves that
changing the shape or even splitting a remote state will not change the probability
of finding a1 provided its amplitude was not changed.

26.5 Other Approaches

Itamar Pitowsky’s analysis of the Born rule on the basis of Gleason’s theorem
(Pitowsky 1998) was taken further to the case of generalized measurements (Caves
et al. 2004). Galley and Masanes (2017) continued research which singles out
the Born rule from other alternatives. Note that they also used symmetry (“bit
symmetry”) to single out the Born rule. Together with Muller, they extended their
analysis (Masanes et al. 2019) and claimed to prove everything just from some
“natural” properties of measurements which are primitive elements in their theory.
So, people walked very far on the road paved by Itamars’s pioneering works. I
have to admit that I am not sympathetic to this direction. The authors of Masanes
et al. (2019) conclude “Finally, having cleared up unnecessary postulates in the
formulation of QM, we find ourselves closer to its core message.” For me it seems
that they go away from physics. Quantum mechanics was born to explain physical
phenomena that classical physics could not. It was not a probability theory. It was
not a theory of measurements, and I hope it will not end as such. “Measurements”
should not be primitives, they are physical processes as any other, and physics
should explain all of them.

Similarly, I cannot make much sense of claims that the Born rule appears even
in classical systems presented in the Hilbert space formalism (Brumer and Gong
2006; Deumens 2019). Note that in the quantum domain, the Born rule appears
even outside the framework of Hilbert spaces in the work of Saunders (2004),
who strongly relies on operational assumptions such as a continuity assumption:
“sufficiently small variations in the state-preparation device, and hence of the initial
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state, should yield small variations in expectation value.” This assumption is much
more physical than postulates of general probabilistic theories.

The dynamical derivation in the framework of the Bohmian interpretation cham-
pioned by Valentini (Valentini and Westman 2005; Towler et al. 2011) who argued
that under some (not too strong) requirements of complexity, the Born distribution
arises similarly to thermal probabilities in ordinary statistical mechanics. See
extensive discussion in Callender (2007) and recent analysis in Norsen (2018) which
brings also similar ideas from Dürr et al. (1992). The fact that for some initial
conditions of some systems relaxation to Born statistics does not happen is a serious
weakness of this approach. What I find more to the point as a proof of the Born rule
is that the Born statistical distribution remains invariant under time evolution in all
situations. And that, under some very natural assumptions, is the only distribution
with this strong property (Goldstein and Struyve 2007).

Wallace (2010) and Saunders (2010) advocate analyzing the issue of probability
in the framework of the consistent histories approach. It provides formal expressions
which fit the probability calculus axioms. However, I have difficulty seeing what
these expressions might mean. I failed to see any ontological meaning for the main
concept of the approach “the probability of a history”, and it also has no operational
meaning apart from the conditional probability of an actually performed experiment
(Aharonov et al. 1964), while the approach is supposed to be general enough to
describe evolution of systems which were not measured at the intermediate time.

26.6 Summary of My View

I feel that there is a lot of confusion in the discussions of the subject and it is
important to make the picture much more clear. Even if definite answers might not
be available now, the question: What are the open problems? can be clarified. First,
it is important to specify the framework: collapse theory, hidden variables approach
or noncollapse theory. Although in many cases the “derivation of the Born rule”
uses similar structure and arguments in all frameworks, the conceptual task is very
different. I believe that in all frameworks there is no way to prove the Born rule
from other axioms of standard quantum mechanics. The correctly posed question is:
What are the additional assumptions needed to derive the Born rule?

Standard quantum mechanics tells us that the evolution is unitary, until it leads
to a superposition of quantum states corresponding to macroscopically different
classical pictures. There is no precise definition of “macroscopically different
classical pictures” and this is a very important part of the measurement problem,
but discussions of the Born rule assume that this ambiguity is somehow solved, or
proven irrelevant. The discussions analyze a quantitative property of the nonunitary
process which happens when we reach this stage assuming that the fact that it
happens is given. I see no possibility to derive the quantitative law of this nonunitary
process from laws of unitary evolution. It is usually assumed that the process
depends solely on the quantum state, i.e. that the probability of an outcome of
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a measurement of an observable does not depend on some hidden variables and
does not depend on the way the observable is measured. The process also should
not alter the unitary evolution when a superposition of states corresponding to
macroscopically different classical pictures was not created. This, however, is not
enough to rule out proposals different from the Born rule, e.g., Equal rule described
above. We have to add something to derive the Born rule. We are not supposed
to rely on experimental results, they do single out the Born rule, but this is not a
“derivation”. Instead, if we take some features of observed results as the basis, it is
considered as a derivation. I am not sure that it is really better, unless these features
are considered not as properties of Nature, but as a basic reason for Nature to be as
it is. Then the Born rule derivations become a part of the program to get quantum
mechanics from simple axioms (Popescu and Rohrlich 1994; Hardy 2001; Chiribella
et al. 2011). In these derivations, quantum mechanics is usually considered as a
general probability theory and the main task is to derive the Born rule.

In McQueen and Vaidman (2018) the program is more modest. Unitary quantum
mechanics is assumed and two physical postulates are added. First, that there are
symmetries in space and second that there is no superluminal signalling. The first
principle allows us to construct a pivotal example described by (26.8) in which there
is symmetry between states |a1〉 and |a2〉. The second principle allows us to change
one of the eigenstates in the pivotal state without changing the probability to find
the other eigenvalue. This is the beginning of the procedure, first shown by Deutsch
in (1999), who pioneered these types of derivations.

The situation in the framework of the MWI is conceptually different. The
physical essence of the MWI is: unitary evolution of a quantum state of the universe
is all that there is. There is no additional process of collapse behaviour which should
be postulated. So it seems that here there is no room for additional assumptions and
that the Born rule must be derived just from the unitary evolution.

However, the MWI has a problem with probability even before we discuss the
quantitative formula of the Born rule. The standard approach to the probability of
an event requires that there to be a matter of fact about whether this event and not
the other takes place, but in the MWI all events take place. On the other hand, we do
have experience of one particular outcome when we perform a measurement. My
resolution of this problem (Vaidman 1998) is that indeed, there is no way to ask
what is the probability of what will happen, because all outcomes will be actual.
The “probability” rule is still needed to explain statistics of observed measurements
in the past. There are worlds with all possible statistics, but we happen to observe
Born rule statistics. The “probability” explaining these statistics is the probability
of self-location in a particular world. In Vaidman (1998) I constructed a scenario
with quantum measurements in which the observer is split (and together with him,
his world) according to the outcome of the measurement without being aware of the
result of the measurement. This provides the ignorance probability of the observer
about the world specified by the outcome of the measurement he is a part of.
Tappenden (2010) argues that merely considering such a construction allows us to
discuss the Born rule. These are supporting arguments of the solution: there is no
probabilistic process in Nature: with certainty all possible outcomes of a quantum
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measurement will be realized, but an observer, living by definition in one of the
worlds, can consider the question of probability of being located in a particular
world.

All that is in Nature, according to MWI, is a unitary evolving quantum state of
the universe and observers correspond to parts of this wave function (Vaidman 2016,
2019). So, there is a hope that the experience of observers, after constructing the
theory of observers (chemistry, biology, psychology, decision theory, etc.) can be,
in principle, explained solely from the evolution of the quantum state. Apparently,
experiences of an observer can be learned from his behavior which is described
by the evolution of the wave function. Then, it seems that the Born rule should be
derivable from the laws of quantum mechanics. However, I believe that this is not
true.

Consider Alice and Bob at separate locations and they have a particle in a
state (26.8) where |a1〉 corresponds to a particle being at Alice’s site and |a2〉
corresponds to a particle being at Bob’s site. Now assume that instead of the Born
rule, which states that the probability of self-location in a world is proportional to the
square of the amplitude, Nature has the Equal rule which yields the same probability
of self location in all the worlds, i.e. probability 1

N
, where N is the number of worlds.

Equal rule allows superluminal signaling. Alice and Bob agree that at a particular
time t Alice measures the presence of the particle at her site, i.e. she measures the
projection on state |a1〉. To send bit 0, Bob does nothing. Alice’s measurement splits
the world into two worlds: the one in which she finds the particle and the other, in
which she does not. Then she has equal probability to find herself in each of the
worlds, so she has probability half to find herself in the world in which she finds the
particle. For sending bit 1, just before time t , Bob performs a unitary operation on
the part of the wave at his site splitting it to a hundred orthogonal states

|a2〉 →
100∑

k=1

|bk〉, (26.10)

and immediately measures operator B which tells him the eigenvalue bk . This
operation splits the initial single world with the particle in a superposition into
hundred and one worlds: hundred worlds with one of Bob’s detectors finding the
particle, and one world in which the particle was not found by Bob’s detectors.
Prior to her measurement, Alice is present in all these worlds. Her measurement
tests if she is in one particular world, so she has only probability of 1

101 to find the
particle at her site.

Bob’s unitary operation and measurement change the probability of Alice’s
outcome. With measurements on a single particle, the communication is not very
reliable, but using an ensemble will lead to only very rare cases of an error. The
Equal rule will ensure that Alice and Bob meeting in the future will (most probably)
verify correctness of the bit Bob has sent.

We know that unitary evolution does not allow superluminal communication.
(When we consider a relativistic generalisation of the Schrödinger equation.) Can,
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a supertechnology, capable of observing superposition of Alice’s and Bob’s worlds,
given that the actual probability rule of self-location is the Equal rule (and not the
Born rule), use the above procedure for sending superluminal signals? No! Only
Alice and Bob, inside their worlds, have the ability of superluminal communication.
It does not contradict relativistic properties of physics describing unitary evolution
of all worlds together.

What I argue here, is that the situation in the framework of MWI is not different
from collapse theories. There is a need for an independent probability postulate.
In collapse theory it is a physical postulate telling us about the dynamics of the
ontology, dynamics of the quantum state of the universe describing the (single)
world. In MWI, the postulate belongs to the part connecting observer’s experiences
with the ontology. In the MWI, as in a collapse theory, the experiences supervene
on the ontology, the quantum state. The supervenience rule is the same when the
quantum state corresponds to a single world, but it has an additional part regarding
the probability of self-location, when the quantum state of the universe corresponds
to more than world. The postulate describes this supervenience rule.

We can justify the Born rule postulate of self-location by experimental evidence,
or by requiring the relativistic constraint of superluminal signaling also within
worlds. I find a convincing explanation in the concept of the measure of existence
of a world (Vaidman 1998; Groisman et al. 2013). While there is no reason to
postulate that the probability of self-location in every world is the same, it is
natural to postulate that the probability of self-location in worlds of equal existence
(equal square of the amplitude) is the same. Adding another natural assumption
that probability of self-location in a particular world should be equal to the sum of
the probability of self-location in all the worlds which split from the original one,
provides the Born rule.

My main conclusion is that there is no way to derive the Born rule without
additional assumptions. It is true both in the framework of collapse theories and,
more surprisingly, in the framework of the MWI. The main open question is not the
validity of various proofs, but what are the most natural assumptions we should add
for proving the Born rule.
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