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13.1 Introduction

The two-state vector formalism of quantum mechanics is a time-symmetrized
approach to standard quantum theory particularly helpful for the analysis
of experiments performed on pre- and post-selected ensembles. It allows to
see numerous peculiar effects which naturally arise in this approach. In par-
ticular, the concepts of “weak measurements” (standard measurements with
weakening of the interaction) and “weak values” (the outcomes of weak mea-
surements) reveal a very unusual but consistent picture. Recently, more and
more effects are viewed as manifestations of weak measurements and more
and more weak measurement experiments have been performed. The polemic
about the validity of the approach and the meaning of its concepts never
stopped. The number of papers written on the subject almost doubled since
publication of the first version of the review. The current review does not ex-
plain in details the new results, but it puts the development of the approach
in the proper context and provides citations for further reading.

13.2 Descriptions of Quantum Systems

13.2.1 The Quantum State

In the standard quantum mechanics, a system at a given time ¢ is described
completely by a quantum state
@), (13.1)

defined by the results of measurements performed on the system in the past
relative to the time ¢. (It might be that the system at time ¢ is not described
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by a pure quantum state, but by a mixed state (density matrix). However,
we can always assume that there is a composite system including this system
which is in a pure state.) The status of a quantum state is controversial: there
are many papers on reality of a quantum state and numerous interpretations
of this “reality.” However, it is noncontroversial to say that the quantum state
yields maximal information about how this system can affect other systems
(in particular, measuring devices) interacting with it at time ¢. Of course, the
results of all measurements in the past, or just the results of the last complete
measurement, also have this information, but these results include other facts
too, so the quantum state is the most concise information about how the
quantum system can affect other systems at time t.

The concept of a quantum state is time-asymmetric: it is defined by the re-
sults of measurements in the past. This fact by itself is not enough for the
asymmetry: in classical physics, the state of a system at time ¢ defined by the
results of the complete set of measurements in the past is not different from
the state defined by the complete measurements in the future. This is because
for a classical system the results of measurements in the future are defined by
the results of measurements in the past (and vice versa). In quantum mechan-
ics this is not so: the results of measurements in the future are only partially
constrained by the results of measurements in the past. Thus, the concept
of a quantum state is genuinely time-asymmetric. The question arises: does
the asymmetry of a quantum state reflects the time asymmetry of quantum
mechanics, or it can be removed by reformulation of quantum mechanics in a
time-symmetric manner?

13.2.2 The Two-state Vector

The two-state vector formalism of quantum mechanics (TSVF) originated in
a seminal work of Aharonov, Bergmann, and Lebowitz (ABL) [1] removes this
asymmetry. It provides a time-symmetric formulation of quantum mechanics.
A system at a given time ¢ is described completely by a two-state vector

(@ @) (13.2)

which counsists of a quantum state |7) defined by the results of measurements
performed on the system in the past relative to the time ¢ and of a backward
evolving quantum state (®| defined by the results of measurements performed
on this system after the time ¢. Again, the status of the two-state vector
might be interpreted in different ways, but a noncontroversial fact is that it
yields maximal information about how this system can affect other systems
(in particular, measuring devices) interacting with it at time ¢.

The description of the system with the two-state vector (13.2) is clearly
different from the description with a single quantum state (13.1), but in both
cases we claim that “it yields maximal information about how this system
can affect other systems (in particular, measuring devices) interacting with it
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at time ¢.” Does it mean that the TSVF has different predictions than the
standard quantum approach? No, the two formalisms describe the same theory
with the same predictions. The difference is that the standard approach is time
asymmetric and it is assumed that only the results of the measurements in
the past exist. With this constraint, |?) indeed contains maximal information
about the system at time ¢. The rational for this approach is that if the results
of the future measurements relative to the time ¢ exist too, then “now” is
after time ¢ and we cannot return back in time to perform measurements at ¢.
Therefore, taking into account results of future measurements is not useful. In
contrast, the TSVF approach is time symmetric. There is no preference to the
results of measurements in the past relative to the results of measurements
in the future: both are taken into account. Then, there is more information
about the system at time ¢. The maximal information (without constraints)
is contained in the two-state vector (@] |¥).

If the TSVF has the same predictions as standard quantum mechanics,
what is the reason to consider it? And what about the argument that when
the results of future measurements are known it is already too late to make
measurements at time t?7 How might the two-state vector be useful? The an-
swer to the first question is that it is important to understand the time sym-
metry of nature (described by quantum mechanics). The time asymmetry of
the standard approach might be solely due to the usage of time-asymmetric
concepts. The answer to the second question is that there are many situa-
tions in which we want to know how a system affected other systems in the
past. The TSVF proved to be particularly useful after introduction of weak
measurements [2, 3, 4] which allowed to see that systems described by some
two-state vectors can affect other system at time ¢ in a very peculiar way.
This has led to the discovery of numerous bizarre effects [5, 6, 7, 8]. It is
very difficult to understand these effects in the framework of standard quan-
tum mechanics; some of them can be explained via a miraculous interference
phenomenon known as super-oscillations [9, 10].

13.2.3 How to Create Quantum Systems Corresponding
to Various Complete Descriptions?

The maximal complete description of a quantum system at time ¢ is a two-
state vector (13.2). We will name the system which has such a description
as pre- and postselected. (Again, it might be that at time ¢ the system is not
described by a “pure” two-state vector. However, we can assume that there
is a composite system including this system which is described by a two-
state vector.) In some circumstances, the system might have only a partial
description. For example, if time ¢ is “present” and the results of the future
measurements do not exist yet, then at that time, the system is described only
by a usual forward evolving quantum state (13.1): the preselected system.
Later, when the results of the future measurements will be obtained, the
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description will be completed to the form (13.2). It is also possible to arrange
a situation in which, until some measurements in the future, the complete
description of the system at time ¢ is the backward evolving quantum state
(®|: the postselected system. We will now explain how all these situations can
be achieved.

Single Forward-Evolving Quantum State
In order to have now a system the complete description of which at time
t is a single quantum state (13.1), there should be a complete measurement
in the past of time ¢ and no measurement on the system after time ¢, see
Fig. 13.1 a. The system in the state |F) is obtained when a measurement of
an observable A at time t¢; is performed, t; < ¢, obtaining a specific outcome
A = a such that the created state |a) performs unitary evolution between t;
and t governed by the Hamiltonian H,
Ulty,t) = e o Hdt (13.3)
to the desired state:
@) = Ul(ts,t) |a) . (13.4)

The time “now,” t,0, should either be equal to the time ¢, or it should be
known that during the time period [t, ;0] N0 measurements have been per-
formed on the system. The state |¥) remains to be the complete description
of the system at time ¢ until the future measurements on the system will be
performed yielding additional information.
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Fig. 13.1. Description of quantum systems: (a) pre-selected, (b) pre- and postse-
lected, (c) postselected, and (d) generalized pre- and postselected
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The Two-State Vector

In order to have now a system the complete description of which at time
t is a two-state vector (13.2), there should be a complete measurement in the
past of time ¢ and a complete measurement after the time ¢, see Fig. 13.1b.
In addition to the measurement A = a at time ¢1, there should be a complete
measurement at to, to > t, obtaining a specific outcome B = b such that the
backward time evolution from 5 to t leads to the desired state

(@ = (bl UT(t,t2) . (13.5)

The time “now”, ¢, is clearly larger than 5. The two-state vector (@] |¥)
is the complete description of the system at time ¢ starting from the time ¢,
and forever.

A Single Backward-Evolving Quantum State

We have presented above a description of quantum systems by a single
forward-evolving quantum state (13.1) and by a two-state vector (13.2). It
is natural to ask: Are there systems described by a single backward-evolving
quantum state? The notation for such a state is

(@] . (13.6)

A measurement of B at time to, even in the case it yields the desired outcome
B = b, is not enough. The difference between preparation of (13.1) and (13.2)
is that at present, ¢, the future of a quantum system does not exist (the future
measurements have not been performed yet), but the past of a quantum sys-
tem exists: it seems that even if we do not know it, there is a quantum state
of the system evolving towards the future defined by the results of measure-
ments in the past. Therefore, in order to obtain a quantum system described
by a backward-evolving quantum state (13.2), in addition to the postselection
measurement performed after time ¢, we have to erase the past.

How to erase the past of a quantum system? A complete measurement
before the time t certainly partially erases the information which the system
had before the measurement, but it also creates the new information: the re-
sult of this measurement. It creates another quantum state evolving forward
in time, and this is, really, what we need to erase. We have to achieve the
situation in which no information arrives from the past. It seems impossible
given the assumption that all the past is known. However, if we perform a
measurement on a composite system containing our system and an auxiliary
system, an ancilla, then it can be done, see Fig. 13.1c. Performing a Bell-type
measurement results in one of a completely correlated states of the system
and the ancilla (the Einstein-Podolsky-Rosen (EPR)-type state). In such a
state, each system has equal probability to be found in any state. However,
the measurement on one system fixes the state of the other, so, in addition to
the Bell-type measurement we need to “guard” the ancilla such that no mea-
surement could be performed on it until now. Again, the complete description
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of a quantum system by a single (this time backward-evolving) quantum state
can be achieved only for a period of time until the measurements on the ancilla
would fix the forward-evolving quantum state for the system.

The backward evolving state is a premise not only of the two-state vector
formalism, but also of “retrodictive” quantum mechanics [11, 12, 13, 14, 15],
which deals with the analysis of quantum systems based on a quantum mea-
surement performed in the future relative to the time in question. It is also rel-
evant to “consistent histories” and “decoherent histories” approaches [16, 17].

13.2.4 The Generalized Two-State Vector

The descriptions we described above correspond to an “ideal” case. We have
assumed that complete measurements have been performed on the system in
the past, or in the future or both. The philosophical question is this: can we
assume that going sufficiently far away to the past, far away to the future
and far in the sense of considering composite systems larger and larger, at the
end there always be a complete description in the form of a two-state vector.
Usually we do put constraints on how far we go (at least regarding the future
and the size of the system). In constructing the situation in which a system
is described by a backward-evolving quantum state only, we already limited
ourselves to a particular system instead of being satisfied by the correct claim
that our system is a part of a composite system (which includes also the an-
cilla) which does have forward-evolving quantum state. As in the standard
approach, limiting our analysis to a particular system leads to descriptions
with mized states. There are situations in which the forward-evolving state
is a mixed state (the system is correlated to an ancilla) and the backward-
evolving state is another mixed state (the system correlated to another an-
cilla). Although the generalization to the mixed states is straightforward, it is
not obvious what is its most convenient form. For a powerful, but somewhat
cumbersome formalism, see [18]. However, there is a particular case which is
not too difficult to describe. It corresponds to another “pure” two-state vector
description: generalized two-state vector.

Generalized two-state vector [4] is the name for the superposition of two-

state vectors
Zai<¢i| @) - (13.7)

In general, the sets {|%;)}, {(®;|} need not be orthogonal. Then, the nor-
malization should be chosen consistently, although it is not very important
since in main applications of this concept the normalization does not affect
anything.

For simplicity, we will consider the case of zero free Hamiltonian for the
system and for the ancilla. In order to obtain the generalized two-state vector
(13.7) we have to prepare at ¢; the system and the ancilla in a correlated state
> «i|¥;) i), where {]7)} is a set of orthonormal states of the ancilla. Then we
have to “guard” the ancilla such that there will be no measurements or any
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other interactions performed on the ancilla until the postselection measure-
ment of a projection on the correlated state 1/v/N . |®;)i), see Fig. 13.1d.
If we obtain the desired outcome, then the system is described at time ¢ by
the generalized two-state vector (13.7).

13.3 Ideal Quantum Measurements

13.3.1 Von Neumann Measurements

In this section I shall discuss how a quantum system characterized by a certain
description interacts with other systems. Some particular types of interactions
are named measurements and the effect of these interactions characterized as
the results of these measurements. The basic concept is an ideal quantum
measurement of an observable C. This operation is defined for preselected
quantum systems in the following way:

If the state of a quantum system before the measurement was
an eigenstate of C' with an eigenvalue ¢,, then the outcome of the
measurement is ¢,, and the quantum state of the system is not changed.

The standard implementation of the ideal quantum measurement is modeled
by the von Neumann Hamiltonian [19]:

H = g(t)PC | (13.8)

where P is the momentum conjugate to the pointer variable ), and the nor-
malized coupling function ¢(t) specifies the time of the measurement inter-
action. The outcome of the measurement is the shift of the pointer variable
during the interaction. In an ideal measurement the function g(t) is nonzero
only during a very short period of time, and the free Hamiltonian during this
period of time can be neglected.

13.3.2 The Aharonov-Bergmann—Lebowitz Rule

For a quantum system described by the two-state vector (13.2), the probability
for an outcome ¢, of an ideal measurement of an observable C' is given by [1, 4]

_ KoPe—, )P
Prob(cy,) = S (BP0 (13.9)

For a quantum system described by a generalized two-state vector (13.7)
the probability for an outcome ¢, is given by [4]

i (D Pec, |¥:)|?
Prob(cy) = | 2 %il®ilPo=c, [a)[" (13.10)

a Zj |2 ai{@ilPo=c, |¥)|?
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Another important generalization of the formula (13.9) is for the case in
which the postselection measurement is not complete and therefore it does
not specify a single postselection state (®|. Such an example was recently
considered by Cohen [20] in an (unsuccessful [21]) attempt to find constraints
to the applicability of the ABL formula. In this case, the postselection mea-
surement is a projection on a degenerate eigenvalue of an observable B = b.
The modified ABL formula is [21]:

[Ps=tPco—c, |¥)|?
Prob(c,) = " . 13.11
10be) = Py P, 7)) (13.11)

This form of the ABL formula allows to connect it to the standard formalism
of quantum theory in which there is no post-selection. In the limiting case
when the projection operator P p_y is just the unity operator I, we obtain the
usual expression:

Prob(c,) = ||Pc=c, [P)||? . (13.12)

13.3.3 Three-Boxes Example

Consider a particle which can be located in one out of three boxes. We denote
the state of the particle when it is in box 4 by [|i). At time ¢; the particle is
prepared in the state

1
Y

At time to the particle is found to be in the state

)= (D +2)+13). (13.13)

1
|9) = \/3(|1> +12)=13) - (13.14)

We assume that in the time interval [t1, 2] the Hamiltonian is zero. Therefore,
at time ¢, t; <t < t9, the particle is described by the two-state vector

(@] |¥) = i{)(<1I + 2= 6D (D) +12) +13)) - (13.15)

Probably the most peculiar fact about this single particle is that it can be
found with certainty in two boxes [4]. Indeed, if at time ¢ we open box 1, we
are certain to find the particle in box 1; and if we open box 2 instead, we are
certain to find the particle in box 2. These results can be obtained by straight-
forward application of the ABL formula (13.9). Opening box i corresponds to
measuring the projection operator P; = |i)(i|. The corresponding operators
appearing in (13.9) are

Pp,—1 = [i)(il, Pp—o =Y |5l (13.16)
J#i
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Therefore, the calculation of the probability to find the particle in box 1 yields:

[(@[1)(1])|? P
[(BI1) ()P + [(B[2) (2) + (S[3) B2 ~ 112 + o
(13.17)
Similarly, we obtain Prob(P3 = 1) = 1. Note, that if we open both box 1 and
box 2, we might not see the particle at all.
This example can be generalized to the case of a large number of boxes N.
A single particle described by a two-state vector

Prob(P; =1) =

Jb(m 2l = VN = 2N (1) +[2) + o+ VN —2N)) . (13.18)

This single particle is, in some sense, simultaneously in N — 1 boxes: whatever
box is opened (except the last one) we are certain to find the particle there.

Recently, we found that the particle is simultaneously in several boxes even
in a more robust sense [22]. We cannot find it simultaneously in all boxes if
we look at all of them, but a single photon can! We found that a photon will
scatter from our pre- and postselected particle, as if there were particles in all
boxes.

The analysis of the three-boxes example has interesting features also in
the framework of the consistent histories approach [23, 24, 25]. On the other
hand, it generated significant controversies. The legitimacy of counterfactual
statements were contested, see discussion in Sect 5.4, the Kastner criticism
[26] and Vaidman’s reply [27], and it was claimed by Kirkpatrick [28] that the
three-boxes example does not exhibit genuine quantum paradoxical feature
because it has a classical counterpart. Very recently Ravon and Vaidman [29]
showed that Kirkpatrick’s proposal fails to mimic quantum behavior and that
the three-box example is one of not too many classical tasks which can be done
better using quantum tools. (We could not see a refutation of this statement
in Kirkpatrick’s reply [30].) This is the paradoxical feature of the three-box
experiment which was overlooked by Leavens et al. [31] who considered varia-
tions of the three-box experiment with modified pre- and postselected states.

Recently, a setup equivalent to the three-box example was presented as a
novel counterfactual computation method [32]. The analysis of this proposal in
the framework of the two-state vector formalism [33] shows that one cannot
claim that the computer yields the result of computation without actually
performing the computation and therefore, the proposal fails to provide coun-
terfactual computation for all possible outcomes as it was originally claimed.

13.3.4 The Failure of the Product Rule

An important difference between pre- and postselected systems and prese-
lected systems only is that the product rule does not hold [34]. The product
rule, which does hold for preselected quantum systems is that if A = a and
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B = b with certainty, then it is certain that AB = ab. In the three-boxes case
we know with certainty that Py = 1, Py = 1. However, P1P5 = 0.

Another example of this kind in a which measurement in one place affects
the outcome of a measurement in another place is a pre- and postselected
pair of separate spin—; particles [35]. The particles are prepared, at time t1,
in a singlet state. At time t; measurements of o1, and o3, are performed
and certain results are obtained, say o1, = 1 and o2, = 1, i.e., the pair is
described at time t, t1 < t < ta, by the two-state vector

1
V2

If at time ¢ a measurement of o1, is performed (and if this is the only measure-
ment performed between t; and ¢2), then the outcome of the measurement is
known with certainty: o1, (t) = —1. If, instead, only a measurement of o2, is
performed at time ¢, the result of the measurement is also certain: o9, () = —1.
The operators o1, and o3, obviously commute, but nevertheless, measuring
02,(t) clearly disturbs the outcome of the measurement of oy, (t): it is not
certain anymore.

Measuring the product o1,02,, is, in principle, different from the mea-
surement of both o1, and o2, separately. In our example, the outcome of
the measurement of the product is certain, the ABL formula (13.9) yields
01402, = —1. Nevertheless, it does not equal the product of the results which
must come out of the measurements of o1, and o2, when every one of them
is performed without the other.

Note measurability of the product 01,02, using only local interactions.
Indeed, we may write the product as a modular sum, 01,02, = (o1, +
02,)mod4 — 1. It has been shown [36] that nonlocal operators such as
(014 + 02,)mod4 can be measured using solely local interactions.

Hardy [37] analyzed another very spectacular example in which an electron
and a positron are found with certainty if searched for in a particular place,
but, nevertheless, if both are searched simultaneously, there is certainty not
to find them together. Again, the failure of the product rule explains this
counterintuitive situation and the far reaching conclusions of Hardy’s paper
seem not to be warranted [34].

The two spin—; particles example with a small modification of omitting the
measurement at time to performed on a second particle, but instead, “guard-
ing” it starting from time ¢; against any measurement, is a demonstration of
obtaining a quantum system described only by a backward-evolving quantum
state (1, |. The probability distribution for outcomes of spin-component mea-
surements performed at time ¢ is identical to that of a particle in a preselected
state | 1;). Note that for quantum systems which are postselected only, the
product rule does hold.

Recently [38] it has been shown that pre- and postselection allows an-
other related peculiar feature: “a posteriori” realization of super-correlations
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maximally violating the CHSH bound, which have been termed as Popescu—
Rohrlich boxes [39].

13.3.5 Ideal Measurements Performed on a System Described
by Generalized Two-State Vector

Another modification, replacing the measurements at t2 on two particles by
measurement of a nonlocal variable such as a Bell operator on both particles
and guarding the second particle between t; and to produces a generalized
two-state vector for the first particle. Such particles might have a peculiar
feature that the outcome of spin component measurements is certain in a
continuum of directions. This is a surprising result because the preselected
particle might have definite value of spin component at most in one direction
and the particle described by two-state vector will have definite results of spin
component measurements in two directions: one defined by preselection and
one defined by postselection (the directions might coincide). For example [4],
the particle described by a generalized two-state vector

cosx (1= | [ T2) —sinx(l= [ ] ]2) X € (0, g) : (13.20)

will yield the outcome o, = 1 for the cone of directions 7 making angle 6 with
the z axes such that 8 = 4arctan/tan x. This can be verified directly using
the formula (13.10), but we will bring another argument for this result below.

The generalized two-state vector is obtained when there is a particular
result of the nonlocal measurement at time ¢5. It is interesting that we can
construct a particular measurement at time ¢, such that whatever the outcome
will be there will be a cone of directions in which the spin has a definite value.
These cones intersect in general in four lines. It can be arranged that they
will “touch” on, say z-axis and intersect in y- and z-axes. Then, in all cases
we will be able to ascertain the value of o, oy, and o, of a single particle [5].

The problem was also analyzed in the framework of the standard approach
[40, 41] and after coining the name “The Mean King Problem” continued to be
a topic of an extensive analysis. It has been generalized to the spin-1 particle
[42] and to a higher dimentional case [43, 44]. The research continues until
today [45, 46, 47, 48, 49, 50]. Moreover, today’s technology converted from
gedanken quantum game to a real experiment. Schulz et al. [51] performed
this experiment with polarized photons (instead of spin—% particles).

13.4 Weak Measurements

13.4.1 Introduction

The most interesting phenomena which can be seen in the framework of the
TSVF are related to weak measurements [3]. A weak measurement is a stan-
dard measuring procedure (described by the Hamiltonian (13.8)) with weak-
ened coupling. In an ideal measurement, the initial position of the pointer
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Q is well localized around zero and therefore the conjugate momentum P
has a very large uncertainty which leads to a very large uncertainty in the
Hamiltonian of the measurement (13.8). In a weak measurement, the initial
state of the measuring device is such that P is localized around zero with
small uncertainty. This leads, of course, to a large uncertainty in @@ and there-
fore the measurement becomes imprecise. However, by performing the weak
measurement on an ensemble of IV identical systems we improve the precision
by a factor v/ N and in some special cases we can obtain good precision even
in a measurement performed on a single system [2].

The idea of weak measurements is to make the coupling with the measuring
device sufficiently weak so that the change of the quantum state due to the
measurements can be neglected. In fact, we require that the two-state vector is
not significantly disturbed, i.e., neither the usual, forward-evolving quantum
state, nor the backward-evolving quantum state is changed significantly. Then,
the outcome of the measurement should be affected by both states. Indeed,
the outcome of a weak measurement of a variable C' performed on a system
described by the two-state vector (@] |¥) is the weak value of C:

(2|Clw)

="

(13.21)
Strictly speaking, the readings of the pointer of the measuring device will
cluster around Re(Cy,). In order to find Im(C,,) one should measure the shift
in P [3].
The weak value for a system described by a generalized two-state vector
(13.7) is [4]:
> (P |C%;)
> i @il )
Next, let us give the expression for the weak value when the postselection
measurement is not complete. Consider a system preselected in the state |¥)
and postselected by the measurement of a degenerate eigenvalue b of a variable
B. The weak value of C' in this case is:

(V|Pp=p,C|¥)
(WP p—s|¥)

Cw = (13.22)

Cow = (13.23)

This formula allows us to find the outcome of a weak measurement per-
formed on a preselected (only) system. Replacing P z—; by the unity operator
yields the result that the weak value of a preselected system in the state |¥)

is the expectation value:
Cy = (T|C|P) . (13.24)

Let us show how the weak values emerge as the outcomes of weak mea-
surements. We will limit ourselves to two cases: first, the weak value of the
preselected state only (13.24) and then, the weak value of the system described
by the two-state vector (13.21).
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In the weak measurement, as in the standard von Neumann measurement,
the Hamiltonian of the interaction with the measuring device is given by
(13.8). The weakness of the interaction is achieved by preparing the initial
state of the measuring device in such a way that the conjugate momentum of
the pointer variable, P, is small, and thus the interaction Hamiltonian (13.8)
is small. The initial state of the pointer variable is modeled by a Gaussian
centered at zero:

wMP(Q) = (A%r)~Viem @247 (13.25)

The pointer is in the “zero” position before the measurement, i.e., its initial
probability distribution is

Prob(Q) = (A%r)~1/2e~@°/4% | (13.26)

If the initial state of the system is a superposition |¥) = X«;|¢;), then after
the interaction (13.8) the state of the system and the measuring device is:

(A27) VA Doy |e;)e™(@—e)?/24% (13.27)

The probability distribution of the pointer variable corresponding to the state
(13.27) is:
Prob(Q) = (A%r) /2 5|ay|2e~(@—c)* /4% (13.28)

In case of the ideal measurement, this is a weighted sum of the initial proba-
bility distribution localized around various eigenvalues. Therefore, the reading
of the pointer variable in the end of the measurement almost always yields
the value close to one of the eigenvalues. The limit of weak measurement cor-
responds to A > ¢; for all eigenvalues ¢;. Then, we can perform the Taylor
expansion of the sum (13.28) around @ = 0 up to the first order and rewrite
the probability distribution of the pointer in the following way:

Prob(Q) = (Azﬂ')*l/22|o<i|267(Q7”)2/A2 =
_ _ —(Q—3a;|?cs)? A2
(A%7) 1/22|ai|2(1 —(Q — ¢:)?/A%) =(A%r) V2em (@ o) /A(13'29)
But this is exactly the initial distribution shifted by the value X|a;|?c;. This is
the outcome of the measurement, in this case the weak value is the expectation
value:

Cw = Ylai|*ci = (T|C|P) . (13.30)

The weak value is obtained from statistical analysis of the readings of the
measuring devices of the measurements on an ensemble of identical quantum
systems. But it is different conceptually from the standard definition of ex-
pectation value which is a mathematical concept defined from the statistical
analysis of the ideal measurements of the variable C' all of which yield one of
the eigenvalues c;.
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Now let us turn to the system described by the two-state vector (13.2).
As usual, the free Hamiltonian is assumed to be zero so it can be obtained by
preselection of |¥) at t; and postselection of |®) at to. The (weak) measure-
ment interaction of the form (13.8) takes place at time ¢, t; < t < to. The
state of the measuring device after this sequence of measurements is given (up
to normalization) by

PMP(Q) = (@l PO )o@ /24T (13.31)

After simple algebraic manipulations we can rewrite it (in the P-represent-
ation) as

GMP (P) = (|w) ¢~iCuP = A P?/2 (13.32)

- (ZP)n n ny, —A%p?

@) Y IO~ (Cu) e
n=2

If A is sufficiently large, we can neglect the second term of (13.32) when we

Fourier transform back to the Q-representation. Large A corresponds to weak

measurement in the sense that the interaction Hamiltonian (13.8) is small.

Thus, in the limit of weak measurement, the final state of the measuring

device (in the Q-representation) is
PMP(Q) = (A%r)~ /e~ (@-Cu)?/24% (13.33)

This state represents a measuring device pointing to the weak value (13.21).

Weak measurements on pre- and postselected ensembles yield, instead of
eigenvalues, a value which might lie far outside the range of the eigenvalues.
Although we have shown this result for a specific von Neumann model of
measurements, the result is completely general: any coupling of a pre- and
postselected system to a variable C, provided the coupling is sufficiently weak,
results in effective coupling to C,,. This weak coupling between a single system
and the measuring device will not, in most cases, lead to a distinguishable
shift of the pointer variable, but collecting the results of measurements on
an ensemble of pre- and postselected systems will yield the weak values of a
measured variable to any desired precision.

When the strength of the coupling to the measuring device goes to zero,
the outcomes of the measurement invariably yield the weak value. To be more
precise, a measurement yields the real part of the weak value. Indeed, the weak
value is, in general, a complex number, but its imaginary part will contribute
only a (position dependent) phase to the wave function of the measuring
device in the position representation of the pointer. Therefore, the imaginary
part will not affect the probability distribution of the pointer position which
is what we see in a usual measurement. However, the imaginary part of the
weak value also has physical meaning. It is equal to the shift of the Gaussian
wave function of the measuring device in the momentum representation. Thus,
measuring the shift of the momentum of the pointer will yield the imaginary
part of the weak value.
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The research of weak measurements continues until today. Recently, Botero
[52] noted that in some cases the pointer of the weak measurements in some
cases has narrower distribution after the weak measurement interaction than
it has before. Note also recent different ways of the analysis of the weak
measurement effect [53, 54, 55, 56, 57, 58, 59, 60].

13.4.2 Examples: Measurements of Spin Components

Let us consider a simple Stern—Gerlach experiment: measurement of a spin
component of a spin—; particle. We shall consider a particle prepared in the
initial state spin “up” in the & direction and postselected to be “up” in the gy
direction. At the intermediate time we measure, weakly, the spin component
in the ¢ direction which is bisector of & and ¢, i.e., o¢ = (0, + 0,,)/v/2. Thus
@) = |12), |®) = |1y), and the weak value of o¢ in this case is

(TylT2) V2 (TylTz)

This value is, of course, “forbidden” in the standard interpretation where a
spin component can obtain the (eigen)values 1 only.
An effective Hamiltonian for measuring o¢ is

H = g(t)Pos . (13.35)

Writing the initial state of the particle in the o¢ representation, and assuming
the initial state (13.25) for the measuring device, we obtain that after the
measuring interaction the quantum state of the system and the pointer of the
measuring device is

cos (m/8)|Te)e™ (Q~1°/28% L igin (/8)||¢)e (@T17/24% (13.36)

The probability distribution of the pointer position, if it is observed now
without postselection, is the sum of the distributions for each spin value. It
is, up to normalization,

Prob(Q) = cos? (1/8)e~(@V*/A% 4 qin? (7/8)e~(@TD*/A*  (13.37)

In the usual strong measurement, A < 1. In this case, as shown on Fig. 13.2a,
the probability distribution of the pointer is localized around —1 and +1 and
it is strongly correlated to the values of the spin, o, = +1.

Weak measurements correspond to a A which is much larger than the
range of the eigenvalues, i.e., A > 1. Figure 13.2b shows that the pointer
distribution has a large uncertainty, but it is peaked between the eigenvalues,
more precisely, at the expectation value (1.|o¢|1.) = 1/v/2. An outcome of an
individual measurement usually will not be close to this number, but it can
be found from an ensemble of such measurements, see Fig. 13.2c. Note, that
we have not yet considered the postselection.
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Fig. 13.2. Spin component measurement without post-selection: Probability distri-
bution of the pointer variable for measurement of o when the particle is preselected
in the state |1.). (a) Strong measurement, A = 0.1. (b) Weak measurement, A = 10.
(c) Weak measurement on the ensemble of 5000 particles. The original width of the
peak, 10, is reduced to 10/4/5000 =~ 0.14. In the strong measurement (a) the pointer
is localized around the eigenvalues £1, while in the weak measurements (b) and (c)
the peak is located in the expectation value (1z|o¢|T2) = 1/v/2
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In order to simplify the analysis of measurements on the pre- and postse-
lected ensemble, let us assume that we first make the postselection of the spin
of the particle and only then look at the pointer of the device that weakly
measures o¢. We must get the same result as if we first look at the outcome
of the weak measurement, make the postselection, and discard all readings
of the weak measurement corresponding to the cases in which the result is
not o, = 1. The postselected state of the particle in the o¢ representation is
(Ty| = cos (1/8)(T¢| — isin(m/8)(]¢|. The state of the measuring device after
the postselection of the spin state is obtained by projection of (13.36) onto
the postselected spin state:

P(Q) =N(cos2 (r/8)e~(@=17/28% _in? (w/s)e*@“f/w) o (13.38)

where A is a normalization factor. The probability distribution of the pointer
variable is given by

2
Prob(Q) = N*? (c052 (7r/8)e_(Q_1)2/2A2 —sin? (W/S)e_(QH)Z/ZAz) . (13.39)

If the measuring interaction is strong, A < 1, then the distribution is
localized around the eigenvalues -1 (mostly around 1 since the pre- and post-
selected probability to find o¢ = 1 is more than 85%), see Fig. 13.3a and b.
But when the strength of the coupling is weakened, i.e., A is increased, the
distribution gradually changes to a single broad peak around /2, the weak
value, see Fig. 13.3c—e.

The width of the peak is large and therefore each individual reading of the
pointer usually will be far from v/2. The physical meaning of the weak value
can, in this case, be associated only with an ensemble of pre- and postselected
particles. The accuracy of defining the center of the distribution goes as 1/ VN,
so increasing N, the number of particles in the ensemble, we can find the weak
value with any desired precision, see Fig. 13.3f.

In our example, the weak value of the spin component is /2, which is only
slightly more than the maximal eigenvalue, 1. By appropriate choice of the
pre- and postselected states we can get pre- and postselected ensembles with
arbitrarily large weak value of a spin component. One of our first proposals
[6] was to obtain (o¢),, = 100. In this case the postselected state is nearly
orthogonal to the preselected state and, therefore, the probability to obtain
appropriate postselection becomes very small. While in the case of (o¢), = V2
the pre- and postselected ensemble was about half of the preselected ensemble,
in the case of (o¢), = 100 the postselected ensemble will be smaller than the
original ensemble by the factor of ~107%.

13.4.3 Weak Measurements Which Are not Really Weak

We have shown that weak measurements can yield very surprising values
which are far from the range of the eigenvalues. However, the uncertainty of
a single weak measurement (i.e., performed on a single system) in the above
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Fig. 13.3. Measurement on pre- and postselected ensemble: Probability distribution
of the pointer variable for measurement of o¢ when the particle is preselected in the
state |1z) and postselected in the state |1y). The strength of the measurement is
parameterized by the width of the distribution A. (a) A = 0.1; (b) A = 0.25; (c)
A=1;(d) A=3; (e) A =10. (f Weak measurement on the ensemble of 5000
particles; the original width of the peak, A = 10, is reduced to 10/\/5000 ~ 0.14.
In the strong measurements (a)—(b) the pointer is localized around the eigenvalues
+1, while in the weak measurements (d)—(f) the peak of the distribution is located
in the weak value (0¢)w = (Tyloe|T2)/{Ty|Te) = V2. The outcomes of the weak
measurement on the ensemble of 5000 pre- and postselected particles, (f), are clearly

-3

outside the range of the eigenvalues, (-1,1)

-2 -1
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example is larger than the deviation from the range of the eigenvalues. Each
single measurement separately yields almost no information and the weak
value arises only from the statistical average on the ensemble. The weakness
and the uncertainty of the measurement goes together. Weak measurement
corresponds to small value of P in the Hamiltonian (13.8) and, therefore,
the uncertainty in P has to be small. This requires large A, the uncertainty
of the pointer variable. Of course, we can construct measurement with large
uncertainty which is not weak at all, for example, by preparing the measuring
device in a mixed state instead of a Gaussian, but no precise measurement with
weak coupling is possible. So, usually, a weak measurement on a single system
will not yield the weak value with a good precision. However, there are special
cases when it is not so. Usual strength measurement on a single pre- and
postselected system can yield “unusual” (very different from the eigenvalues)
weak value with a good precision. Good precision means that the uncertainty
is much smaller than the deviation from the range of the eigenvalues.

Our example above was not such a case. The weak value (0¢), = V2 is
larger than the highest eigenvalue, 1, only by ~0.4, while the uncertainty, 1, is
not sufficiently large for obtaining the peak of the distribution near the weak
value, see Fig. 13.3c. Let us modify our experiment in such a way that a single
experiment will yield meaningful surprising result. We consider a system of N
spin- particles all prepared in the state |1,) and postselected in the state |T,),

ie, |¥) = Hf\;l [T4): and (@] = HZJ\;(TyL The variable which is measured

at the intermediate time is C = (Zﬁil(ai)g)/]\f. The operator C' has N + 1
eigenvalues equally spaced between —1 and +1, but the weak value of C' is

_ ISdlule S5 (@0 + @) TEL ) _

Cuw (13.40)
V2 N((Ty[12)V
The interaction Hamiltonian is
N
_9(t)
H="4 PZ(Uz‘)g : (13.41)

The initial state of the measuring device defines the precision of the measure-
ment. When we take it to be the Gaussian (6), it is characterized by the width
A. For a meaningful experiment we have to take A small. Small A corresponds
to large uncertain P, but now, the strength of the coupling to each individual
spin is reduced by the factor 1/N. Therefore, for large N, both the forward-
evolving state and the backward-evolving state are essentially not changed by
the coupling to the measuring device. Thus, this single measurement yields
the weak value. In [7] it is proven that if the measured observable is an average
on a large set of systems, C' = (va Ci) /N, then we can always construct a
single, good precision measurement of the weak value. Here let us present just
numerical calculations of the probability distribution of the measuring device
for N pre- and postselected spin—; particles. The state of the pointer after the
postselection for this case is
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B

S i i 2N —i)\2 2
N; (Z.!((]f_)i)!) (cos?(m/8)) " " (sin2(r/8))" e~ (@~ "N /24% 1 (13.49)

The probability distribution for the pointer variable @ is

ad ‘ i ; 2N —i)\2 2\ 2
prob(Q)=N?(3" (i!((]:fl_)i)!)(cosz(w/B))Nl(sinz(w/S))ze—(Q—( wOrpan)’
=0

(13.43)
The results for N = 20 and different values of A are presented in Fig. 13.4.
We see that for A = 0.25 and larger, the obtained results are very good:
the final probability distribution of the pointer is peaked at the weak value,
((Zij\il(ai)g)/N)w = /2. This distribution is very close to that of a measur-

ing device measuring operator O on a system in an eigenstate |O:\/2>. For
N large, the relative uncertainty can be decreased almost by a factor 1/v/N
without changing the fact that the peak of the distribution points to the weak
value.

Although our set of particles preselected in one state and postselected
in another state is considered as one system, it looks like an ensemble. In
quantum theory, measurement of the sum does not necessarily yield the same
result as the sum of the results of the separate measurements, so conceptually
our measurement on the set of particles differs from the measurement on an
ensemble of pre- and postselected particles. However, in our example of weak
measurements, the results are the same.

A less ambiguous case is the example considered in the first work on weak
measurements [2]. In this work a single system of a large spin N is considered.
The system is preselected in the state [W) = |S,=N) and postselected in the
state |#) = |Sy=N). At an intermediate time the spin component S¢ is weakly
measured and again the “forbidden” value v/2N is obtained. The uncertainty
has to be only slightly larger than v/ N. The probability distribution of the
results is centered around /2N, and for large N it lies clearly outside the
range of the eigenvalues, (—N, N). Unruh [61] made computer calculations of
the distribution of the pointer variable for this case and got results which are
very similar to what is presented in Fig.13.4.

An even more dramatic example is a measurement of the kinetic energy
of a tunneling particle [8]. We consider a particle preselected in a bound state
of a potential well which has negative potential near the origin and vanishing
potential far from the origin; |¥) = |E=Ey). Shortly later, the particle is
postselected to be far from the well, inside a classically forbidden tunneling
region; this state can be characterized by vanishing potential |®) = |U=0).
At an intermediate time, a measurement of the kinetic energy is performed.
The weak value of the kinetic energy in this case is

(U=0|K|E=E,) (U=0|E — U|E=Ey)

K,w = =
(U=0|E=Eq) (U=0|E=Ey)

=Fp. (13.44)
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Fig. 13.4. Measurement on a single system: Probability distribution of the pointer
variable for the measurement of A = (3222, (0:)¢)/20 when the system of 20 spin-
5 particles is preselected in the state [¥1) = [1°, [12)s and postselected in the
state [W2) = [[7, |1y):. While in the very strong measurements, A= 0.01-0.05, the
peaks of the distribution located at the eigenvalues, starting from A = 0.25 there is

essentially a single peak at the location of the weak value, A, = /2
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The energy of the bound state, Ey, is negative, so the weak value of the ki-
netic energy is negative. In order to obtain this negative value the coupling
to the measuring device need not be too weak. In fact, for any finite strength
of the measurement we can choose the postselected state sufficiently far from
the well to ensure the negative value. Therefore, for appropriate postselec-
tion, the usual strong measurement of a positive definite operator invariably
yields a negative result! This weak value predicted by the two-state vector
formalism demonstrates a remarkable consistency: the value obtained is ex-
actly the value that we would expect a particle to have when the particle
is characterized in the intermediate times by the two wave functions, one in
a ground state, and the other localized outside the well. Indeed, we obtain
this result precisely when we postselect the particle far enough from the well
that it could not have been kicked there as a result of the intermediate mea-
surement. A peculiar interference effect of the pointer takes place: destructive
interference in the whole “allowed” region and constructive interference of the
tails in the “forbidden” negative region. The initial state of the measuring de-
vice &(Q), due to the measuring interaction and the postselection, transforms
into a superposition of shifted wave functions. The shifts are by the (possi-
bly small) eigenvalues, but the superposition is approximately equal to the
original wave function shifted by a (large and/or forbidden) weak value:

> anMP(Q = ) 2 WMP(Q - Cy) . (13.45)

These surprising, even paradoxical effects are really only gedanken exper-
iments. The reason is that, unlike weak measurements on an ensemble, these
are extremely rare events. For yielding an unusual weak value, a single pre-
selected system needs an extremely improbable outcome of the postselection
measurement. Let us compare this with a weak measurement on an ensemble.
In order to get N particles in a pre- and postselected ensemble which yield
(0¢)w = 100, we need ~ N10* particles in the preselected ensemble. But, in
order to get a single system of N particles yielding (Sg),, = 100N, we need
~10*V systems of N preselected particles. In fact, the probability to obtain
an unusual value by error is much larger than the probability to obtain the
proper postselected state. What makes these rare effects interesting is that
there is a strong (although only one-way) correlation: for example, every time
we find in the postselection measurement the particle sufficiently far from the
well, we know that the result of the kinetic energy is negative, and not just
negative: it is equal to the weak value, K,, = Ey, with a good precision.

13.4.4 Relations Between Weak and Strong Measurements

In general, weak and strong measurements do not yield the same outcomes.
The outcomes of strong measurements are always the eigenvalues while the
outcomes of weak measurements, the weak values, might be very different from
the eigenvalues. However, there are two important relations between them [4].
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(i) If the description of a quantum system is such that a particular eigen-
value of a variable is obtained with certainty in case it is measured strongly,
then the weak value of this variable is equal to this eigenvalue. This is correct
in all cases, i.e., if the system described by a corresponding single (forward or
backward evolving) eigenstate, or if it is described by a two-state vector, or
even if it is described by a generalized two-state vector.

(ii) The inverse of this theorem is true for dichotomic variables such as
projection operators of spin components of spin-% particles. The proofs of
both statements are given in [4].

Let us apply the theorem (i) for the example of three boxes when we have
a large number of particles all pre- and postselected in the two-state vector
(13.15). The actual story is as follows: A macroscopic number N of particles
(gas) were all prepared at ¢; in a superposition of being in three separated
boxes (13.13). At later time ¢ all the particles were found in another su-
perposition (13.14) (this is an extremely rare event). In between, at time ¢,
weak measurements of a number of particles in each box, which are, essen-
tially, usual measurements of pressure in each box, have been performed. The
readings of the measuring devices for the pressure in the boxes 1, 2, and 3
were

pb1=2p,
b3 = —p,

where p is the pressure which is expected to be in a box with IV particles.

We are pretty certain that this “actual” story never took place because
the probability for the successful postselection is of the order of 3=: for a
macroscopic number N it is too small for any real chance to see it happen-
ing. However, given that the postselection does happen, we are safe to claim
that the results (13.46) are correct, i.e., the measurements of pressure at the
intermediate time with very high probability have shown these results.

Indeed, the system of all particles at time ¢ (signified by index ) is de-
scribed by the two-state vector

=N

(@] W) = 3NH ((1]; + ¢ 1:[1 P 12)i +13)) (13.47)

Then, intermediate measurements yield, for each particle, probability 1 for
the the following outcomes of measurements:
P,=1,
P,=1, (13.48)
P,+Py+P3s=1,

where P is the projection operator on the state of the particle in box 1, etc.
Thus, from (13.48) and theorem (i) it follows:
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(Pl)w =1 P
(P2)w =1, (13.49)
(P1+Py+Ps3), =1.

Since for any variables, (X +Y),, = X, +Y,, we can deduce that (P3),, = —1.

Similarly, for the “number operators” such as N7 = E{LP?), where sz‘)
is the projection operator on the box 1 for a particle ¢, we obtain:

(Nl)w Na
(NM2)w = N, (13.50)
N3)y = =N .

In this rare situation the “weak measurement” need not be very weak: a
usual measurement of pressure is a weak measurement of the number operator.
Thus, the time-symmetrized formalism yields the surprising result (13.46): the
result of the pressure measurement in box 3 is negative! It equals minus the
pressure measured in the boxes 1 and 2.

Of course, the negative pressure was not measured in a real laboratory (it
requires an extremely improbable postselection), but a nonrobust weak mea-
surement for three-box experiment has been performed in a laboratory [62].

Another example of relation between strong and weak measurements is
Hardy’s paradox [37]. The analysis of strong measurements appears in [34]
and the weak measurements are analyzed in detail in [63]. See also discussions
of a realistic experimental proposals [64, 65, 66, 67].

An application of the inverse theorem yields an alternative proof of the
results regarding strong measurements of spin components of a spin—é particle
described by the generalized two-state vector (13.20). Indeed, the linearity
property of weak measurements yields a “geometrical picture” for weak values
of spin components of a spin-% particle. The operators oy, o, and o, are
a complete set of spin operators and they yield a geometry in the familiar
three-dimensional space. Each generalized two-state vector of a spin—% particle
corresponds to a vector in this three-dimensional space with components equal
to the weak values of o, oy, and o,. We call it “weak vector.” The weak
value of a spin component in an arbitrary direction, then, is given by the
projection of the weak vector on this direction. If the weak vector is real
and its value larger than 1, then there is a cone of directions the projection
on which is equal 1. This yields an alternative proof that in some situations
there is a continuum of directions forming a cone in which the result of a
spin-component measurements are known with certainty, see Sect. 13.3.5.

13.4.5 Experimental Realizations of Weak Measurements

Realistic weak measurements (on an ensemble) involve preparation of a large
preselection ensemble, coupling to the measuring devices of each element of
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the ensemble, postselection measurement which, in all interesting cases, se-
lects only a small fraction of the original ensemble, selection of corresponding
measuring devices, and statistical analysis of their outcomes. In order to ob-
tain good precision, this selected ensemble of the measuring devices has to be
sufficiently large. Although there are significant technological developments
in “marking” particles running in an experiment, clearly the most effective
solution is that the particles themselves serve as measuring devices. The in-
formation about the measured variable is stored, after the weak measuring
interaction, in their other degree of freedom. In this case, the postselection of
the required final state of the particles automatically yields the selection of
the corresponding measuring devices . The requirement for the postselection
measurement is, then, that there is no coupling between the variable in which
the result of the weak measurement is stored and the postselection device.

An example of such a case is the Stern—Gerlach experiment where the
shift in the momentum of a particle, translated into a spatial shift, yields
the outcome of the spin measurement. Postselection measurement of a spin
component in a certain direction can be implemented by another (this time
strong) Stern—Gerlach coupling which splits the beam of the particles. The
beam corresponding to the desired value of the spin is then analyzed for the
result of the weak measurement. The requirement of nondisturbance of the
results of the weak measurement by postselection can be fulfilled by arranging
the shifts due to the two Stern—Gerlach devices to be orthogonal to each other.
The details are spelled out in [6].

An analysis of a realistic experiment which can yield large weak value Q.
appears in [68]. Duck, Stevenson, and Sudarshan [69] proposed a slightly dif-
ferent optical realization which uses a birefringent plate instead of a prism.
In this case the measured information is stored directly in the spatial shift
of the beam without being generated by the shift in the momentum. Ritchie,
Story, and Hulet [70] adopted this scheme and performed the first successful
experiment measuring the weak value of the polarization operator. Their re-
sults are in very good agreement with theoretical predictions. They obtained
weak values which are very far from the range of the eigenvalues, (—1,1), their
highest reported result is @, = 100. The discrepancy between calculated and
observed weak value was 1%. The RMS deviation from the mean of 16 trials
was 4.7%. The width of the probability distribution was A = 1000 and the
number of pre- and postselected photons was N ~ 108, so the theoretical
and experimental uncertainties were of the same order of magnitude. Their
other run, for which they showed experimental data on graphs (which fitted
very nicely theoretical graphs), has the following characteristics: Q,, = 31.6,
discrepancy with calculated value 4%, the RMS deviation 16%, A = 100,
N ~ 10°. A similar optical experiment has been successfully performed sev-
eral years ago [71].

Recently, optical weak measurement experiments moved to the field of
fiber optics [72, 73, 74]. Another step prevents now any sceptic to argue
that the unusual outcomes of weak measurement are a classical effect because
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macroscopic number of photons are involved in these experiments. The weak
measurement of photon polarization have been performed with single particles
[75]. Note also a more controversial issue of measurement of “time of arrival”
[76] for which weak measurement technique were also applied [77, 78, 79].

Already at 1990 [3] we gave an example of a gedanken experiment in which
pre- and postselection lead to a superluminal propagation of light. Steinberg
and Chiao [80, 81] connected this to superluminal effect observed for tunnel-
ing particles. The issue was analyzed recently by Aharonov et al. [82] and
Sokolovsky et al. [83]. Rohrlich and Aharonov [84] also predicted that there is
really a physical meaning for this superluminal propagation: we should expect
Cherenkov radiation in such experiment.

Note also proposals for weak nonlocal measurements [85, 86]. In these
works it was pointed out that observation of correlations between outcomes
of local weak measurements can yield values of nonlocal variables. However,
these methods are very inefficient, and the methods of efficient nonlocal
measurements [36] require conditions which contradict conditions of weak
measurements, so we doubt that there will be efficient weak nonlocal mea-
surement proposals suitable for realization in a laboratory.

13.5 The Quantum Time-Translation Machine

13.5.1 Introduction

To avoid possible misinterpretations due to the name “time machine,” let us
explain from the outset what our machine [7] can do and how it differs from
the familiar concept of “time machine.” Our device is not for time travel. All
that it can accomplish is to change the rate of time flow for a closed quantum
system. Classically, one can slow down the time flow of a system relative to
an external observer, e.g., by fast travel. Our quantum time machine is able
to change the rate of time flow of a system for a given period by an arbitrary,
even negative, factor. Therefore, our machine, contrary to any classical device,
is capable of moving the system to its “past.” In that case, at the moment the
machine completes its operation the system is in a state in which it was some
time before the beginning of the operation of the time machine. Our machine
can also move the system to the future, i.e., at the end of the operation of the
time machine the system is in a state corresponding to some later time of the
undisturbed evolution.

A central role in the operation of our time machine is played by a peculiar
mathematical identity which we discuss in Sect. 13.5.2. In order to obtain
different time evolutions of the system we use the gravitational time dilation
effect which is discussed in Sect. 13.5.3. In Sect. 13.5.4 we describe the de-
sign and the operation of our time machine. The success of the operation of
our time machine depends on obtaining a specific outcome in the postselec-
tion quantum measurement. The probability of the successful postselection
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measurement is analyzed in Sect. 13.5.5. The concluding discussion of the
limitations and the advantages of our time machine appear in Sect. 13.5.6.

13.5.2 A Peculiar Mathematical Identity

The peculiar interference effect of weak measurements (13.45), that a par-
ticular superposition of identical Gaussians shifted by small values yields the
Gaussian shifted by a large value occurs not just for Gaussians, but for a large
class of functions. Consider now that the system is described by such a wave
function and the shifts are due to the time evolutions for various periods of
time. Then, this effect can be a basis of a (gedanken) time machine. A specific
superposition of time evolutions for short periods of time §t,, yields a time
evolution for a large period of time At

N
> anU(6tn) W) ~ U(A)|P) . (13.51)
n=0

This approximate equality holds (with the same §t,, and At) for a large class
of states |?7) of the quantum system, and in some cases even for all states of
the system.

In order to obtain different time evolutions U (dt,,) we use the gravitational
time dilation effect. For finding the appropriate dt,, and «, we will rely on

Fig. 13.5. Demonstration of an approximate equality given by (13.53): The sum of a
function shifted by the 14 values ¢, between 0 and 1 and multiplied by the coefficients
an (cn and oy, are given by (13.52) with N = 13, n = 10) yields approximately the
same function shifted by the value 10. The dotted line shows f(t); the dashed line
showsf(t — 10), the RHS of (13.53); and the solid line shows the sum, the LHS of
(13.53)
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the identity (13.45) for a particular weak measurement. We choose

N!

(N—n A

¢n =n/N, Q= )!n!n"(l -7 , (13.52)
where n = 0,1, ..., N. Note, that the coefficients «,, are terms in the binomial
expansion of [n+(1—n)]" and, in particular, Zﬁ/:o ay, = 1. The corresponding
“weak value” in this case is  and for a large class of functions (the functions
with Fourier transform bounded by an exponential) we have an approximate

equality
N
S anf(t—ca) = f(t—n). (13.53)
n=0

The proof can be found in [87]. Here we only demonstrate it on a numerical
example, Fig. 13.5. Even for a relatively small number of terms in the sum
(14 in our example), the method works remarkably well. The shifts from 0 to
1 yield the shift by 10. The distortion of the shifted function is not very large.
By increasing the number of terms in the sum, the distortion of the shifted
function can be made arbitrarily small.

13.5.3 Classical Time Machines

A well-known example of a time machine is a rocket which takes a system to
a fast journey. If the rocket is moving with velocity V' and the duration of the
journey (in the laboratory frame) is 7', then we obtain the time shift (relative
to the situation without the fast journey):

6t:T<1—\/1— Z;) . (13.54)

For typical laboratory velocities this effect is rather small, but it has been
observed experimentally in precision measurements in satellites and, of course,
the effect is observed on decaying particles in accelerators. In such a “time
machine,” however, the system necessarily experiences external force, and we
consider this a conceptual disadvantage.

In our time machine we use, instead of the time dilation of special relativ-
ity, the gravitational time dilation. The relation between the proper time of
the system placed in a gravitational potential ¢ and the time of the external
observer ( ¢ = 0) is given by dr = dt\/1+ 2¢/c2. We produce the gravi-
tational potential by surrounding our system with a spherical shell of mass
M and radius R. The gravitational potential inside the shell is ¢ = —GM/R.
Therefore, the time shift due to the massive shell surrounding our system, i.e.,
the difference between the time period T' of the external observer at a large
distance from the shell and the period of the time evolution of the system (the
proper time), is
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2GM
5t:T<1—\/1— 62R> . (13.55)

This effect, for any man-made massive shell, is too small to be observed by
today’s instruments. However, the conceptual advantage of this method is
that we do not “touch” our system. Even the gravitational field due to the
massive spherical shell vanishes inside the shell.

The classical time machine can only slow down the time evolution of the
system. For any reasonable mass and radius of the shell, the change of the rate
of the time flow is extremely small. In the next section we shall describe our
quantum time machine which amplifies the effect of the classical gravitational
time machine (for a spherical shell of the same mass), and makes it possible
to speed up the time flow for an evolution of a system, as well as to change
its direction.

13.5.4 Quantum Gravitational Time Machine

In our machine we use the gravitational time dilation and a quantum interfer-
ence phenomenon which, due to the peculiar mathematical property discussed
in Sect. 13.5.2, amplifies the time translation. We produce the superposition
of states shifted in time by small values dt,, (due to spherical shells of different
radii) given by the left-hand side of (13.51). Thus, we obtain a time shift by
a possibly large, positive or negative, time interval At.

The wave function of a quantum system ¥(q, t), considered as a function
of time, usually has a Fourier transform which decreases rapidly for large
frequencies. Therefore, the sum of the wave functions shifted by small periods
of time dt,, = dtc,, and multiplied by the coefficients «,, with ¢, and o, given
by (13.52), is approximately equal to the wave function shifted by the large
time At = Jtn. Since the equality (13.53) is correct with the same coefficients
for all functions with rapidly decreasing Fourier transforms, we obtain for
each ¢, and therefore for the whole wave function,

N
> anW(q,t - bty) = W(g,t — At) . (13.56)
n=0

Thus, a device which changes the state of the system from ¥(q, t) to the state
given by the left-hand side of (13.56) generates the time shift of At. Let us
now present a design for such a device and explain how it operates.

Our machine consists of the following parts: a massive spherical shell, a
mechanical device—“the mover”—with a quantum operating system, and a
measuring device which can prepare and verify states of this quantum oper-
ating system.

The massive shell of mass M surrounds our system and its radius R can
have any of the values Ry, R1, ..., Ry. Initially, R = Ry.
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The mover changes the radius of the spherical shell at time ¢ = 0, waits
for an (external) time T, and then moves it back to its original state, i.e., to
the radius Ry.

The quantum operating system (QOS) of the mover controls the radius to
which the shell is moved for the period of time 7. The Hamiltonian of the
QOS has N + 1 nondegenerate eigenstates |n), n = 0,1,..., N. If the state of
the QOS is |n), then the mover changes the radius of the shell to the value R,,.

The measuring device preselects and postselects the state of the QOS. It
prepares the QOS before the time ¢ = 0 in the initial state

N
Win)gos =N anln) (13.57)

n=0
with the normalization factor

N = ! . (13.58)

N
VEY  lanP?

After the mover completes its operation, i.e., after the time t = T, we per-
form another measurement on the QOS. One of the nondegenerate eigenstates
of this measurement is the specific “final state”

1 N
[¥f)qos = UN 41 nz:% n) . (13.59)

Our machine works only if the postselection measurement yields the state
(13.59). Unfortunately, this is a very rare event. We shall discuss the proba-
bility of obtaining the appropriate outcome in the next section.

Assume that the postselection measurement is successful, i.e., that we do
obtain the final state (13.59). We will next show that in this case, assuming an
appropriate choice of the radii R,,, our “time machine” shifts the wave function
of the system by the time interval At. The time shift is defined relative to the
situation in which the machine has not operated, i.e., the radius of the shell
was not changed from the initial value Ry. In order to obtain the desired time
shift At = dtn we chose the radii R,, such that

nét 2GM 2GM
dtn= =T <\/1— o L CZRH> . (13.60)

The maximal time shift in the different terms of the superposition (the left-
hand side of (13.51)) is dty = d0t. The parameter n is the measure of the
“quantum amplification” relative to the maximal (classical) time shift dt. If
the radius Ry of the shell is large enough that the time dilation due to the
shell in its initial configuration can be neglected, (13.60) simplifies to
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2GM
5tn—T<1—\/1— c2Rn> . (13.61)

Let us assume then that we have arranged the radii according to (13.61)
and we have prepared the quantum operating system of the mover in the state
(13.57). Then, just prior to the operation of the time machine the overall state
is the direct product of the corresponding states of the system, the shell, and
the mover,

N
N|Z(g,0))[Ro) > ann) , (13.62)
n=0

where |Ry) signifies that the shell, together with the mechanical part of the
mover, is at the radius Ry. Although these are clearly macroscopic bodies.
we assume that we can treat them quantum—mechanically. We also make an
idealized assumption that these bodies do not interact with the environment,
i.e., no element of the environment becomes correlated to the radius of the
shell.

Once the mover has operated, changing the radius of the spherical shell,
the overall state becomes

N
N|#(g,0) Y an| Rn)ln) - (13.63)
n=0

For different radii R,,, we have different gravitational potentials inside the
shell and, therefore, different relations between the flow of the proper time of
the system and the flow of the external time. Thus, after the external time T
has elapsed, just before the mover takes the radii R,, back to the value Ry,
the overall state is

N
N anl(q,T = 6tn))|Rn)In) - (13.64)

n=0

Note that now the system, the shell, and the QOS are correlated: the system
is not in a pure quantum state. After the mover completes its operation, the
overall state becomes

N
N anl(q,T - 6tn))|Ro)|n). (13.65)

n=0

There is still a correlation between the system and the QOS.

The last stage is the postselection measurement performed on the QOS. It
puts the QOS and, consequently, our quantum system, in a pure state. After
the successful postselection measurement, the overall state is

N 1 N
<Zo¢n|W(q,T—5tn)>> |R0><\/N+11;J|n>> . (13.66)

n=0
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We have shown that the wave function of the quantum system ¥(q,t) is
changed by the operation of the time machine into 211:/:0 an|¥(q, T—0ty,)). Up
to the precision of the approximate equality (13.53) (which can be arbitrarily
improved by increasing the number of terms N in the sum), this wave function
is indeed |¥(q, T — At))! Note that for At > T, the state of the system at the
moment the time machine has completed its operation is the state in which
the system was before the beginning of the operation of the time machine.

13.5.5 The Probability of the Success
of the Quantum Time Machine

The main conceptual weakness of our time machine is that usually it does
not work. Successful postselection measurements corresponding to large time
shifts are extremely rare. Let us estimate the probability of the successful
postselection measurement in our example. The probability is given by the
square of the norm of the vector obtained by projecting the state (13.66) on
the subspace defined by state (13.59) of the QOS:

N

Prob = ||\/N—|—1

N
O~ ol #(q, T = 6ty))| Ro)|* - (13.67)
n=0

In order to obtain a time shift without significant distortion, the wave
functions shifted by different times dt,, have to be such that the scalar products
between them can be approximated by 1. Taking then the explicit form of «,,
from (13.52), we evaluate the probability (13.67), obtaining

2

N
P ~ . 13.
rob N (13.68)

The normalization factor A/ given by (13.58) decreases very rapidly for large
N. Even if we use a more efficient choice of the initial and the final states of
the QOS (see [3]) for the amplification, n > 1, the probability decreases with
N as1/(2n—1)N.

The small probability of the successful operation of our time machine is,
in fact, unavoidable. At the time just before the postselection measurement,
the system is in a mixture of states correlated to the orthogonal states of
the QOS (see (13.65)). The probability of finding the system at that time
in the state |¥(q, T — At)), for At which differs significantly from the time
periods dt,, is usually extremely small. This is the probability to find the
system, by a measurement performed “now,” in the state in which it was
supposed to be at some other time. For any real situation this probability is
tiny but not equal precisely to zero, since all systems with bounded energies
have wave functions with nonvanishing tails. The successful operation of our
time machine is a particular way of “finding” the state of the quantum system
shifted by the period of time A = nd. Therefore, the probability for success
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cannot be larger than the probability of finding the shifted wave function by
direct measurement.

One can wonder what has been achieved by all this rather complicated
procedure if we can obtain the wave function of the system shifted by the
time period At simply by performing a quantum verification measurement
at the time T of the state |¥(q, T — At)). There is a very small chance for
the success of this verification measurement, but using our procedure the
chance is even smaller. What our machine can do, and we are not aware of
any other method which can achieve this, is to shift the wave function in
time without knowing the wave function. If we obtain the desired result of the
postselection measurement (the postselection measurement performed on the
measuring device), we know that the wave function of the system, whatever it
is, is shifted by the time At. Not only is the knowledge of the wave function of
the system inessential for our method, but even the very nature of the physical
system whose wave function is shifted by our time machine need not be known.
The only requirement is that the energy distribution of the system decreases
rapidly enough. If the expectation value of the energy can be estimated, then
we can improve dramatically the probability of the success of our procedure.
The level of difficulty of the time shift without distortion depends on the
magnitude of the energy dispersion AE and not on the expectation value of
energy (FE). For quantitative analysis of this requirement see [87].

The operation of our time machine can be considered as a superposition
of time evolutions [7] for different periods of time 6t,,. This name is especially
appropriate if the Hamiltonian of the system is bounded, since in this case
the approximate equality (13.51) is correct for all states |¥).

13.5.6 Time Translation to the Past and to the Future

Let us spell out again what our machine does. Assume that the time evolution
of the state of the system is given by |¥(¢)). By this we mean that this is
the evolution before the operation of the time machine and this is also the
evolution later, provided we do not operate the time machine. The state |7 (¢))
describes the actual past states of the system and the counterfactual future
states of the system, i.e., the states which will be in the case we do not disturb
the evolution of the system by the operation of our time machine. Define
“now,” t = 0, to be the time at which we begin the operation of the time
machine. The time interval of the operation of the time machine is 7. Moving
the system to the past means moving it to the state in which the system
actually was at some time ¢t < 0. Moving the system to the future means
moving it to the state in which it would have wound up after undisturbed
evolution at some future time ¢ > 7. Evidently, the classical time machine
does neither of these, since all it can achieve is that at time T the system is
in the state corresponding to the time ¢, 0 <t < T.

When we speed up or slow down the rate of the time evolution, the system
passes through all states of its undisturbed evolution only once. More bizarre
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is the situation when we reverse the direction of the time flow, thus ending up,
after completing the operation of the time machine, in the state in which the
system was before ¢ = 0. In this case the system passes three times through
some states during its evolution.

For our time machine to operate properly, it is essential that the system
is isolated from the external world. In the case of the time translation to the
state of the past, the system has to be isolated not only during the time of the
operation of the time machine, but also during the whole period of intended
time translation. If the system is to be moved to the state in which it was
at the time ¢, ¢ < 0, then it has to be isolated from the time ¢ until the end
of operation of the time machine. This seems to be a limitation of our time
machine. It leads, however, to an interesting possibility. We can send a system
to its counterfactual past, i.e., to the past in which it was supposed to be if it
were isolated (or if it were in any environment chosen by us).

Consider an excited atom which we isolate in the vacuum at time ¢t = 0
inside our time machine. And assume that our time machine made a successful
time translation to a negative time ¢, such that |¢| is larger than the lifetime
of the excited atomic state. Since the atom, now, is not in the environment
it was in the past, we do not move the atom to its actual state in the past.
Instead, we move the atom to the state of its counterfactual past. By this
we mean the state of the isolated atom which, under its normal evolution in
the vacuum during the time period |¢t| winds up in the excited state. In fact,
this is the state of the atom together with an incoming radiation field. The
radiation field is exactly such that it will be absorbed by the atom. Although
our procedure is very complicated and only very rarely successful, still, it
is probably the easiest way to prepare the precise incoming electromagnetic
wave which excites a single atom with probability one.

13.5.7 Experimental Realization of the Quantum
Time-Translation Machine?!

Suter [88] has claimed to perform an experimental realization of the quantum
time-translation machine using a classical Mach—Zehnder interferometer. The
experimental setup of Suter, however, does not fall even close to the definition
of the time machine. In his setup we know what is the system and what is its
initial state. What he shows is that if we send a single mode of a radiation field
through a birefringent retardation device which yields different retardations
for two orthogonal polarizations, then placing the preselection polarization
filter and the postselection polarization filter will lead to a much larger effect
than can be achieved by preselection alone. Thus, it might seem like speeding
up the time evolution, but this procedure fails all tests of universality. Dif-
ferent modes of radiation field speed up differently, an arbitrary wave packet
is usually distorted, and for other systems (other particles) the device is not
supposed to work at all.
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Thus, the first basic requirement that the time machine has to work for
various systems is not fulfilled from the beginning. And it cannot be easily
modified since the “external” variable (which is supposed to be a part of
the time machine) is the property of the system itself—the polarization of
the radiation field. The next necessary requirement, that it works for a large
class of the initial states of the system, cannot be fulfilled too. Indeed, he
considers a superposition of only two time evolutions. This superposition can
be identical to a longer evolution for a particular state, but not for a large
class of states. As it has been shown [7, 87] a superposition of a large number
of time evolutions is necessary for this purpose.

Suter, together with R. Ernst and M. Ernst, performed in the past another
experiment which they called “An experimental realization of a quantum time-
translation machine” [89]. In this experiment a very different system was
used: the effect was demonstrated on the heteronuclear coupling between two
nuclear spins. But the experimental setup was also applicable only to a specific
system and only for a certain state. Therefore, the same criticism is applicable
and, therefore, one should not call it an implementation of the time-translation
machine.

Although the experiments of Suter are not implementations of the quan-
tum time machine, still, they are interesting as weak measurements. The ex-
periment of Suter with a birefringent retardation device can be considered as
a weak measurement of a polarization operator. In fact, this is a variation of
the experiments which were proposed [68] and performed [70] previously. The
“weakness condition” of these two experiments follows from the localization
of the beam (which was sent through a narrow slit). The “weak” regime of the
experiment of Suter is achieved by taking the retardation small. The second
experiment of Suter can be considered as the first weak measurement of a
nuclear spin component.

13.6 Time Symmetry

13.6.1 Forward- and Backward-Evolving Quantum States

Before discussing the time symmetry of the pre- and postselected systems
which are usually discussed in the framework of the two-state vector for-
malism, we will consider the question of differences between possibilities for
manipulating forward-evolving quantum states (13.1) and backward-evolving
state (13.6) which has been recently analyzed [90]. It is particularly impor-
tant in the light of recent argument of Shimony [91] against equal status of
forward- and backward-evolving quantum states.

A notable difference between forward- and backward-evolving states has
to do with the creation of a particular quantum state at a particular time.
In order to create the quantum state |A = a) evolving forward in time, we
measure A before this time. We cannot be sure to obtain A = a, but if we
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obtain a different result A = a’ we can always perform a unitary operation and
thus create at time ¢ the state |[A = a). On the other hand, in order to create
the backward-evolving quantum state (A = a|, we measure A after time ¢. If
we do not obtain the outcome A = a, we cannot repair the situation, since the
correcting transformation has to be performed at a time when we do not yet
know which correction is required. Therefore, a backward-evolving quantum
state at a particular time can be created only with some probability, while
a forward-evolving quantum state can be created with certainty. (Only if the
forward-evolving quantum state is identical to the backward-evolving state we
want to create at time ¢, and only if we know that no one touches the system
at time ¢, can the backward-evolving state be created with certainty, since
then the outcome A = a occurs with certainty. But this is not an interesting
case.)

The formalism of quantum theory is time reversal invariant. It does not
have an intrinsic arrow of time. The difference with regard to the creation of
backward and forward evolving quantum state follows from the “memory’s”
arrow of time. We can base our decision of what to do at a particular time only
on events in the past, since future events are unknown to us. The memory time
arrow is responsible for the difference in our ability to manipulate forward-
and backward-evolving quantum states. However, the difference is only in
relation to creation of the quantum state. As we will see below there are no
differences with measurements in the sense of “finding out” what is the state
at a particular time.

The ideal (von Neumann) measurement procedure applies both to for-
ward evolving quantum states and to backward-evolving quantum states. In
both cases, the outcome of the measurement is known after the time of the
measurement. All that is known about what can be measured in an ideal (non-
demolition) measurement of a forward-evolving quantum state can be applied
also to a backward-evolving quantum state. There are constraints on the mea-
surability of nonlocal variables, i.e., variables of composite systems with parts
separated in space. When we consider instantaneous nondemolition measure-
ments (i.e., measurements in which, in a particular Lorentz frame during an
arbitrarily short time, local records appear which, when taken together, spec-
ify the eigenvalue of the nonlocal variable), we have classes of measurable and
unmeasurable variables. For example, the Bell operator variable is measur-
able, while some other variables [92], including certain variables with product
state eigenstates [93, 94], cannot be measured.

The procedure for measuring nonlocal variables involves entangled ancil-
lary particles and local measurements, and can get quite complicated. Fortu-
nately, there is no need to go into detail in order to show the similarity of
the results for forward- and backward-evolving quantum states. The opera-
tional meaning of the statement that a particular variable A is measurable is
that in a sequence of three consecutive measurements of A—the first taking
a long time and possibly including bringing separate parts of the system to
the same location and then returning them, the second being short and non-
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local, and the third, like the first, consisting of bringing together the parts of
the system—all outcomes have to be the same. But this is a time symmetric
statement; if it is true, it means that the variable A is measurable both for
forward- and backward-evolving quantum states.

We need also to obtain the correct probabilities in the case that differ-
ent variables are measured at different times. For a forward-evolving quan-
tum state it follows directly from the linearity of quantum mechanics. For a
backward-evolving quantum state, the simplest argument is the consistency
between the probability of the final measurement, which is now B = b, given
the result of the intermediate measurement A = a, and the result of the inter-
mediate measurement given the result of the final measurement. We assume
that the past is erased. The expression for the former is | (A = a|B = b)|2.
For consistency, the expression for the latter must be the same, but this is
what we need to prove.

In exactly the same way we can show that the same procedure for tele-
portation of a forward-evolving quantum state [95] yields also teleportation of
a backward-evolving quantum state. As the forward-evolving quantum state
is teleported to a space—time point in the future light cone, the backward-
evolving quantum state is teleported to a point in the backward light cone.
Indeed, the operational meaning of teleportation is that the outcome of a
measurement in one place is invariably equal to the outcome of the same
measurement in the other place. Thus, the procedure for teleportation of the
forward-evolving state to a point in the future light cone invariably yields tele-
portation of the backward-evolving quantum state to the backward light cone.

The impossibility of teleportation of the backward-evolving quantum state
outside the backward light cone follows from the fact that it will lead to
teleportation of the forward-evolving quantum state outside the forward light
cone, and this is impossible since it obviously breaks causality.

Another result which has been proved using causality argument is the no
cloning theorem for backward-evolving quantum quantum states [90]. So, also
in this respect there is no difference between forward- and backward-evolving
quantum states.

The argument used above does not answer the question of whether it is
possible to measure nonlocal variables in a demolition measurement. Demoli-
tion measurements destroy (for the future) the state and may be the quan-
tum systems itself. Thus, obviously, a demolition measurement of a nonlocal
variable of a quantum state evolving forward in time does not measure this
variable for a quantum state evolving backward in time. Any nonlocal variable
of a composite system can be measured with demolition for a quantum state
evolving forward in time [96]. Recently, it has been shown [97] also that any
nonlocal variable can be measured for a quantum state evolving backward
in time. Moreover, the procedure is simpler and requires fewer entanglement
resources.

The difference follows from the fact that we can change the direction of
time evolution of a backward-evolving state along with complex conjugation of
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the quantum wave (flipping a spin). Indeed, all we need is to prepare an EPR
state of our system and an ancilla. Guarding the system and the ancilla ensures
that the forward-evolving quantum state of the ancilla is the flipped state of
the system. For a spin wave function we obtain o (1| + 8(l| — —8*|T) + a*|]).
For a continuous variable wave function ¥(q) we need the original EPR state
l¢g =G =10, p+p=0). Then, the backward-evolving quantum state of the
particle will transform into a complex conjugate state of the ancilla ¥(q) —
7 (g).

If the particle and the ancilla are located in different locations, then such
an operation is a combination of time reversal and teleportation of a backward-
evolving quantum state of a continuous variable [98].

We cannot flip and change the direction of time evolution of a quantum
state evolving forward in time. To this end we would have to perform a Bell
measurement on the system and the ancilla and to get a particular result
(singlet). However, we cannot ensure this outcome, nor can we correct the
situation otherwise. Moreover, it is easily proven that no other method will
work either. If one could have a machine which turns the time direction (and
flips) a forward-evolving quantum state, then one could prepare at will any
state that evolves toward the past, thus signaling to the past and contradicting
causality.

Let us consider now a pre- and postselected system. It is meaningless
to ask whether we can perform a nondemolition measurement on a system
described by a two-state vector. Indeed, the vector describing the system
should not be changed after the measurement, but there is no such time: for a
forward-evolving state, “after” means later, whereas for a backward-evolving
state, “after” means before. It is meaningful to ask whether we can perform
a demolition measurement on a system described by a two-state vector. The
answer is positive [97], even for composite systems with separated parts.

Next, is it possible to teleport a two-state vector? Although we can teleport
both forward- and backward-evolving quantum states, we cannot teleport the
two-state vector. The reason is that the forward evolving state can be tele-
ported only to the future light cone, while the backward-evolving state can
be teleported only to the backward light cone. Thus, there is no space—time
point to which both states can be teleported.

Finally, the answer to the question of whether it is possible to clone a two-
state vector is negative, since neither forward-evolving nor backward-evolving
quantum states can be cloned.

13.6.2 Time-Symmetric Aspects of Pre- and Postselected Systems

When a quantum system is described by the two-state vector (13.2) or the gen-
eralized two-state vector (13.7), the backward-evolving states enter on equal
footing with the forward-evolving states. Note that the asymmetry in the pro-
cedure for obtaining the state (13.7) is not essential: we can start preparing
1/VNY, |®:)]i) instead.
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We will analyze now the symmetry under the interchange (9| |¥) « (¥| |P).
This will be considered as a symmetry under reversal of the direction of the
arrow of time. It is important to note that in general this interchange is not
equivalent to the interchange of the measurements creating the two-state vec-
tor A = a and B = b. An example showing the nonequivalence can be found
in [99]. However, in order to simplify the discussion, we will assume that the
free Hamiltonian is zero, and therefore |#) = |A =a) and (§| = (B=1b/.In
this case, of course, the reversal of time arrow is identical to the interchange
of the measurements at t; and t5. If the free Hamiltonian is not zero, then an
appropriate modification should be made [100].

The ABL rule for the probabilities of the outcomes of ideal measurements
(13.9) is also explicitly time-symmetric: First, both ($| and |¥) enter the
equation on equal footing. Second, the probability (13.9) is unchanged under
the interchange (@] |¥) < (¥| |D).

The ABL rule for a quantum system described by a generalized two-
state vector (13.7) is time-symmetric as well: (@;| and |¥;) enter the equa-
tion on equal footing. The manifestation of the symmetry of this formula
under the reversal of the arrow of time includes complex conjugation of
the coefficients. The probability (13.10) is unchanged under the interchange
20 @il W) < 32l (E] @),

The outcomes of weak measurements, the weak values, are also symmetric
under the interchange (@| |¥) < (¥| |®) provided we perform complex
conjugation of the weak value together with the interchange. This is similar to
complex conjugation of the Schrédinger wave function under the time reversal.
Thus, also for weak measurements there is the time reversal symmetry: both
(@] and |¥) enter the formula of the weak value on the same footing and there
is symmetry under the interchange of the pre- and postselected states. The
time symmetry holds for weak values of generalized two-state vectors (13.22):
i.e., the interchange ), a;(®;| |¥;) « .o (¥ |®;) leads to C, < Cj.

13.6.3 The Time Asymmetry

The symmetry is also suggested in using the language of “preselected” state
and “postselected” state. In order to obtain the two-state vector (13.2) we
need to preselect A = a at t; and postselect B = b at to. Both measurements
might not yield the desired outcomes, so we need several systems out of which
we pre- and postselect the one which is described by the two-state vector
(13.2). However, the symmetry is not complete and the language might be
somewhat misleading. It is true that we can only (post)select B = b at to,
but we can prepare instead of preselect A = a at t;. For preparation of |a) a
single system is enough. If the measurement of A yields a different outcome
a’ we can perform a fast unitary operation which will change |A = ') to
|A = a) and then the time evolution to time ¢ will bring the system to the
state [@). This procedure is impossible for creation of the backward-evolving
state (@|. Indeed, if the outcome of the measurement of B does not yield b,
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we cannot read it and then make an appropriate unitary operation before
to in order to get the state (P| at time t. We need several systems to post-
select the desired result (unless by chance the first system has the desired
outcome).

Although the formalism includes situations with descriptions by solely
forward-evolving quantum state and by solely backward-evolving quantum
states, here also there is a conceptual difference. For obtaining backward-
evolving state it was necessary to have a guarded ancilla in order to erase
the quantum state evolving from the past. Of course, there is no need for
this complication in obtaining forward-evolving quantum state. The differ-
ence is due to fixed “memory” arrow of time: we know the past and we
do not know the future. This asymmetry is also connected to the concept
of a measurement. It is asymmetric because, by definition, we do not know
the measured value before the measurement and we do know it after the
measurement.

13.6.4 If Measurements are Time-Asymmetric, How the Outcomes
of Measurements are Time-Symmetric?

Taking this asymmetry of the concept of measurement into account, how one
can understand the time symmetry of the formulae for the probability of an
intermediate measurements (13.9), (13.10) and for the formulae of weak values
(13.21), (13.22)?

This is because these formulae deal with the results of the measurements
which, in contrast with the concept of measurement itself, are free from the
time asymmetry of a measurement. The results of measurements represent
the way the system affects other systems (in this case measuring devices) and
these effects, obviously, do not exhibit the time asymmetry of our memory.
The time asymmetry of measurement is due to the fact that the pointer vari-
able of the measuring device is showing “zero” mark before the measurement
and not after the measurement. But the result of the measurement is repre-
sented by the shift of the pointer position. (If originally the pointer showed
“zero” it is also represented by the final position of the pointer.) This shift
is independent of the initial position of the pointer and therefore it is not
sensitive to the time asymmetry caused by asymmetrical fixing of the ini-
tial (and not final) position of the pointer. The relations described in the
formulae of the two-state vector formalism are related to these shifts and,
therefore, the time symmetry of the formulae follows from the underlying
time symmetry of the quantum theory. The shifts of the pointer variable in
weak measurements were considered as “weak-measurements elements of re-
ality” [101] where “elements of reality were identified with “definite shifts.”
This approach was inspired by the EPR elements of reality which are def-
inite outcomes of ideal measurements, i.e., definite shifts in ideal measure-
ment procedures. The next section discusses a controversy related to ideal
measurements.
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13.6.5 Counterfactual Interpretation of the ABL Rule

Several authors criticized the TSVF because of the alleged conflict between
counterfactual interpretations of the ABL rule and predictions of quantum
theory [102, 20, 103, 104]. The form of all these inconsistency proofs is as
follows: The probability of an outcome C = ¢, of a quantum measurement
performed on a preselected system, given correctly by (13.12), is considered.
In order to allow the analysis using the ABL formula, a measurement at a later
time, t2, with two possible outcomes, which we denote by “1;” and “2;,” is
introduced. The suggested application of the ABL rule is expressed in the
formula for the probability of the result C' = ¢,

Prob(C = ¢,) = Prob(15) Prob(C = ¢, ;1) (13.69)
+Prob(2y) Prob(C = ¢, ;2f) ,

where Prob(C' = ¢, ;1) and Prob(C = ¢, ;2¢) are the conditional prob-
abilities given by the ABL formula, (13.9), and Prob(1y) and Prob(2y) are
the probabilities of the results of the final measurement. In the proofs, the
authors show that (13.69) is not valid and conclude that the ABL formula is
not applicable to this example and therefore it is not applicable in general.

One us (L.V.) has argued [105, 106, 21] that the error in calculating equal-
ity (13.69) does not arise from the conditional probabilities given by the ABL
formula, but from the calculation of the probabilities Prob(1y) and Prob(2y)
of the final measurement. In all three alleged proofs, the probabilities Prob(1y)
and Prob(2¢) were calculated on the assumption that no measurement took
place at time t. Clearly, one cannot make this assumption here since then
the discussion about the probability of the result of the measurement at time
t is meaningless. Thus, it is not surprising that the value of the probabil-
ity Prob(C = ¢,,) obtained in this way comes out different from the value
predicted by the quantum theory. Straightforward calculations show that the
formula (13.69) with the probabilities Prob(1¢) and Prob(2y) calculated on
the condition that the intermediate measurement has been performed leads
to the result predicted by the standard formalism of quantum theory.

The analysis of counterfactual statements considers both actual and coun-
terfactual worlds. The statement is considered to be true if it is true in coun-
terfactual worlds “closest” to the actual world. In the context of the ABL
formula, in the actual world the preselection and the postselection has been
successfully performed, but the measurement of C' has not (necessarily) been
performed. On the other hand, in counterfactual worlds the measurement of
C has been performed. The problem is to find counterfactual worlds “closest”
to the actual world in which the measurement of C has been performed. The
fallacy in all the inconsistency proofs is that their authors have considered
counterfactual worlds in which C' has not been measured.

Even if we disregard this fallacy there is still a difficulty in defining the
“closest” worlds in the framework of the TSVF. In standard quantum theory
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it is possible to use the most natural definition of the “closest” world. Since
the future is considered to be irrelevant for measurements at present time ¢,
only the period of time before ¢ is considered. Then the definition is:

(i) Closest counterfactual worlds are the worlds in which the sys-
tem is described by the same quantum state as in the actual world.

In the framework of the TSVF, however, this definition is not acceptable. In
the time-symmetric approach the period of time before and after ¢ is consid-
ered. The measurement of C' constrains the possible states immediately after
t to the eigenstates of C'. Therefore, if in the actual world the state immedi-
ately after ¢ is not an eigenstate of C, no counterfactual world with the same
state exists. Moreover, there is the same problem with the backward- evolving
quantum state (the concept which does not exist in the standard approach)
in the period of time before ¢. This difficulty can be solved by adopting the
following definition of the closest world [106]:

(i) Closest counterfactual worlds are the worlds in which the re-
sults of all measurements performed on the system (except the mea-
surement at time t) are the same as in the actual world.

For the preselected only situation, this definition is equivalent to (i), but it is
also applicable to the symmetric pre- and postselected situation. The defini-
tion allows to construct time-symmetric counterfactuals in spite of common
claims that such concept is inconsistent [107].

An important example of counterfactuals in quantum theory are “elements
of reality” which are inspired by the EPR elements of reality. The modification
of the definition of elements of reality applicable to the framework of the TSVF
[34] is:

(iii) If we can infer with certainty that the result of measuring at
time t of an observable C' is ¢, then, at time ¢, there exists an element
of reality C' = c.

The word “infer” is neutral relative to past and future. The inference about
results at time ¢ is based on the results of measurements on the system per-
formed both before and after time ¢. Note that there are situations (e.g., the
three-boxes example) in which we can “infer” some facts that cannot be ob-
tained by neither “prediction” based on the past results nor “retrodiction”
based on the future results separately.

The theorem (i) of Sect. 13.4.4 now can be formulated in a simple way:
If A = a is an element of reality then A,, = a is the weak-measurement of
reality. The theorem (ii) of Sect. 13.4.4 can be formulated as follows. If A
is a dichotomic variable, a is an eigenvalue of A, and if A,, = a is a weak-
measurement element of reality, then A = a is an element of reality.

The discussion about the meaning of time symmetric counterfactuals con-
tinues until today. Kastner changed her view on such counterfactuals from
“inconsistent” to “trivial” [108]. See Vaidman’s reply [109] and other very
recent contributions on this issue [110, 111, 112].
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13.7 Protective Measurements

Several years ago we proposed a concept of protective measurements [113,
114, 115] which provides an argument strengthening the consideration of a
quantum state as a “reality” of some kind. We have shown that “protected”
quantum states can be observed just on a single quantum system. On the other
hand, if a single quantum state is “the reality” how “the two-state vector”
can be “the reality”?

13.7.1 Protective Measurement of a Single Quantum State

In order to measure the quantum state of single system one has to measure
expectation values of various observables. In general, the weak (expectation)
value cannot be measured on a single system. However, it can be done if the
quantum state is protected [113, 114]. The appropriate measurement interac-
tion is again described the Hamiltonian (13.8), but instead of an impulsive
interaction the adiabatic limit of slow and weak interaction is considered:
g(t) = 1/T for most of the interaction time T and g(t) goes to zero gradually
before and after the period T

In this case the interaction Hamiltonian does not dominate the time evo-
lution during the measurement, moreover, it can be considered as a perturba-
tion. The free Hamiltonian Hy dominates the evolution. In order to protect a
quantum state this Hamiltonian must have the state to be a nondegenerate
energy eigenstate. For g(¢t) smooth enough we then obtain an adiabatic pro-
cess in which the system cannot make a transition from one energy eigenstate
to another, and, in the limit T' — oo, the interaction Hamiltonian changes
the energy eigenstate by an infinitesimal amount. If the initial state of the
system is an eigenstate |F;) of Hp then for any given value of P, the energy
of the eigenstate shifts by an infinitesimal amount given by the first-order
perturbation theory: §F = (E;|H;n:|E;) = (E;|A|E;)P/T. The corresponding
time evolution e P {FilAIE:) ghifts the pointer by the expectation value of A
in the state |E;). Thus, the probability distribution of the pointer variable,
e~ (@=a)%/4% remains unchanged in its shape, and is shifted by the expectation
value <A>l = <E1|A|EZ>

If the initial state of the system is a superposition of several nonde-
generate energy eigenstates |¥1) = XYq;|E;), then a particular outcome
(A); = (E;|A|E;) appears at random, with the probability |a;|? [61]. (Subse-
quent adiabatic measurements of the same observable A invariably yield the
expectation value in the same eigenstate |E;).)

13.7.2 Protective Measurement of a Two-State Vector

At first sight, it seems that protection of a two-state vector is impossible.
Indeed, if we add a potential that makes one state a nondegenerate eigenstate,
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then the other state, if it is different, cannot be an eigenstate too. (The states
of the two-state vector cannot be orthogonal.) But, nevertheless, protection
of the two-state vector is possible [116].

The procedure for protection of a two-state vector of a given system is
accomplished by coupling the system to another pre- and postselected sys-
tem. The protection procedure takes advantage of the fact that weak values
might acquire complex values. Thus, the effective Hamiltonian of the protec-
tion might not be Hermitian. Non-Hermitian Hamiltonians act in different
ways on quantum states evolving forward and backwards in time. This allows
simultaneous protection of two different states (evolving in opposite time di-
rections).

Let us consider an example [116] of a two-state vector of a spin-; parti-
cle, (Ty]|T2)- The protection procedure uses an external pre- and postselected
system S of a large spin N that is coupled to our spin via the interaction

Hyprot = —AS -0 . (13.70)

The external system is preselected in the state |S,=N) and postselected in the
state (Sy=N]|, that is, it is described by the two-state vector (S,=N||S,=N).
The coupling constant A is chosen in such a way that the interaction with
our Spin—% particle cannot change significantly the two-state vector of the
protective system S, and the spin—% particle “feels” the effective Hamiltonian
in which S is replaced by its weak value,

(Sy = N|(Sz; Sy, 52)[Sz = N)

Sy = = (N,N,iN) . 13.71
(S, = N|S, = N) (N,N,iN) (13.71)

Thus, the effective protective Hamiltonian is
Hepp = —AN(0y + 0y +i0) . (13.72)

The state |7,) is an eigenstates of this (non-Hermitian) Hamiltonian (with
eigenvalue —AN). For backward-evolving states the effective Hamiltonian is
the hermitian conjugate of (13.72) and it has different (nondegenerate) eigen-
state with this eigenvalue; the eigenstate is (1.

In order to prove that the Hamiltonian (13.70) indeed provides the protec-
tion, we have to show that the two-state vector (1,||1,) will remain essentially
unchanged during the measurement. We consider measurement which is per-
formed during the period of time, between pre- and postselection which we
choose to be equal one. The Hamiltonian

H=-\S-0+ Po¢ (13.73)
can be replaced by the effective Hamiltonian

Heff:—/\N(Um+Uy+iCTz)+PCT§ . (13.74)
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Indeed, the system with the spin S can be considered as N spin-1/2 particles
all preselected in |1,) state and postselected in |T,) state. The strength of
the coupling to each spin-1/2 particle is A < 1, therefore during the time
of the measurement their states cannot be changed significantly. Thus, the
forward-evolving state |S;=N) and the backward-evolving state (S,=N| do
not change significantly during the measuring process. The effective coupling
to such system is the coupling to its weak values.

Good precision of the measurement of the spin component requires large
uncertainty in P, but we can arrange the experiment in such a way that
P < AN. Then the second term in the Hamiltonian (13.74) will not change
significantly the eigenvectors. The two-state vector (1,||7,) will remain essen-
tially unchanged during the measurement, and therefore the measuring device
on this single particle will yield (o¢).,, = ”&‘jﬁljf ).

The Hamiltonian (13.73), with an external system described by the two-
state vector (S, = N||S; = N), provides protection for the two-state vec-
tor (Ty]/T). It is not difficult to demonstrate that any two-state vector ob-
tained by pre- and postselection of the spin—% particle can be protected by
the Hamiltonian (13.73). A general form of the two-state vector is (Tg/|Ta)
where & and 3 denote some directions. It can be verified by a straightforward
calculation that the two-state vector (13]|T4) is protected when the two-state
vector of the protective device is (Sg = N||S, = N).

At least formally we can generalize this method to make a protective mea-
surement of an arbitrary two-state vector (W5||¥;) of an arbitrary system. Let
us decompose the post-selected state [Wa) = a|¥1) +b|¥ ). Now we can define
“model spin” states: [#;) = |1.) and [#,) = |].). On the basis of the two
orthogonal states we can obtain all other “model spin” states. For example,
1T.) = 1/v2 (|1.) +|1.)), and then we can define the “spin model” opera-
tor o. Now, the protection Hamiltonian, in complete analogy with the Spin—%
particle case is

Hprot =—AS-G. (13.75)
In order to protect the state (Ws||¥;), the pre-selected state of the external
system has to be |S,=N) and the postselected state has to be (S, =N| where
the direction x is defined by the “spin model” representation of the state |¥s),

1T,) = W) = (W1 |2)|T,) + (TL|W)|1.) - (13.76)

However, this scheme usually leads to unphysical interaction and is good
only as a gedanken experiment in the framework of nonrelativistic quantum
theory where we assume that any Hermitian Hamiltonian is possible.

13.8 The TSVF and the Many-Worlds Interpretation
of Quantum Theory

The TSVF fits very well into the many-worlds interpretation (MWTI) [117],
the preferred interpretation of quantum theory of one of us (L.V.) [118]. The
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counterfactual worlds corresponding to different outcomes of quantum mea-
surements have in the MWI an especially clear meaning: these are subjectively
actual different worlds. In each world, the observers of the quantum measure-
ment call their world the actual one, but, if they believe in the MWI they have
no paradoxes about ontology of the other worlds. The apparent paradox that a
weak value at a given time might change from an expectation value to a weak
value corresponding to a particular postselection is solved in a natural way:
in a world with pre-selection only (before the postselection) the weak value
is the expectation value; then this world splits into several worlds according
to results of the postselection measurement and in each of these worlds the
weak value will be that corresponding to the particular postselection. The
time-symmetric concepts of “elements of reality,” “weak-measurements ele-
ments of reality” are consistent and meaningful in the context of a particular
world. Otherwise, at time ¢, before the “future” measurements have been
performed, the only meaningful concepts are the concepts of the standard,
time-asymmetric approach.

One of us (Y.A.) is not ready to adopt the far reaching consequences of
the MWI. He proposes another solution [119]. It takes the TSVF even more
seriously than it was presented in this paper. Even at present, before the “fu-
ture” measurements, the backward evolving quantum state (or its complex
conjugate evolving forward in time) exists! It exists in the same way as the
quantum state evolving from the past exists. This state corresponds to partic-
ular outcomes of all measurements in the future. An element of arbitrariness:
“Why this particular outcome and not some other?” might discourage, but the
alternative (without the many-worlds)—the collapse of the quantum wave—is
clearly worse than that.
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