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a b s t r a c t 

We propose a novel approach, based on a Human Leukocyte Antigen (HLA) best-fit crite- 

rion, to dynamically allocate live organs (specifically, kidneys) to candidates needing trans- 

plantation. A ‘reward’ is assigned to each level of HLA fit, such that higher rewards are at- 

tributed to transplants between better-matched candidates and kidneys. We also envision 

future technologies by which it will be possible to store organs so that two queues may 

form: waiting candidates or stored kidneys. Consequently, a double-ended queue of can- 

didates and kidneys is constructed, where the lifetime of a stored kidney is random, and 

candidates queueing for transplantation may die (‘renege’) while waiting. We derive ex- 

pressions for the probability that a candidate gets a kidney before reneging; for the mean 

numbers of waiting candidates and of stored kidneys; and for a candidate’s or kidney’s 

mean sojourn time. Assuming a best-HLA-fit matching policy, we study three measures 

of effectiveness: (i) Rate of Reward from Transplantation (RRT); (ii) Expected Reward per 

Transplantation (ERT), calculated as RRT divided by the rate of performed transplantations, 

and (iii) Gained rate of reward per one dollar of expenditure. The optimal fraction of kid- 

neys that should be stored so as to maximize the rate of reward per one dollar of expen- 

diture is numerically determined. 

© 2018 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Transplantation of kidneys is the preferred and most effective treatment for patients suffering from end stage renal

disease (ESRD). It is considered to be a ‘life-saving gift’ for these patients, as it reduces their mortality risk and typically

allows them to resume regular life activities. Unfortunately, the supply of kidneys for transplantation falls short of the

increasing demand [1,2] , and even in a hypothetical situation in which the supply of kidneys is ample, there still exists a

complex, time-dependent problem of allocating randomly-arriving kidneys to waiting patients (‘candidates’). 

The operations research (OR) literature includes numerous studies that apply OR tools to different problems in healthcare

management, and particularly problems related to organ transplantation (see Zahiri et al. [3] for a detailed classification of

healthcare-related OR studies; see also a review by Rais and Viana [4] ). In general, the process of sequentially allocating

randomly-arriving kidneys to candidates depends on various interacting clinical and administrative factors. A key medically-

oriented criterion is the immunological compatibility of the donor kidney and the prospective recipient. Such compatibility

is measured according to human leukocyte antigen (HLA) matching. Determining the HLA “match-level” between a donor
∗ Corresponding author. 
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and a recipient involves comparing their white blood cells along a set of six proteins, or antigens—two of type A, two of

type B, and two of type DR (see, e.g., [5] )—and quantifying how many of these antigens are identical between the donor and

the recipient (in particular, there are 59 different type-A antigens, 118 different type-B antigens, and 124 different type-DR

antigens). It should be noted that, when calculating the HLA match-level between a donor and a recipient, researchers and

practitioners may assign different weights to specific antigen matches (see, e.g., [6,7] ) on the basis of their prevalence in the

population. Extensive clinical research (see, e.g., [8–11] ) points to the relevance of HLA matching to transplantation success.

According to a review by Takemoto et al. [12] , transplantation of kidneys into HLA-matched candidates decreases the risk of

graft loss by about 40%. The risk increases with the number of mismatches. The United Network for Organ Sharing (UNOS),

the organization that manages the US organ transplant system, lists immunological compatibility as a key consideration

when matching between transplantation candidates and donor organs (see https://www.unos.org/transplantation/faqs/ ). Ac- 

cording to Ata, Skaro and Tayur [13] , the “current kidney allocation policy of UNOS is a point system that prioritizes the

potential transplant candidates based on the points they receive on the following four dimensions: (i) waiting times (ii) an-

tibodies (i.e. whether the patient is sensitized or not); (iii) antigen matches (the quality of tissue match between the donor

and candidate) [equivalent to HLA matching]; and (iv) whether the patient is a child”. Furthermore, even if a priority is given

to, say, a child over an adult, HLA compatibility is an extremely important consideration in selecting the child candidate. 

In light of the crucial role of HLA fit in organ–candidate matching, the current paper proposes a new HLA-match-based

criterion for allocating randomly-arriving kidneys to randomly-arriving patients. Specifically, according to this criterion, re- 

ferred to as the best-HLA-fit rule , each arriving kidney is assigned to the waiting candidate with the highest number of HLA

matches, i.e., the patient for whom the likelihood of transplantation success is highest. Thus, we assign a different ‘reward’

to each HLA match-level, which we use to assess the performance of the system. 

David and Yechiali [14] used the HLA-match-level criterion in a model of a time-dependent stopping problem in which a

single candidate is considered. In their model, the decision of whether or not to allocate a randomly-arriving kidney to the

candidate depends both on the HLA match-level and on the residual lifetime of the candidate, as well as on the intensity

of kidney arrivals. They considered four antigens - two of type A and two of type B - together with their frequencies in the

population, and derived formulas to calculate the probability of each match-level (zero, one, two, three or four mismatches)

between a random candidate and a random kidney. They showed that the optimal policy for a single candidate is to wait

some finite time-interval, t A , until a kidney with the best possible match arrives, and if no such kidney arrives, to wait

another finite time-interval, until t B ( t B > t A ) for either the best or the second-best possible match, and so on, until finally

the candidate may accept a kidney with even the lowest possible match-level (zero matches). Righter [15] considered a more

general allocation problem in which various parameters change according to an independent random environment Markov

process. Her model assumes a finite number of activities that need to be carried out. Each activity requires a single resource,

and resources arrive according to a Poisson process. Given that different resources are associated with different costs, and

that different activities yield different values, the objective is to assign each arriving resource to an activity so as to maximize

total expected return. David and Yechiali [16] further studied a sequential assignment match process with arrivals of both

candidates and ‘offers’, with only one match-level between the two streams (i.e., match or mismatch). Their model assumes

that a match results in a high reward R , and that a mismatch results in a much smaller reward r < R . The authors showed

that the policy that yields the optimal average reward is allocation of offers exclusively to matching candidates. The same

authors further studied a one-attribute sequential assignment process in discrete time, where M randomly-arriving offers are

sequentially assigned to N candidates [17] . They studied several cases with various assumptions on the problem parameters

and on the assignment regime, and derived optimal policies that maximize the total discounted reward. Bendersky and

David [7] recently studied a flexible single-candidate model for the kidney allocation problem. Their model considered an

HLA system comprising two groups of antigens (corresponding to two classes of the major histocompatibility complex): Class

I, containing A, B and C antigens (which are present inside almost all cells in the body), and Class II, containing antigens of

the types DP, DR and DQ (which are present only in the membranes of antigen-presenting cells, which are cells responsible

for triggering the immune system). Analyzing a broad family of Gamma lifetime distributions, the authors obtained the

optimal critical times of acceptance of offers of different qualities. 

Various papers in the literature explicitly account for fairness and medical efficiency in the kidney allocation process.

Zenios et al. [18] addressed a dynamic kidney allocation problem with three objectives: maximizing the ‘quality-adjusted

life expectancy’ of transplant candidates; maximizing a linear function of the likelihood of transplantation of the various

types of candidates; and minimizing a quadratic function that quantifies the differences in mean waiting times across can-

didate types. Su and Zenios [19,20] analyzed the kidney allocation process while considering the perspective of society, as

well as the perspective of an individual candidate. The same authors [21] studied the sequential assignment problem with

the objective of determining an organ allocation policy that maximizes the total expected reward. Their stochastic model

seeks to create a more efficient and equitable system, while providing candidates with some flexibility to decide whether

or not to accept specific organs. Bertsimas et al. [22] developed models in which, instead of making specific assumptions

about fairness principles or priority criteria, the decision maker has the flexibility to select his desired criteria and fairness

constraints from a broad class of allowable constraints. A point system is generated based on the selected priority criteria,

and the model then approximately maximizes medical efficiency, i.e., life-year gains from transplantation, while simulta-

neously enforcing the selected fairness constraints. Drekic et al. [23] developed a self-promoting priority queueing model

for patients’ waiting times, which takes into account changes in health status over time. The model allows patients both

to renege from the queue and to self-promote to an urgent status. The authors obtained the waiting time distributions

https://www.unos.org/transplantation/faqs/
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and their moments, the queue length distributions, and the reneging probabilities. Recently, Bloch and Cantala [24] ana-

lyzed dynamic assignment of randomly-arriving kidneys to patients organized in a waiting list. Each time a new kidney

becomes available, it is offered to a patient according to a fixed sequence, and the patient decides whether to accept it or

not. Three efficiency criteria are considered, and it is argued that waiting time should be used as a primary criterion in the

order of allocation. In the US, the current organ allocation policy (established by UNOS) has a geographically-tiered structure

( https://www.unos.org/transplantation/matching-organs/ ): An available organ is offered first within the region in which the

donor is located (Donor Service Area, DSA). Ata et al. [13] recently explored a means of amending this potential source of

inequity. Specifically, they proposed offering affordable jet services (OrganJet) to candidates on the transplant waiting list,

effectively enabling these candidates to be included in multiple DSAs. The authors evaluated how many patients might uti-

lize this service and studied how its availability would affect waiting times, the number of organs harvested, and mortality

rates. 

As noted above, drawing from the idea that a higher number of HLA matches results in a superior transplantation out-

come [12] , we expand the scope of studies on the kidney allocation problem by proposing a novel approach for allocating

arriving kidneys to waiting candidates (or of matching an arriving candidate with a stored kidney): If there is a queue of

candidates, an arriving kidney is allocated to the waiting candidate with the best HLA match-level, or if there is a queue

of stored kidneys, an arriving candidate is matched with the best-fit kidney. In this approach, a reward is assigned to each

match according to the HLA match-level. The reward can be operationalized in different ways. For example, one option

is to use the candidate’s expected quality-adjusted life years after transplantation (see, e.g., [19] ). Given a set of rewards,

we define three measures of effectiveness. The first is the Rate of Reward from Transplantation (RRT) realized under the

best-HLA-fit rule. The second is Expected Reward per Transplantation (ERT) under the best-HLA-fit rule; this measure cor-

responds to the RRT divided by the rate of performed transplantations. The third measure is the gained rate of reward per

one dollar of expenditure. We note that, in contrast to some of the works cited above, our model does not accommodate

individual decisions on whether to accept or reject an offered kidney. Rather, the goal is to maximize overall societal benefit,

by introducing an objective criterion—the best-HLA-fit rule—according to which the decision maker determines who receives

each kidney. 

Another contribution of our work is the fact that it considers the possibility of organ preservation. The ability to preserve

organs outside the body has played a major role in the development of transplant services worldwide over the last four

decades. At present, hypothermic storage is the most common storage method used, and organs are typically stored for

periods of 24 hours or less, depending on the organ in question. The science of organ preservation is constantly being

updated with new knowledge and ideas, so as to meet the growing demand for high-quality organs for transplantation. In

particular, the kidney, which is the most widely transplanted organ, also has the longest history of preservation research

(see [25] ), and kidney storage has been at the focus of many developments in the field. Accordingly, we envision future

technologies by which it will be possible to store kidneys for longer periods of time. 

Thus, we consider a double-ended queueing model that incorporates two independent streams: a stream of randomly-

arriving patients (candidates) needing transplantation, and a stream of randomly-arriving kidneys. Double-ended queues

were first introduced by Kashyap [26] to analyze the taxi-passenger problem, where taxis wait for passengers and passen-

gers queue for taxis. Since then, numerous works have considered double-ended queues, in a variety of applications. For

example, Takahashi et al. [27] considered a double-ended queue consisting of two buffers with finite capacities. Conolly et

al. [28] studied the effect of impatient behavior on various outcomes in double-ended queues, under the assumption of

Poisson arrivals and exponential patience. Crescenzo et al. [29] considered a double-ended queue with catastrophes and re-

pairs and obtained steady-state and failure-state probabilities. Recently, Liu et al. [30] developed fluid and diffusion models

for double-ended queues with renewal arrivals and exponential patience times. 

In this paper we assume that a kidney that arrives when candidates are waiting for transplant is immediately allocated

to the candidate with whom it has the best HLA fit. On the other hand, a kidney that arrives when the queue of candidates

is empty is stored with a given probability (that may depend on the number of stored kidneys) for possible future allocation.

Similarly, a candidate arriving when the candidate queue is empty and there are stored kidneys will be matched with the

best-HLA-fit kidney. 

In line with Conolly et al. [28] and Shin and Choo [31] , who studied the reneging phenomenon as an important com-

ponent of queueing models, we further take into account the realistic scenario in which a candidate queueing for trans-

plantation may die while waiting. Several studies have considered such ‘reneging’ from the transplantation queue, including

the works of Zenios [32] , Boxma et al. [33] , and Drekic et al. [23] ; those studies, however, applied first-come-first-serve

(FCFS) allocation policies (or variations of FCFS), rather than the HLA-match-based allocation approach we propose herein.

Notably, Boxma et al. [33] also took into account the capacity to store kidneys. Whereas that study assumed a constant

storage period, we attribute a probability distribution function to the lifetime of a stored kidney. 

Analyzing the steady-state probabilities of our double-ended queueing system, we identify, for each level of stored kid-

neys, the optimal fraction of kidneys that should be stored so as to maximize the gained rate of reward achieved per

dollar of expenditure, under the best-HLA-fit criterion. By evaluating the rate of reward obtained per dollar spent, we

address the universal social dilemma of how much to spend in order to provide transplantation candidates with a bet-

ter quality of life and to increase their life expectancy. Using numerical analysis, we find that the optimal kidney stor-

age policy varies according to the measure being optimized: the optimal fraction of kidneys that should be stored when

seeking to maximize cost-effectiveness (gained rate of reward per one dollar of expenditure) is always higher than that

https://www.unos.org/transplantation/matching-organs/
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Fig. 1. Transition-rate diagram. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

obtained when the objective is to minimize the sum of candidates’ waiting costs and kidney storage costs per unit of

time. 

The remainder of this paper is organized as follows: In Section 2 we formulate the queueing model and derive the steady-

state probabilities of the system. Section 3 develops expressions for three types of queuing system performance measures: (i)

the probability that a candidate gets a kidney before reneging; (ii) mean number of candidates and mean number of kidneys

in the system; and (iii) mean sojourn times of candidates and kidneys in the system. We note that these expressions are

independent of the allocation rule used (e.g., best-HLA-fit or FCFS). However, according to our approach, different allocation

methods may differ in terms of the probability distributions of sojourn times and in terms of the quality of the transplan-

tation outcome (reflected in our proposed ‘reward’ measures). In Section 4 we investigate the system’s properties under the

FCFS allocation rule. In Section 5 the best-HLA-fit allocation rule is analyzed. Section 6 addresses the question of whether

“to store or not to store” and finds the optimal fraction of kidneys to be stored in various scenarios. Section 7 concludes the

paper. 

2. Model formulation 

We assume that candidates for live-organ transplantation arrive according to a Poisson process with rate λ. Each candi-

date waits in queue until either receiving a graft (i.e., a kidney) or reneging from the system (willingly or due to death) after

an exponentially-distributed length of time with parameter δ. In parallel, kidneys arrive according to a Poisson process with

rate μ and are allocated to waiting candidates. Thus, one ‘side’ of the process can be considered as a single-server queue

in which the inter-arrival time of kidneys is equivalent to service duration, so that when there are L = n candidates in the

system, the overall service rate is state-dependent and equals μ+ n δ. 

As discussed above, we consider a scenario in which organ preservation technologies have developed sufficiently to en-

able kidneys to be stored for a relatively substantial period of time. Accordingly, our model assumes that if a kidney arrives

when the queue of candidates is empty, it is stored for possible future allocation with probability 0 ≤ α( k ) ≤ 1, where

α(0) = α and α( k ) is a monotone decreasing function of k , the number of inventoried kidneys stored in the system. The

kidney is lost with the complementary probability. 

In addition, we assume that the lifetime of a stored kidney is exponentially distributed with parameter ξ . Hence, the

other ’side’ of the system can be looked upon as a state-dependent Markovian single-server queue with arrival rate α( k ) μ
and service rate λ+ k ξ when there are k stored kidneys and no candidates. Note that the above state-dependent rates

( μ+ n δ and λ+ k ξ ) are each independent of the inner order of the corresponding queues (candidates or kidneys). 

Let L = n, n = 0, 1, 2, 3, … denote the number of candidates in the system. Also, when L = 0, denote by K the number

of kidneys waiting to be allocated to arriving candidates. Note that the numbers of candidates and kidneys in the system

are independent of the allocation policy, since it is assumed that a kidney that arrives when candidates are waiting is

immediately allocated to a candidate. Similarly, a candidate arriving when the candidate queue is empty and there are

stored kidneys will instantaneously be matched with a kidney. Thus, we define a double-ended queue with state space { L,

K }, where the possible states are {{ L = n , n ≥ 1; K = 0}, { L = 0; K = k , k ≥ 1}, { L = 0, K = 0}}. The transition rates between the

system’s states are depicted in Fig. 1 . 

In what follows, the analysis is conducted on the basis of the steady-state analysis of the process, since the transient

solution is difficult to obtain. Moreover, such processes reach equilibrium quite rapidly. 

2.1. Derivation of the steady-state probabilities 

For n ≥ 1, let p n = P ( L = n , K = 0); and for k ≥ 1, let q k = P ( L = 0, K = k ). Also, let p 0 = P ( L = 0, K = 0). Constructing the

balance equations, we obtain 

p n = p 0 

n ∏ 

i =1 

(
λ

μ + iδ

)
, n = 1 , 2 , 3 , . . . (1) 

and 

q k = p 0 

k ∏ 

i =1 

(
α( k ) μ

λ + iξ

)
, k = 1 , 2 , 3 , . . . (2) 
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Summing up all probabilities and equating to one, we get 

p 0 = 

[ 

1 + 

∞ ∑ 

n =1 

n ∏ 

i =1 

(
λ

μ + iδ

)
+ 

∞ ∑ 

k =1 

k ∏ 

i =1 

(
α( k ) μ

λ + iξ

)] −1 

. (3)

We start with the special case where the probability of storing a kidney is constant ( α( k ) = α); This assumption enables

us to obtain closed-form solutions. The case where α( k ) depends on the number of kidneys currently being stored ( α(k ) = 

α
k 

,

k = 1, 2, 3, …) is addressed in Section 6.3 . 

For α( k ) = α we have ∑ ∞ 

n =1 p n 

p 0 
= 

∞ ∑ 

n =1 

n ∏ 

i =1 

(
λ

μ + iδ

)
= λ− μ

δ δ
μ
δ e 

λ
δ

(
�

(
δ + μ

δ

)
− �

(
δ + μ

δ
, 
λ

δ

))
(4)

and ∑ ∞ 

k =1 q k 
p 0 

= 

∞ ∑ 

k =1 

k ∏ 

i =1 

(
αμ

λ + iξ

)
= μ− λ

ξ ξ
λ
ξ e 

αμ
ξ

(
�

(
ξ + λ

ξ

)
− �

(
ξ + λ

ξ
, 
αμ

ξ

))
, (5)

Where �( α, y ) = ∫ ∞ 

y t α−1 e −t dt is the upper incomplete Gamma function. 

In the next section we will use Eqs. (4) –(5) to calculate various performance measures. 

3. Performance measures 

We now calculate various performance measures: (i) the probability that an arbitrary candidate gets a kidney before

reneging; (ii) mean number of candidates and mean number of kidneys in the system; and (iii) mean sojourn times of

candidates and kidneys in the system. We note that, the mean waiting time of a candidate (kidney), in a so called ’work-

conserving’ and non-preemptive single-server queue, is independent of the order of service (see [34] : Theorems 29.2 and

29.3 in pages 478 and 479), as it is the mean of sum of interchangeable identical random variables divided by the number

served. Since the state-dependent service rates are independent of the inner order of queues, and since a transplantation is

performed instantaneously, these performance measures are independent of the allocation policy (e.g., FCFS, random selec-

tion, or best-HLA-fit allocation). 

3.1. Probability that a candidate receives a kidney before reneging 

Regardless of the allocation policy, a transplantation is performed either in the case when a candidate arrives and finds

an available kidney (which occurs with probability 
∑ ∞ 

k =1 q k ), or when a kidney arrives and finds waiting candidates (an

event occurring with probability 
∑ ∞ 

n =1 p n ). Thus, Lemma 1 below states the rate of performed transplantations. 

Lemma 1. The rate of performed transplantations is given by: λ
∑ ∞ 

k =1 q k + μ
∑ ∞ 

n =1 p n , 

where 
∑ ∞ 

k =1 
q k 

p 0 
is given by (5) , and 

∑ ∞ 

n =1 p n 
p 0 

is given by (4) . 

Note that in the special case when δ = 0 and λ < μ, the rate of performed transplantations equals λ. 

Next, the probability that an arbitrary candidate gets a kidney before reneging, denoted by P ( G ), is given in Proposition 1 .

Proposition 1. P (G ) = 

∞ ∑ 

k =1 

q k + 

μ
λ

∞ ∑ 

n =1 

p n . 

Proof. 

P ( G ) = 

∞ ∑ 

k =1 

q k q (G | K = k ) + 

∞ ∑ 

n =0 

p n P (G | L = n ) (6)

Now, for = 1, 2, 3, …, P ( G | K = k ) = 1, while for n ≥ 1, 

P ( G | L = n ) = 

(
( n + 1 ) δ

( n + 1 ) δ + μ
· n 

n + 1 

+ 

μ

( n + 1 ) δ + μ

)
· P ( G | L = n − 1 ) = 

nδ + μ

( n + 1 ) δ + μ
· P (G | L = n − 1) 

The above follows since when a candidate arrives and finds L = n candidates in queue, he/she joins and increases L to

n + 1. The term 

( n +1 ) δ
( n +1 ) δ+ μ is the probability that one of the candidates reneges before a kidney arrives. This probability is

multiplied by the probability, n 
n +1 , that the reneging candidate is one of the other n candidates. The term 

μ
( n +1 ) δ+ μ is the

probability that a kidney arrives before a reneging occurs and the kidney is assigned to the first candidate in line. 

For n = 0, P ( G | L = 0 ) = 

μ
μ+ δ . Then, iterating, we obtain 

P ( G | L = n ) = 

μ

( n + 1 ) δ + μ
(7)
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Substituting Eq. (7) in Eq. (6) leads to 

P ( G ) = 

∞ ∑ 

k =1 

q k + 

∞ ∑ 

n =0 

p n 
μ

( n + 1 ) δ + μ
. (8) 

Using λp n = [( n + 1) δ + μ] p n + 1 , n = 0, 1, 2, …, leads to 
∑ ∞ 

n =0 p n 
μ

( n +1 ) δ+ μ = 

μ
λ

∑ ∞ 

n =1 p n , which completes the proof. �

Note that, since the arrival rate of candidates is λ, Proposition 1 can also be derived by using Lemma 1 and applying

the mean value argument, namely, dividing the performed rate of transplantation by λ. Note also that in the special case in

which δ = 0 and λ < μ, the probability that a candidate gets a kidney equals one. 

3.2. Mean numbers and mean sojourn times of candidates and kidneys in the system 

The mean number of candidates and the mean number of kidneys in the system are obtained by E[ L ] = 

∑ ∞ 

n =1 n p n and

E[ K] = 

∑ ∞ 

k =1 k q k , respectively. Explicit (though cumbersome) expressions of those means are given in Appendix A . 

For the special case in which both δ = 0 and ξ = 0, while αμ < λ < μ, we obtain simpler expressions: 

E [ L ] = 

λ − αμ

( μ − λ) ( 1 − α) 
(9) 

and 

E [ K ] = 

α( μ − λ) 

( λ − αμ) ( 1 − α) 
. (10) 

Let us assume that each waiting candidate inflicts a waiting cost of C L per time unit, and that C K is the cost rate of storing

a kidney. Thus, the total cost (sum of candidates’ waiting costs and kidneys’ storage costs) per unit of time is C L E [ L ] + C K E [ K ].

As indicated above, E [ W ], the mean sojourn time of a candidate in the system until either receiving a kidney or reneging,

is independent of the allocation policy. Thus, we claim: 

Proposition 2. 

E [ W ] = E [ W F CF S ] = 

1 

μ + δ
p 0 + 

∞ ∑ 

n =1 

(
n + 1 

μ + ( n + 1 ) δ

)
p 0 

n ∏ 

i =1 

(
λ

μ + iδ

)
Proof. Under the FCFS allocation rule, 

E [ W F CF S ] = 

∞ ∑ 

n =0 

p n E [ W F CF S | L = n ] + 

∞ ∑ 

k =1 

q k E [ W F CF S | K = k ] . 

Clearly, for k ≥ 1, E [ W FCFS | K = k ] = 0. When the system is in state ( L = 0, K = 0), an arriving candidate joins the queue and

waits until either an arrival of a kidney, or his own reneging, whichever occurs first. Thus, E[ W F CF S | L = 0 , K = 0 ] = 

1 
μ+ δ . 

For ( L = n ≥ 1), 

E [ W F CF S | L = n ] = 

1 

μ + ( n + 1 ) δ
+ 

μ

μ + ( n + 1 ) δ
E [ W F CF S | L = n − 1 ] 

+ 

( n + 1 ) δ

μ + ( n + 1 ) δ
·
(

1 

n + 1 

· 0 + 

n 

n + 1 

· E [ W F CF S | L = n − 1 ] 

)
(11) 

When a candidate arrives and L = n , he joins the queue and increases L to n + 1. The first term in Eq. (11) is the mean

time until either an arrival of a kidney or a reneging of one of the n + 1 candidates occurs. The second term deals with the

case in which a kidney arrives first (with probability μ
μ+( n +1 ) δ

) and is allocated to the first candidate in line. The third term

deals with the case in which a reneging occurs before a kidney’s arrival (with probability ( n +1 ) δ
μ+( n +1 ) δ

). Then, with probability

1 
n +1 , the reneging candidate is either the one who has just arrived and his additional waiting time is zero, or, with the

complementary probability, the reneging candidate is one of the other n candidates. Iterating (where E[ W F CF S | L = 0 , K = 0 ] =
1 

μ+ δ ), we obtain: 

E[ W F CF S | L = n ] = 

n +1 
μ+( n +1 ) δ

, n = 0, 1, 2, … Thus, using Eq. (1) , the claim is proved. �

For the special case in which both δ = 0 and ξ = 0, while αμ < λ < μ, 

E [ W ] = 

λ − αμ

λ( μ − α) ( 1 − α) 
. 

Let S denote the sojourn time of a kidney before being allocated or becoming obsolete. Proposition 3 below states the

mean value of S, E [ S ]. Where, again, E [ S ] = E [ S ]. 
FCFS 
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Proposition 3. 

E [ S ] = E [ S F CF S ] = 

1 

λ + ξ
p 0 + 

∞ ∑ 

k =0 

(
k + 1 

λ + ( k + 1 ) ξ

)
p 0 

k ∏ 

i =1 

(
αμ

λ + iξ

)
Proof. Since the process of waiting kidneys is symmetric with respect to the process of waiting candidates, the claim is

proved by Proposition 2 when performing the necessary parameter interchanges. �

For the special case in which both δ = 0 and ξ = 0, while αμ < λ < μ, E[ S] = 

μ−λ
μ( λ−αμ)( 1 −α) 

. 

4. Probability distributions of sojourn times under the FCFS allocation rule 

Since waiting time is an important parameter in transplantation priority systems, the FCFS allocation rule (in which an

arriving kidney is allocated to the first candidate in line when L ≥ 1) is common in the literature and also serves as a

benchmark for other allocation policies (see, e.g., [13,19] ). Therefore, in this section we characterize the system under the

FCFS allocation rule. 

When a candidate arrives while { L = 0, K ≥ 1}, the candidate receives a kidney instantaneously. The probability dis-

tribution functions of the sojourn times of a candidate and of a kidney under the FCFS allocation rule are given in the

propositions below. 

Proposition 4. For the special case in which δ = 0, λ < μ, the probability distribution function of W FCFS is given by

P ( W F CF S ≤ t ) = 

∑ ∞ 

k =1 q k · 1 + p δ=0 
0 

μ
μ−λ

( 1 − e −( μ−λ) t ) , where 
∑ ∞ 

k =1 q k can be extracted from Eq. (5) with p 0 = p δ=0 
0 

, p δ=0 
n =

p δ=0 
0 

( λμ ) n and 

p δ=0 
0 = 

[ 

μ

μ − λ
+ 

∞ ∑ 

k =1 

k ∏ 

i =1 

(
αμ

λ + iξ

)] −1 

. 

Proof. The proof uses standard queueing arguments and is given in Appendix B . 

Consider now S FCFS , the sojourn time of a kidney under the FCFS allocation rule. 

Proposition 5. For the special case in which ξ = 0, αμ < λ, the probability distribution function of S FCFS is given by 

P ( S F CF S ≤ t ) = 

∞ ∑ 

n =1 

p 
ξ=0 
n · 1 + 

(
1 − αe −λt 

)
p 
ξ=0 
0 

+ αλ
(
e −λt − e −( λ−αμ) t 

)
p 
ξ=0 
0 

, 

where p 
ξ=0 
0 

= [ λ
λ−αμ

+ 

∑ ∞ 

n =1 

∏ n 
i =1 ( 

λ
μ+ iδ ) ] −1 and p 

ξ=0 
n can be extracted from Eq. (1) with p 0 = p 

ξ=0 
0 

. 

Proof. The proof relies on arguments similar to those used in the proof of Proposition 4 and is given in Appendix C . 

5. Best-HLA-fit allocation policy 

As outlined in the introduction, we propose a new policy for allocating kidneys to candidates based on best HLA-fit be-

tween kidneys and candidates. Specifically, when a kidney arrives at a non-empty queue of waiting candidates, it is assigned

to the candidate with whom it has the smallest number of HLA mismatches (i.e., the highest match-level). Similarly, when a

candidate arrives at a queue containing K = k ≥ 1 kidneys, the candidate is matched to the ‘best’ available kidney. Thus, het-

erogeneity across kidneys (and candidates) is captured in the differences among their respective sets of antigens. We note

that although heterogeneity also arises with respect to blood type, it turns out that, in practice, a great majority of kidneys

in each blood type are transplanted into candidates with the same blood type (see [24] ). Thus, we assume that kidneys and

candidates are homogeneous with respect to their blood type. 

Let the random variable H denote the number of HLA mismatches between a randomly-arriving kidney (candidate) and

a random candidate (kidney). Let f i = P ( H = i ), i = 0, 1, 2, …, I , be the probability that a random candidate and a random

kidney have i mismatches; and let F i = P ( H ≤ i ), where F I = 1. Let X be a random variable denoting the ‘transplantation

reward’ realized when a random kidney is assigned to a random candidate (see [14,17,35] ). Note that there are I ‘values’ of

rewards, with each reward value corresponding to a different number of mismatches. The value of X for H = i mismatches

is denoted by x i , where if i < j , then x i > x j . Consequently, P ( X = x i ) = P ( H = i ) = f i , and E[ X] = 

∑ I 
i =0 f i x i . 

Consider a random kidney arriving when L = n ≥ 1 candidates are present in the system. Then, the n possible matches

of transplantation rewards corresponding to the n candidates are X 1 , X 2 ,…, X n . Since each HLA match between the arriv-

ing organ and each candidate (as discussed in the introduction) corresponds to numerous specific proteins, and since

each possible match is between a random kidney and a random candidate, one may assume that X 1 , X 2 ,…, X n are i.i.d.

like X . 
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Let X ∗
(n ) 

= max { X 1 , X 2 , . . . , X n } . Then, with F i = 1 − F i , 

E 
[
X 

∗
(n ) 

]
= 

(
1 − F̄ n 0 

)︸ ︷︷ ︸ 
The probability 

that at least one 

candidate has 

zero mismatches 

x 0 + 

I ∑ 

i =1 

(
(1 − F̄ n i ) − (1 − F̄ n i −1 ) 

)︸ ︷︷ ︸ 
The probability that the candidate 

with the best match has 

exactly i mismatches 

x i (12) 

Similarly, when a candidate arrives to find K = k ≥ 1, the transplantation reward is X ∗
(k ) 

. Note that E[ X ∗
(1) 

] = E[ X] =∑ I 
i =0 f i x i . 

We calculate the Expected Reward per Transplantation under this best-HLA-fit rule and denote this measure by

ERT Best − Fit . 

Theorem 1. 

ER T Best−F it = 

μ
∑ ∞ 

n =1 p n 
((

1 − F̄ n 0 

)
x 0 + 

∑ I 
i =1 

(
F̄ n 

i −1 
− F̄ n 

i 

)
x i 
)

+ λ
∑ ∞ 

k =1 q k 
((

1 − F̄ k 0 

)
x 0 + 

∑ I 
i =1 

(
F̄ k 

i −1 
− F̄ k 

i 

)
x i 
)

μ
∑ ∞ 

n =1 p n + λ
∑ ∞ 

k =1 q k 

Proof. The rate of kidney arrivals is μ. When L = n ≥ 1 and a kidney arrives, the match with the best candidate

yields E[ X ∗
(n ) 

] . In all other states, no transplantation can be performed and the kidney joins the queue. Similarly, the rate

of candidate arrivals is λ. When K = k ≥ 1 and a candidate arrives, the match with the best kidney yields E[ X ∗
(k ) 

] . The claim

is proved since the rate of performed transplantations is given in Lemma 1. �

We refer to the numerator of ERT Best − Fit (i.e., the numerator on the right-hand side of Theorem 1 ) as the Rate of Reward

from Transplantation, RRT Best − Fit , realized under the best-HLA-fit rule, where 

RR T Best−F it = μ
∞ ∑ 

n =1 

p n 

( (
1 − F̄ n 0 

)
x 0 + 

I ∑ 

i =1 

(
F̄ n i −1 − F̄ n i 

)
x i 

) 

+ λ
∞ ∑ 

k =1 

q k 

( (
1 − F̄ k 0 

)
x 0 + 

I ∑ 

i =1 

(
F̄ k i −1 − F̄ k i 

)
x i 

) 

(13) 

The corresponding ERT under the FCFS rule is given in the following proposition. 

Proposition 6. 

E R T F CF S = E [ X ] . 

Proof. The proposition follows directly from the definitions above. �

It is clear that ERT Best − Fit ≥ ERT FCFS since E[ X 

∗
(n) 

] ≥ E[ X 

∗
(1) 

] = E[X] . 

6. To store or not to store 

In this section, we study how storing kidneys affects the various performance measures of the system, and we identify

the optimal fraction of stored kidneys, α∗. Sections 6.1 and 6.2 present the case in which the probability of storing a kidney

is fixed, whereas Section 6.3 presents the case in which the probability of storing a kidney depends on the current size of

the queue of stored kidneys. 

6.1. A numerical example 

Since the mathematical expressions are cumbersome, we first demonstrate the results using a numerical example with

the set of values μ= 1, ξ = 0.5, λ= 1.4 and δ = 0.05. Note that since δ > 0, λ/ μ can exceed 1, which reflects the realistic

scenario in which the rate of candidate arrival is higher than the rate of kidney arrival. Also, we assume that C L = 0.3 and

that C K = 2, as technologies that enable kidneys to be stored are likely to be expensive (see [36] ). To calculate the rate of

reward from transplantation, RRT Best − Fit , we use the following data: I = 6, f i = [0.0 0 01, 0.0 031, 0.0285, 0.1306, 0.3103, 0.3632,

0.1642], and x i = [0.850, 0.833, 0.818, 0.802, 0.786, 0.771, 0.750] (based on UNOS data and HLA mismatch computations from

[17] ). Fig. 2 depicts the total cost as a function of α. 

Fig. 2 shows that the total cost function is concave in α with a minimum cost of 2.555 at α∗∼= 

0.3. Note that the total

cost function is a weighted sum of E [ L ], a monotone decreasing function of α, and E [ K ], a monotone increasing function of

α. 

We note that RRT Best − Fit increases in α, as a result of the fact that the presence of a larger number of kidneys in the

system allows for better matches. 

Given that the RRT Best − Fit measure does not account for waiting times and for storage costs, we propose a cost-

effectiveness measure that is likely to be of practical value to decision makers. Specifically, we analyze the gained rate

of reward per one dollar of expenditure. Fig. 3 depicts this ratio as a function of α. 
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Fig. 2. Total cost C L E [ L ] + C K E [ K ] as a function of α. 

Fig. 3. The ratio RR T Best−Fit / [ C L E[ L ] + C K E[ K] ] as a function of α. 

 

 

 

 

 

 

 

 

 

 

 

The optimal value of α that maximizes the rate of reward per dollar of expenditure (under the best-HLA-fit allocation

rule) is α∗∼= 

0.8 at 
RR T Best−F it 

C L E [ L ]+ C K E [ K] 
= 0 . 3063 . When we compare the optimal values of α in Fig. 2 and in Fig. 3 , we observe that

the optimal fraction of stored kidneys in the latter case — i.e., when attempting to optimize the cost-effectiveness measure
RR T Best−F it 

C L E [ L ]+ C K E [ K] 
— is higher than that in the former case — i.e., when attempting merely to minimize costs. In other words,

under the best-HLA-fit policy, the benefit obtained from performing more transplantations justifies the extra cost resulting

from storing kidneys. 

6.2. A simple case 

Next, we analyze the special case in which both δ = 0 and ξ = 0. In this case, the stability condition αμ < λ < μ must

hold. Since transplant waitlists are almost never empty, it is appropriate to assume that λ= 0.95and μ= 1 (see [37] ). Under

these simplifying assumptions, some of the results can be obtained analytically. Specifically, for any values of C L and C K ,

where E [ L ] and E [ K ] are given by Eqs. (9) and (10) , respectively, the optimal value of α that minimizes the total cost rate is

α∗ = 

C L λμ −
√ 

C K λμ( μ − λ) 
2 

( C L + C K ) 

μ[ ( C L + C K ) μ − C K λ] 
(14)

Clearly, in the case where α = 0, the total cost is C L E[ L ] = 

C L λ
μ−λ

. When C L = 0.3 and C K = 2 then α∗ = 0.451, as depicted in

Fig. 4 . 

Fig. 5 depicts the ratio RR T Best−F it / [ C L E[ L ] + C K E[ K] ] as a function of α. 



188 A. Elalouf et al. / Applied Mathematical Modelling 60 (2018) 179–191 

Fig. 4. Total cost C L E [ L ] + C K E [ K ] as a function of α for the special case. 

Fig. 5. The ratio RR T Best−Fit / [ C L E[ L ] + C K E[ K] ] as a function of α for the special case. 

Fig. 6. Total cost C L E [ L ] + C K E [ K ] as a function of α when α(k ) = 

α
k 

for values of example 6.1. 
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Fig. 7. The ratio RR T Best−Fit / [ C L E[ L ] + C K E[ K] ] as a function of α when α(k ) = 

α
k 

for values of example 6.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this case, the optimal value of α is α∗∼= 

0.55. Again, consideration of the rate of reward per dollar spent—as opposed

to mere cost minimization—results in a higher value of α. 

6.3. Probability of storing a kidney depending on the system-state 

We now examine a case in which the probability of storing a kidney depends on the size of the queue of stored

kidneys. It seems reasonable to assume that α( k ) should decrease with k , the number of kidneys being stored in an-

ticipation of candidates’ arrival. Thus, we assume that α(k ) = 

α
k 
. Using the same data given in the example in Section

6.1 , Fig. 6 depicts the total cost as a function of α, and Fig. 7 shows the ratio RR T Best−F it / [ C L E[ L ] + C K E[ K] ] as a function

of α. 

Fig. 6 shows that the optimal value that minimizes the total cost is α∗∼= 

0.7, so that α∗(k ) ∼= 

0 . 7 
k 

. 

Fig. 7 shows that the optimal value that maximizes the ratio RR T Best−F it / [ C L E[ L ] + C K E[ K] ] is α∗ = 1, so that α∗(k ) ∼= 

1 
k 
. 

7. Conclusions 

This work proposes and analyzes a novel approach for allocating randomly-arriving live organs (specifically, kidneys) to

candidates waiting for transplantation. The method is based on the principle of best-HLA-fit. Specifically, an arriving organ

is allocated to the candidate with whom its HLA match-level is highest among all waiting candidates, regardless of how long

each candidate has been waiting for transplantation. Correspondingly, when it is possible to preserve kidneys and a queue

of stored kidneys forms, an arriving candidate is matched with the best-fit kidney. We assign a transplantation reward to

each HLA match-level, and introduce three new measures: ERT Best − Fit (Expected Reward per Transplantation under the best-

HLA-fit rule), RRT Best − Fit (Rate of Reward from Transplantation realized under the best-HLA-fit rule), and RRT Best-Fit per dollar

spent in candidate waiting costs and in kidney storage costs. 

Organ preservation technology has an important role to play in increasing the number of available organs for trans-

plantation. Our model explores a future scenario in which it will be possible to store kidneys for future transplantations,

such that kidneys that arrive at an empty queue of candidates need not go to waste. By maximizing the rate of reward

per one dollar of expenditure, reflected in the ratio RR T Best−F it / [ C L E[ L ] + C K E[ K] ] , we have identified the optimal fraction

of kidneys to be stored. Our numerical analysis shows that this optimal fraction depends on the decision maker’s objec-

tive: Specifically, more kidneys should be stored when cost-effectiveness is the objective rather than mere cost minimiza-

tion (i.e., minimization of C L E [ L ] + C K E [ K ], which is the sum of candidates’ waiting costs and kidneys’ storage costs per unit

of time). 

One possible extension of our model is to consider multiple-type double-ended queues, where candidates are distin-

guished not only by their HLA compatibility, but also by their blood type. Studies by Stanford et al. [37] and recently by

Perlman et al. [35] have taken a first step in this direction, studying two blood types in a one-sided queue, where un-

matched kidneys are lost and cannot be stored. 

Appendix A 

E [ K ] = 

E [ K ] num 

E [ K ] 
, 
den 
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where 

E [ K ] num 

= 

(
λ
δ

) δ+ μ
δ δ( δ + μ) 

(
αμ
ξ

) λ+ ξ
ξ ξαμ⎛ 

⎝ 

λ+ ξ
ξ

+ 

( αμ−λ) �
(

λ+2 ξ
ξ

)(
αμ
ξ

)1 − λ+2 ξ
ξ

ξ
e 

αμ
ξ + 

1 
ξ 2 

((
−αμλ − αμξ + λ2 + λξ

)(
αμ
ξ

)1 − λ+2 ξ
ξ e 

αμ
ξ �

(
λ+2 ξ

ξ
− 1 , 

αμ
ξ

))⎞ 

⎠ , 

and 

E [ K ] den = ( λ + ξ ) 

⎛ 

⎝ 

ξ
(

αμ
ξ

) λ+ ξ
ξ

((
λ
δ

) δ+ μ
δ δ( δ + μ) −

(
( δ + μ) �

(
δ+ μ

δ
, λ

δ

)
− δ �

(
2 δ+ μ

δ

))
λe 

λ
δ

)
−μ

(
λ
δ

) δ+ μ
δ αδe 

αμ
ξ (δ + μ) 

(
�
(

δ+ ξ
ξ

, 
αμ
ξ

)
− �

(
δ+ ξ
ξ

))
⎞ 

⎠ . 

E [ L ] = 

E [ L ] num 

E [ L ] den 

, 

where 

E [ L ] num 

= λ
(

λ
δ

) δ+ μ
δ δ

(
αμ
ξ

) λ+ ξ
ξ ξ( 

( λ−μ) �
(

2 δ+ μ
δ

)
( λδ ) 

1 − μ+2 δ
δ

δ
e 

λ
δ + 

1 
δ2 

((
−δλ + δμ − λμ + μ2 

)(
λ
δ

)1 − μ+2 δ
δ e 

λ
δ �

(
μ+2 δ

δ
− 1 , λ

δ

))) 

, 

and 

E [ L ] den = ( δ + μ) 

⎛ 

⎝ 

ξ
(

αμ
ξ

) λ+ ξ
ξ

((
λ
δ

) δ+ μ
δ δ( δ + μ) −

(
( δ + μ) �

(
δ+ μ

δ
, λ

δ
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(
2 δ+ μ

δ
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λe 
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δ
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δ
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�
(

δ+ ξ
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αμ
ξ
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− �

(
δ+ ξ
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⎞ 

⎠ . 

Appendix B 

Proof of Proposition 4. When K ≥ 1, an arriving candidate gets a kidney immediately (i.e., with probability 1). This oc-

curs with probability 
∑ ∞ 

k =1 q k . When ( L = n ≥ 0, K = 0) an arriving candidate joins the queue in position n + 1 and re-

sides in the system for a length of time drawn from an Erlang distribution with parameter μ and n + 1 stages. Using∑ ∞ 

n =0 p 
δ=0 
n 

∫ t 
x =0 

μn +1 x n 

n ! e −μx dx = p δ=0 
0 

μ
μ−λ

(1 − e −(μ−λ) t ) completes the proof. �

Appendix C 

Proof of Proposition 5. The proof relies on arguments similar to those used in the proof of Proposition 4 . P ( S F CF S ≤ t) =∑ ∞ 

n =1 p 
ξ=0 
n · 1 + (1 − α) p 

ξ=0 
0 

· 1 + αp 
ξ=0 
0 

(1 − e −λt ) + α
∑ ∞ 

k =1 q 
ξ=0 

k 

∫ t 
x =0 

λk +1 x k 

k ! 
e −λx dx , where the integral in the fourth term of 

the right-hand side is the Erlang pdf. Using q 
ξ=0 

k 
= ( αμ

λ
) k p 

ξ=0 
0 

and some algebra the claim is proved. �
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