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Controlling chaotic frictional forces
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Methods to control friction in systems under shear are proposed, which enable eliminate chaotic stick-slip
motion, and modify frictional forces. The possibilities to control friction are demonstrated using a model
system that displays the main experimentally observed behaviors, obtained in measurements on nanoscale
confined liquids and granular layers. The methods should be applicable to real systems for which time series of
dynamical variables are experimentally available. The only necessary condition is the existence of~possibly
unstable! sliding regimes of motion in the experimental systems.@S1063-651X~98!06606-9#

PACS number~s!: 68.15.1e, 46.30.Pa, 05.45.1b, 05.40.1j
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Recent experiments allow for detailed investigations
frictional forces of thin liquids sheared between two so
surfaces@1–3#, or of sheared granular layers@4#. Summariz-
ing the experimental observations, one distinguishes betw
a low driving velocity region, where the system exhibits dr
friction-like behavior, and higher driving velocities, whic
correspond to a more lubricated-like behavior. The low
locity regime is characterized by chaotic stick-slip motio
which is basically determined by the interplay between st
and kinetic friction forces, and whose details depend on
mechanical properties of the probing system@2,5,6#. For high
velocities the system displays smooth sliding, which
sembles thinning of the effective viscosity. Low- and hig
velocity regimes are separated by a well defined critical d
ing velocity vc .

From a practical point of view one wishes to be able
control frictional forces so that the overall friction is reduc
or enhanced, the chaotic regime is eliminated, and ins
smooth sliding is achieved. Such control can be of high te
nological importance for micromechanical devices, for
stance, in computer disk drives, where the early stage
motion and the stopping process, which exhibit chaotic s
slip, pose a real problem@7#.

Controlling frictional forces has been traditionally a
proached by chemical means, namely, using lubricating
uids. A different approach, proposed here, is by controll
the system mechanically. Our goal is twofold:~a! to achieve
smooth sliding at low driving velocities, which otherwis
correspond to the stick-slip regime;~b! to decrease the fric
tional forces.

In this paper we demonstrate the possibility to cont
friction in a model that has been shown to display the m
experimentally observed properties obtained in meas
ments on nanoscale confined liquids@1–3#, and granular lay-
ers @4#. Although we discuss here a specific simple mod
the possibility to control friction mechanically, and the met
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ods applied for the control, are model independent and a
nable to experimental verification.

We consider a one-dimensional model that includes t
rigid plates and a single particle of massm embedded be-
tween them. The interaction between the particle and eac
the plates is described by a periodic potentialUp(x). There is
no direct interaction between the plates. The top plate
massM is pulled by a linear spring with a force constantK
connected to a stage that moves with a velocityv ~see Fig. 1
for a sketch of the model!. Experimentally one usually fol-
lows the time dependence of the spring force for a fixed,
varying in time, stage velocity@1–3#.

Before analyzing the model and describing the cont
methods, we present in Fig. 2 an example of a chaotic st
slip behavior typical to the low driving velocities. Lines~2!
and ~3! in Fig. 2 correspond to different types of slidin
states@8#. These states are unstable for low driving velocit
but, as shown below, could be stabilized by the control me
ods proposed here. The main idea of this work is to repl
chaotic stick-slip motion~line 1! by smooth sliding~lines 2
or 3! in the low velocity region. Figure 3 displays the resu
of a control, applied in the time windowt1,t,t2, where
smooth sliding is achieved. Figure 4 illustrates anoth
method of control. The control is switched on in the hig
velocity range, which corresponds to stable sliding, and t
the controllable system is decelerated toward the low ve
ity region keeping the chosen sliding state. As a characte
tic force unit in Figs. 1–4 we use the value of the sta
frictional force Fs @8#. Figures 3 and 4 clearly demonstra
the possibility to drive chaotic motion to smooth sliding a
to decrease the frictional force by controlling the system m
chanically.

We now turn to the description of the model and of t

tu,
FIG. 1. Schematic sketch of a model geometry.
7340 © 1998 The American Physical Society
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57 7341BRIEF REPORTS
details of the control methods. The coupled equations of m
tion for the top plate and the particle are

MẌ1h~Ẋ2 ẋ!1K~X2Vt !1
]Up~x2X!

]X
5 f ~ t !, ~1a!

mẍ1h ẋ1h~ ẋ2Ẋ!1
]Up~x!

]x
1

]Up~x2X!

]x
50, ~1b!

wherex andX are the coordinates of the particle and the t
plate, respectively. The second term in Eq.~1a! and the sec-
ond and the third terms in Eq.~1b! describe the dissipative
forces between the particle and the plates and are pro
tional to their relative velocities. These terms account
dissipation due to phonons and/or other excitations. The t
term in Eq.~1a! is the driving force due to the stage motio
The additional pulling forcef (t) is introduced here in orde
to shorten the transient time for switching of the control, a
will be discussed later. The remaining terms are due to
periodic interaction potential between the particle and
plates.

We choose the potentialUp(x) to be

FIG. 2. Typical time series of the spring force for dimensionle
driving velocityv50.27:~1! chaotic stick-slip motion without con
trol, ~2! trapped-sliding state stabilized by control,~3! decoupled
sliding state stabilized by control. Spring force is presented in u
of static friction force,Fs52pU0 /b @8#.

FIG. 3. Eliminating the chaotic stick-slip motion under m
chanical control. Dimensionless driving velocityv50.34. Spring
force is presented in units of static friction force,Fs52pU0 /b @8#.
o-

r-
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Up~x!52U~p!cosS 2p

b
xD . ~2!

The amplitude of the periodic potential that the particle fe
depends on the normal load which we use as the con
parameter:

U~p!5U0@11b~p2p0!#. ~3!

U0 is the value of the potential for some nominal value of t
normal loadp0, andb is a dimensional constant. Equatio
~3! assumes small load variations aroundp0, which, as
shown below, are sufficient to achieve control.

The dynamical behavior of the model is determined
the following dimensionless parameters:g5h/(mv) is a di-
mensionless friction constant, wherev5(2p/b)AU0 /m is
the frequency of the oscillations of the particle in the minim
of potential; e5m/M is the ratio of particle and plate
masses;a5V/v is the ratio of frequencies of the free osc
lations of the top plateV5AK/M and the particle; andv
5V/(vb) is the dimensionless stage velocity. In the calc
lations reported in this paper we use parameter values
belong to the underdamped@5# case:a50.02, g50.1, and
e50.125. The control methods should apply to the ov
damped limit as well.

For f 50 andp5p0 the model presented on Fig. 1 lead
to a number of dynamical behaviors as the stage velocit
varied. We have observed four quantitatively different d
namical regimes@8,9#: ~a! stick-slip motion of the top plate
at low velocities;~b! as the stage velocity increases the m
tion of the top plate is characterized by irregular stop eve
with time intervals between them that increase rapidly w
v; here the stick-slip motion becomes erratic;~c! in the ki-
netic regime the top plate never stops and the spring exec
chaotic oscillations, and~d! two types of smooth sliding oc
cur when the stage velocity is above the critical velocityvc .

With the exception of very small driving velocities (v
,v0, where v050.03 for the chosen numerical values

s

ts FIG. 4. Time oscillations of the spring force for the decelerati
of the driving stage:~a! without control,~b! under control. Spring
force is presented in units of static friction force,Fs52pU0 /b @8#.
For convenience the stage velocity~instead of time! is indicated on
the axis. Vertical arrows indicate the critical velocityvc .
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7342 57BRIEF REPORTS
system parameters! the dynamics of the system is chaotic f
the velocity regimes~a!–~c!. Namely, the largest Liapuno
exponent, which provides a quantitative measure of the
gree of stochasticity, is positive@8,9#. The velocity depen-
dence of the Liapunov exponent gives a clear manifesta
of the transition to sliding@8#. As the stage velocity increase
and approaches a critical velocityvc , the largest Liapunov
exponent decreases steeply and becomes negativev
5vc , suggesting the disappearance of chaos in the trans
and the onset of the sliding regime~d!. This concurs with the
decrease in the amplitude of the spring force oscillatio
The value of the critical velocity for our chosen values
parameters isvc50.365.

For driving velocitiesv in the rangevc,v,vc
t , where

vc
t '1.59, the system is in the sliding regime and the part

is trapped by one of the plates and performs small osc
tions around a minimum of the particle-plate interaction p
tential. The frictional force corresponding to thistrapped-
sliding stateis @8#

F~ ẋ!'h ẋ. ~4!

At stage velocitiesv.vc
u , wherevc

u'0.59, the character o
sliding changes. The particle ceases to feel the corrugatio
the plates and moves with the velocityv/2. This transition to
the decoupled-sliding stateis accompanied by a drop in th
frictional force, which becomes the same as for flat pla
@8#,

F~ ẋ!' 1
2 h ẋ. ~5!

It should be noted that Eq.~5! is the lower bound for the
frictional force at a given driving velocity. If the stability
intervals of trapped and decoupled states overlap, i.e.,vc

(t)

.vc
(u) , as for our choice of parameters, there is a bistabi

regionvc
u,v,vc

t , and we have hysteretic behavior.
Our aim is to stabilize the sliding states for driving v

locities v,vc , where one would expect chaotic stick-sl
motion. Sliding states correspond to stable periodic orbits
the system with two periods:~a! periodT51/v, which cor-
responds to a motion of the particle being trapped by one
the plate;~b! period T52/v, which corresponds to the pa
ticle moving with the drift velocityv/2. In the chaotic region
both orbits still exist, but are unstable. Our approach is the
fore to drive the system into a sliding state by controlli
these unstable periodic orbits~UPO!. This makes it possible
to extend the smooth sliding to lower velocities. The cont
of such orbits in dynamical systems have been proposed@10#
and experimentally applied to a wide variety of physical s
tems including mechanical systems, lasers, semicondu
circuits, chemical reactions, biological systems, etc.~see@11#
for references!.

We are interested in controlling the chaotic friction
small velocities and also in maintaining smooth sliding wh
starting at v.vc and decelerating the system. Here w
present the results for the control of the trapped-sliding st
Figure 3 demonstrates the effect of the mechanical contro
the time dependence of the spring force in the kinetic reg
~c!, v50.34. The control is switched on at timet1 and is shut
down at timet2. We clearly see that as a result of the cont
the chaotic motion of the top plate is replaced by a smo
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sliding, which corresponds to a trapped state with the fr
tional force given by Eq.~4!. Figure 4 illustrates anothe
method of catching the desired orbit, where we start fr
high driving velocitiesv.vc , for which the trapped-sliding
state is stable. The system then decelerates under con
keeping the chosen sliding state until we reach the velo
of interest. Figures 4~a! and 4~b! exhibit the velocity depen-
dence of the spring force without and under control, cor
spondingly. The control of the decoupled-sliding state p
formed with the help of the second approach will
discussed in a separate publication. The use of this s
gives an additional possibility to decrease friction~twice
compared to the trapped state!.

We now outline the methods that we use to obtain
results. Control methods are characterized by two indep
dent steps:~a! reaching the vicinity of an UPO and~b! sta-
bilizing the system. First we present the chosen variant of
stabilizing of an UPO. Our model system is described by
continuous-time nonautonomous system of differential eq
tionsdX/dt5F(X,t,p), whereX is a four-dimensional state
vector (x,ẋ,X,Ẋ). For simplicity we assume that the syste
depends on a single control parameterp, which in our case is
normal load, that can be externally adjusted. Let us mea
the state of the system at timestn5nT, whereT is the period
of a desired orbit. DenotingXn5X(tn), we have a discrete
time mappingXn115F(Xn ,p). We restrict the variations o
the control parameterp to some small interval near a nom
nal value p0. For a periodic orbit we haveXn5Xn11
5Xn125•••[X* (p0), i.e., the periodic orbit of a system o
differential equations is a fixed point of the correspondi
mapping. Let us assume that the dynamical system is
close neighborhood of the periodic orbit. Denote the dev
tion of the trajectory from the chosen periodic orbit bydXn
5Xn2X* (p0), and bydp the deviation of the control pa
rameter from its nominal value,dp5pn2p0. Linearizing the
mapping equations we getdXn115AdXn1Bdp. HereA is a
Jacobian matrix andB is a column vector. Their determina
tion in our case is possible only numerically~the correspond-
ing methods are well developed; see, for example, in@12#,
Chap. 4!. For an unstable periodic orbit at least one of t
eigenvalues ofA is greater than unity in magnitude. Our go
is to stabilize the chosen orbit by varying the control para
eter. As a control mechanism we chose a version of prop
tional feedback, i.e.,dpn52KT

•dXn , where the column
vectorK is to be determined, so that the fixed pointX* (p0)
becomes stable. With the proportional feedback control
have for the deviationsdXn115(A2B^ KT)dXn , which
shows that the periodic orbit will be stable if all eigenvalu
of the matrix (A2B^ KT) have moduli smaller than unity
The solution to the problem of the determination ofK , such
that the eigenvalues of the matrix (A2B^ KT) have arbi-
trary specified values, is well known from control theo
~see@13# and references therein!. In particular in our numeri-
cal calculations we choseK such that~a! all eigenvalues of
the matrix (A2B^ KT) are zero, or~b! only unstable eigen-
value of the matrix (A2B^ KT) are zero.

The control mechanism described above can be app
when a trajectory of the system falls into a sufficiently sm
region around desired UPO. Two methods of ‘‘forcing’’ th
system to reach a close neighborhood of these orbits are
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in this work. The first method, proposed in@10#, is applicable
for control of anychaotic systemand could be applied to
control friction in the range of velocitiesv0,v,vc . It relies
on the ergodic wandering of the trajectory to bring it close
the desired state. Here chaos actually is advantageous
chaotic systems typical times required to approach a sm
region are of order ofj2D, wherej is the linear dimension
of the region andD is the dimension of the phase space. F
relatively high dimensional systems, such as more reali
models of friction, the transient times may be extrem
long. In the present work, in order to shorten the transi
time for control switching, we use the following trick. W
apply an additional pulling force~force f in Fig. 1! that
effectively reduces the dimension of system from 4 to 3. T
force is applied when three of four dynamical variable
namely, the position and the velocity of the embedded p
ticle and the velocity of the top plate, are in a small regi
around their values for a periodic orbit. The deviation of t
position of the top plate from the value on the periodic orb
or, what is equivalent, the deviation of the length of t
pulling spring, is compensated by additional force,f (t). This
dimensional reduction is sufficient to decrease the trans
time to an acceptable value. The results, demonstrating
trolled motion of the system are presented in Fig. 3. The t
scale for control isb/V in our model, but since we deal wit
very low stage velocities the value is reasonable. In addit
if the system is moderately chaotic the control could be
plied everyN periods. In our caseN;100.

The second method is more specific to theproblem of
friction, but it is easily applicable for systems of any dime
sion. The method utilizes the fact that desired periodic or
are stable for higher stage velocities, namely, in the slid
regimes. The range of stability is different for each orb
c
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Therefore, we start from driving velocities for which the d
sired periodic orbit is stable. Then we decelerate the st
gradually in small velocity steps, until we reach the veloc
of interest. During the decelerating process the contro
permanently switched on so that the system remains on
periodic orbit. The results, demonstrating controlled mot
of the system by this method, are presented on Fig. 4.

In the present work we have demonstrated the possib
to control friction in a model system described by different
equations. For realistic systems time series of dynam
variables, rather than governing equations, are experim
tally available. In this case the time-delay embedding meth
@14# could be applied in order to transform a scalar tim
series into a trajectory in phase space. This procedure all
one to find the desired unstable periodic orbits and to ca
late variations of parameters required to control friction.

In conclusion, methods to control friction in a model sy
tem have been proposed to avoid the chaotic behavior
ready at low velocities, and to achieve the lower bound
the friction force. The choice of control parameters is n
unique and practically any system parameter or combina
of system parameters can act as a control parameter.
only necessary condition for the application of the propos
methods is the existence of unstable orbits correspondin
sliding regimes of motion.
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