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Controlling chaotic frictional forces
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Methods to control friction in systems under shear are proposed, which enable eliminate chaotic stick-slip
motion, and modify frictional forces. The possibilities to control friction are demonstrated using a model
system that displays the main experimentally observed behaviors, obtained in measurements on nanoscale
confined liquids and granular layers. The methods should be applicable to real systems for which time series of
dynamical variables are experimentally available. The only necessary condition is the existépossifly
unstable sliding regimes of motion in the experimental systef®L063-651X98)06606-9

PACS numbeps): 68.15+e, 46.30.Pa, 05.4%b, 05.40:+j

Recent experiments allow for detailed investigations ofods applied for the control, are model independent and ame-
frictional forces of thin liquids sheared between two solid nable to experimental verification.
surfaced1-3|, or of sheared granular layed]. Summariz- We consider a one-dimensional model that includes two
ing the experimental observations, one distinguishes betwedigid plates and a single particle of massembedded be-
a low driving velocity region, where the system exhibits dry- tween them. The interaction between the particle and each of
friction-like behavior, and higher driving velocities, which the plates is described by a periodic poteritlg(x). There is
correspond to a more lubricated-like behavior. The low ve0 direct interaction between the plates. The top plate of
locity regime is characterized by chaotic stick-slip motion,@ssM is pulled by a linear spring with a force constatt
which is basically determined by the interplay between stati€onnected to a stage that moves with a velogitgee Fig. 1
and kinetic friction forces, and whose details depend on th&°r @ sketch of the modgl Experimentally one usually fol-
mechanical properties of the probing syst&hs,6]. For high Iows. the_ time dependence qf the spring force for a fixed, or
velocities the system displays smooth sliding, which re-varying in time, §tage velocitjl-3]. I
sembles thinning of the effective viscosity. Low- and high- Before analyzing the m0d8| and describing the _cont_rol

methods, we present in Fig. 2 an example of a chaotic stick-

yelocny regimes are separated by a well defined critical drlV'slip behavior typical to the low driving velocities. Lin€2)
ing velocity v

. . . . and (3) in Fig. 2 correspond to different types of sliding

From a pracncal point of view one W|sh_e§ to .be able tostates[8]. These states are unstable for low driving velocities
control frictional forces S0 that.the Qvergll .fl’ICtIOI’] is reduced but, as shown below, could be stabilized by the control meth-
or enhanced, the chaotic regime is eliminated, and insteagys proposed here. The main idea of this work is to replace
smooth sliding is achieved. Such control can be of high techgpaotic stick-slip motior(line 1) by smooth slidinglines 2
nological importance for micromechanical devices, for in-gf 3) in the low velocity region. Figure 3 displays the result
stance, in computer disk drives, where the early stages aff a control, applied in the time window <t<t,, where
motion and the stopping process, which exhibit chaotic stickkmooth sliding is achieved. Figure 4 illustrates another
slip, pose a real problefy]. method of control. The control is switched on in the high

Controlling frictional forces has been traditionally ap- velocity range, which corresponds to stable sliding, and then
proached by chemical means, namely, using lubricating ligthe controllable system is decelerated toward the low veloc-
uids. A different approach, proposed here, is by controllingity region keeping the chosen sliding state. As a characteris-
the system mechanically. Our goal is twofold) to achieve tic force unit in Figs. 1-4 we use the value of the static
smooth sliding at low driving velocities, which otherwise frictional force F¢ [8]. Figures 3 and 4 clearly demonstrate
correspond to the stick-slip regiméy) to decrease the fric- the possibility to drive chaotic motion to smooth sliding and
tional forces. to decrease the frictional force by controlling the system me-

In this paper we demonstrate the possibility to controlchanically.
friction in a model that has been shown to display the main We now turn to the description of the model and of the
experimentally observed properties obtained in measure-
ments on nanoscale confined liquids-3], and granular lay-
ers[4]. Although we discuss here a specific simple model, M K Y

p
the possibility to control friction mechanically, and the meth- F_f»
.Y

*Permanent address: Institute of Physics, Riia 142, EE2400 Tartu,
Estonia. FIG. 1. Schematic sketch of a model geometry.
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FIG. 2. Typical time series of the spring force for dimensionless 0.348 0_5;52 0_3I56 0.\:36 O.SIG4 0.368

driving velocityv =0.27: (1) chaotic stick-slip motion without con-
trol, (2) trapped-sliding state stabilized by contr¢®) decoupled
sliding state stabilized by control. Spring force is presented in units £ 4. Time oscillations of the spring force for the deceleration
of static friction force,Fs=2mU,/b [8]. of the driving stage(a) without control,(b) under control. Spring

. ) force is presented in units of static friction forée,=27U,/b [8].
details of the control methods. The coupled equations of Mogor convenience the stage veloditystead of timg s indicated on

stage velocity

tion for the top plate and the particle are the axis. Vertical arrows indicate the critical velocity.
M (K= 50+ K(x— )+ 227X 2m
7(X—=x)+K( )+ — o =f, (1a Up(x)=—U(p)cog —-x|. )
. . .. AUp(X)  dUp(X=X) The amplitude of the periodic potential that the particle feels
mx+ gx+ (X=X + — —+————=0, (1D gepends on the normal load which we use as the control
parameter:
wherex andX are the coordinates of the particle and the top _
plate, respectively. The second term in Etp and the sec- U(p)=Uo[1+B(p~po)]- &)

ond and the third terms in E@lb) describe the dissipative . . .
forces between the particle and the plates and are propoH0 is the value of the p.Ote”“.a' for some nominal value ofthe
tional to their relative velocities. These terms account forlomal loadp, and g is a dimensional constant. Equation
dissipation due to phonons and/or other excitations. The thir® assumes small Io_a_d variations aroupg, which, as
term in Eq.(1a) is the driving force due to the stage motion. Shown below, are sufficient to achieve control. _

The additional pulling forcd(t) is introduced here in order The dy_nam|_cal be_hawor of the model is dete_rmlne_d by
to shorten the transient time for switching of the control, aname fo_llowmg d|m(_an3|onless parametess: 7/(Ma) is a 0_'"

will be discussed later. The remaining terms are due to th@€nsionless friction constant, wheag=(2/b) yUo/m is

periodic interaction potential between the particle and thdhe frequency of the oscillations of the particle in the minima
plates. of potential; e=m/M is the ratio of particle and plate

We choose the potentidl ,(x) to be massesp =)/ w is the ratio of frequencies of the free oscil-
lations of the top plat€)=+K/M and the particle; and
' - =V (wb) is the dimensionless stage velocity. In the calcu-
] t, l t lations reported in this paper we use parameter values that
belong to the underdampg8] case:«=0.02, y=0.1, and
€=0.125. The control methods should apply to the over-
damped limit as well.

For f=0 andp=p, the model presented on Fig. 1 leads
to a number of dynamical behaviors as the stage velocity is
0.25F varied. We have observed four quantitatively different dy-
'——————‘I namical regime$8,9]: (a) stick-slip motion of the top plate
0.20F at low velocities;(b) as the stage velocity increases the mo-

tion of the top plate is characterized by irregular stop events
. . with time intervals between them that increase rapidly with
100000 110000 120000 v; here the stick-slip motion becomes errafic} in the ki-
netic regime the top plate never stops and the spring executes
chaotic oscillations, an¢d) two types of smooth sliding oc-

FIG. 3. Eliminating the chaotic stick-slip motion under me- cur when the stage velocity is above the critical velooity
chanical control. Dimensionless driving velocity=0.34. Spring With the exception of very small driving velocitie® (
force is presented in units of static friction forée,=27U,/b [8]. <vg, Wherevy=0.03 for the chosen numerical values of

0.35F

0.30F

spring force

dimensionless time
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system parameterthe dynamics of the system is chaotic for sliding, which corresponds to a trapped state with the fric-
the velocity regimega)—(c). Namely, the largest Liapunov tional force given by Eq(4). Figure 4 illustrates another
exponent, which provides a quantitative measure of the demethod of catching the desired orbit, where we start from
gree of stochasticity, is positivi8,9]. The velocity depen- high driving velocitiess>uv .., for which the trapped-sliding
dence of the Liapunov exponent gives a clear manifestatiogtate is stable. The system then decelerates under control,
of the transition to sliding8]. As the stage velocity increases keeping the chosen sliding state until we reach the velocity
and approaches a critical velocity., the largest Liapunov  of interest. Figures @) and 4b) exhibit the velocity depen-
exponent decreases steeply and becomes negative atgence of the spring force without and under control, corre-
=v, suggesting the disappearance of chaos in the transitioghondingly. The control of the decoupled-sliding state per-
and the onset of the Slldlng regir(‘ld!). This concurs with the formed with the help of the second approach will be
decrease in the amplitude of the spring force oscillationSyqe ssed in a separate publication. The use of this state
The value of the critical velocity for our chosen values Ofgives an additional possibility to decrease frictiéiwice
pa?(;?eéz\r/?nlg Cv:el(;c::alﬁgsU in the rangev .<v<uv'., where compared to thg trapped state .
vi~1.59, the system is in the sliding regime ané the particl We now outline the methods that we use fo ob_tam the
JC €% esults. Control methods are characterized by two indepen-
IS trapped by one .Of the plates anc_l perform_s Sma”.osc'”aaent steps(a) reaching the vicinity of an UPO an() sta-
:fr:lisa?r%%gd fﬁcrtri](')r:]';ﬁrgr:g t::rrgzglocrlz-iﬂgt?oIr::ggpcsgg- IOO'biIizi_n.g_the system. First we present the chosen variant of the
inding. stateis [8] stabilizing of an UPO. Our model system is described by the
continuous-time nonautonomous system of differential equa-
F(S()% 77)'(' (4) tionsdX/dt=F(X,t,p), whereX is a four-dimensional state

vector (X,X,X,X). For simplicity we assume that the system
At stage velocities >v¢, wherev¢~0.59, the character of depends on a single control paramgiewhich in our case is
sliding changes. The particle ceases to feel the corrugation eformal load, that can be externally adjusted. Let us measure
the plates and moves with the velocity2. This transition to  the state of the system at timgs=nT, whereT is the period
the decoupled-sliding states accompanied by a drop in the of a desired orbit. Denoting,= X(t,), we have a discrete-
frictional force, which becomes the same as for flat platesime mappingX,,;=®(X,,p). We restrict the variations of
(8], the control parametgpy to some small interval near a nomi-
) ) nal value py. For a periodic orbit we haveX,=X, 1
F(X)~3 pX. (5)  =Xpso=---=X,(po), i.e., the periodic orbit of a system of
differential equations is a fixed point of the corresponding
It should be noted that Ed5) is the lower bound for the mapping. Let us assume that the dynamical system is in a
frictional force at a given driving velocity. If the stability close neighborhood of the periodic orbit. Denote the devia-
intervals of trapped and decoupled states overlap,d@., tion of the trajectory from the chosen periodic orbit B,
>v(C“), as for our choice of parameters, there is a bistability=X,— X, (pog), and by ép the deviation of the control pa-
regionvi<v<w, and we have hysteretic behavior. rameter from its nominal valuép=p,,— po. Linearizing the

Our aim is to stabilize the sliding states for driving ve- mapping equations we gé¥, ;. ;=AdX,,+Bdp. HereA'is a
locities v<v., where one would expect chaotic stick-slip Jacobian matrix an@ is a column vector. Their determina-
motion. Sliding states correspond to stable periodic orbits ofion in our case is possible only numericafthie correspond-
the system with two period€a) period T=1/v, which cor-  ing methods are well developed; see, for example,1i3,
responds to a motion of the particle being trapped by one ofhap. 4. For an unstable periodic orbit at least one of the
the plate;(b) period T=2/v, which corresponds to the par- eigenvalues of is greater than unity in magnitude. Our goal
ticle moving with the drift velocityw/2. In the chaotic region is to stabilize the chosen orbit by varying the control param-
both orbits still exist, but are unstable. Our approach is therester. As a control mechanism we chose a version of propor-
fore to drive the system into a sliding state by controllingtional feedback, i.e.gp,=—KT-8X,, where the column
these unstable periodic orbifgPO). This makes it possible vectorK is to be determined, so that the fixed pa¥at(po)
to extend the smooth sliding to lower velocities. The controlbecomes stable. With the proportional feedback control we
of such orbits in dynamical systems have been propfbgld have for the deviationX,.;=(A-B® KT)6X,,, which
and experimentally applied to a wide variety of physical sys-shows that the periodic orbit will be stable if all eigenvalues
tems including mechanical systems, lasers, semiconduct@f the matrix A—B®KT) have moduli smaller than unity.
circuits, chemical reactions, biological systems, &ee[11]  The solution to the problem of the determinationkaf such
for referencep that the eigenvalues of the matriA¢ B KT) have arbi-

We are interested in controlling the chaotic friction attrary specified values, is well known from control theory
small velocities and also in maintaining smooth sliding when(see[13] and references thergirin particular in our numeri-
starting atv>v. and decelerating the system. Here wecal calculations we chodé such that(a) all eigenvalues of
present the results for the control of the trapped-sliding statehe matrix A—B®KT) are zero, ofb) only unstable eigen-
Figure 3 demonstrates the effect of the mechanical control omalue of the matrix A—B®KT) are zero.
the time dependence of the spring force in the kinetic regime The control mechanism described above can be applied
(c), v=0.34. The control is switched on at timgand is shut when a trajectory of the system falls into a sufficiently small
down at timet,. We clearly see that as a result of the controlregion around desired UPO. Two methods of “forcing” the
the chaotic motion of the top plate is replaced by a smoottsystem to reach a close neighborhood of these orbits are used
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in this work. The first method, proposed[itQ], is applicable = Therefore, we start from driving velocities for which the de-
for control of anychaotic systemand could be applied to sired periodic orbit is stable. Then we decelerate the stage
control friction in the range of velocitiasgy<v<wv.. Itrelies  gradually in small velocity steps, until we reach the velocity
on the ergodic wandering of the trajectory to bring it close toof interest. During the decelerating process the control is
the desired state. Here chaos actually is advantageous. Feermanently switched on so that the system remains on the
chaotic systems typical times required to approach a smapleriodic orbit. The results, demonstrating controlled motion
region are of order of P, where¢ is the linear dimension of the system by this method, are presented on Fig. 4.
of the region and is the dimension of the phase space. For In the present work we have demonstrated the possibility
relatively high dimensional systems, such as more realistito control friction in a model system described by differential
models of friction, the transient times may be extremelyequations. For realistic systems time series of dynamical
long. In the present work, in order to shorten the transientariables, rather than governing equations, are experimen-
time for control switching, we use the following trick. We tally available. In this case the time-delay embedding method
apply an additional pulling forcéforce f in Fig. 1) that [14] could be applied in order to transform a scalar time
effectively reduces the dimension of system from 4 to 3. Theseries into a trajectory in phase space. This procedure allows
force is applied when three of four dynamical variables,one to find the desired unstable periodic orbits and to calcu-
namely, the position and the velocity of the embedded parlate variations of parameters required to control friction.
ticle and the velocity of the top plate, are in a small region In conclusion, methods to control friction in a model sys-
around their values for a periodic orbit. The deviation of thetem have been proposed to avoid the chaotic behavior, al-
position of the top plate from the value on the periodic orbit,ready at low velocities, and to achieve the lower bound of
or, what is equivalent, the deviation of the length of thethe friction force. The choice of control parameters is not
pulling spring, is compensated by additional fortg). This  unique and practically any system parameter or combination
dimensional reduction is sufficient to decrease the transierif system parameters can act as a control parameter. The
time to an acceptable value. The results, demonstrating corenly necessary condition for the application of the proposed
trolled motion of the system are presented in Fig. 3. The timenethods is the existence of unstable orbits corresponding to
scale for control i®/V in our model, but since we deal with sliding regimes of motion.
very low stage velocities the value is reasonable. In addition,
if the system is moderately chaotic the control could be ap-
plied everyN periods. In our casél~100. Financial support for this work by the Israel Science
The second method is more specific to fhi®blem of Foundation, administered by the Israel Academy of Science
friction, but it is easily applicable for systems of any dimen-and Humanities, is gratefully acknowledged. M. R. acknowl-
sion. The method utilizes the fact that desired periodic orbitedges the support of the Alexander von Humboldt-Stiftung,
are stable for higher stage velocities, namely, in the slidingfNORDITA, and the Estonian Science Foundation under
regimes. The range of stability is different for each orbit. Grant No. 2689.
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