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Abstract

Recent theory of capillary waves along the interface between two immiscible electrolytes is generalized to include the non-linear
polarization of the double layer. The theory covers both the effects of the capillary waves on the double layer capacitance, as well
as the effect of charging the interface on the amplitudes and spectrum of capillary waves. The theory explains major available
experimental data, such as the interfacial capacitance dependence on the potential drop across the interface and on ionic strength.
It also predicts a number of new effects, such as the influence of electric field and electrolyte concentration on the surface
corrugation correlation function, and in particular, on the mean square height of corrugation. © 2000 Elsevier Science S.A. All
rights reserved.
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1. Introduction

Electrochemistry of soft interfaces is a interdisci-
plinary field emerging rapidly, where soft matter
physics [1] and physical chemistry of liquids [2] meet
molecular electrochemistry [3]. One of the basic, prov-
ing-ground systems of soft matter electrochemistry is
the interface of two immiscible electrolytes, a
biomimetic system and model system for reaction-kinet-
ics, but also a medium for the phase transfer catalysis
[4,5] of industrial importance. One of the solvents is
usually water, and the other one is a low polar organic
liquid. This interface separates hydrophilic and hydro-
phobic ions. When two salts are dissolved in this sys-
tem, one composed of hydrophobic and the other one
of hydrophilic ions, they form two back-to-back electri-
cal double layers and the interface can be polarized
[4,5]. The resulting electric field across the interface
affects a variety of phenomena, which occur at the
interface.

First models of liquid � liquid interfaces in electro-
chemistry treated them as flat and sharp [4,5]. However,
they are known to be never ideally flat because of the
thermal excitation of capillary waves [6]. The interface
itself, depending on the surface tension between the two
liquids and some, even limited, penetration of hydro-
phobic ions in water and hydrophilic ions into the
organic phase, may occur to be diffuse, looking rather
as an interphase [7–9]. The overlapping of the two
space charge regions influences essentially, the double
layer capacitance. The two effects, diffuseness and cap-
illary waves, are generally not unrelated. The effect of
the short wavelength capillary waves leads to a creation
of local protrusions at the interface which is hard to
distinguish from that of diffuseness. Capillary wave
theories usually result in the following expression for
the effective width, d, of the liquid � liquid interface
[6,10,11]:

d2=d0
2+d cw

2 (1)

where d0 and dcw are the intrinsic (diffuseness) and
capillary contributions to the surface width, respec-
tively. A complete treatment of this problem requires a
fully atomistic description of both the liquids and elec-
trolytes, amenable to molecular dynamics computer
simulations [12,13] and, in principle, to approximate
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kinetic molecular theories of liquids [6]. There is also a
possibility to separate these two contributions measur-
ing an angular dependence of the X-ray reflectivity [14].

Effects of corrugation on electrical properties of the
interface and on charge transfer phenomena across or
near the interface, attracts considerable attention [5,12–
15]. The electric field, a driving force of many phenom-
ena at the interface, also affects this corrugation.
Though it has never been shown experimentally, for the
interface between two immiscible electrolytes, the stud-
ies of liquid helium films [16], and the surface of liquid
metals [17–19] revealed strong enhancement of interfa-
cial corrugation by an external electric field, up to a
field induced destruction of the interface [20–23].

This article reports on the progress in the theory of
capillary waves along a sharp interface of two strictly
immiscible electrolytes and the effect of capillary waves
on the electrical properties of the interface. The above
mentioned system is a certain idealization of reality,
even for an interface with large surface tension. How-
ever, this is the way to obtain the reference knowledge
about the pure effect of capillary waves, before taking
into account solvent and electrolyte interpenetration in
the interfacial region.

2. Capillary waves along the interface of two
immiscible liquids

Experiments on optical [24,25] and neutron reflectiv-
ity [26] and molecular dynamics simulations [12,13]
unambiguously show that the liquid � liquid interface is
highly corrugated. The corrugation originates from the
thermal fluctuations of the interface, which are known
as capillary waves. These fluctuations can be defined in
terms of the dependence of the local height of the
interface, z, on the lateral coordinate R= (x, y), given
by the equation z=j(R). The local height is deter-
mined versus the reference plane, z=0, giving the zero
average value of the profile function along this surface
(Bj(R)\=0).

The spectrum of capillary waves can be calculated
using the functional of the free energy of two contact-
ing liquids

F=F0+Fcw(j(R)) (2)

where F0 is the free energy of the system with a flat
uncharged interface, while the second term stands for
the energy excess due to surface corrugation:

Fcw[j(R)]=1/2
&

dRg [(9j(R))2+kgr
2 j2(R)] (3)

Here g is the interfacial surface tension, k2
gr is the small

wave-vector gravitational cutoff given by Drg/g, where
g is the gravitational acceleration and Dr\0 is the
difference of the densities of two liquids.

The free energy functional is simplified after transfor-
mation to Fourier coordinates defined as

j(k)=
&

dRj(R) exp[− ikR ] (4)

Then we have

Fcw[j(k)]=
g

2
& dk

(2p)2j(k)j(−k)(k2+kgr
2 ) (5)

Now the free energy is a quadratic functional of the
fluctuating variable j(k) and its treatment is trivial [27].
For the Fourier transform of the height–height correla-
tion function

g(k)=
&

d2R�j(R)j(0)� exp(− ikR) (6)

due to the equipartition theorem [27] one obtains

g(k)=
kBT

g(k2+kgr
2 )

(7)

Here T is the absolute temperature, and kB is the
Boltzmann constant.

The mean square height of roughness, i.e. the capil-
lary wave contribution to the width of the interface is
expressed through the correlation function as

d cw
2 =

1
2p

& kmax

0

dkkg(k) (8)

For g(k) given by Eq. (7),

d cw
2 =

kBT
2pg

ln
�kmax

kgr

�
(8a)

The upper wave-vector cutoff, kmax, is introduced to
eliminate the divergence of the integral, which takes
place for g(k) given by Eq. (7). Various estimates were
proposed in the literature for kmax

−1 . It was assumed to
be proportional to the root mean square height [11] or
to the characteristic smearing of the interface [24], to
the largest bulk correlation length of the contacting
liquids [28]. In any case p/kmax cannot be less than the
molecular diameter [29]. Gravity suppresses the long-
range fluctuations and reduces a divergence of the
correlation function at small wave vectors, kBkgr.

Both dcw and g(k, V) can be measured in optical,
neutron and X-ray scattering experiments [14,24–26],
although it is more subtle to measure the height–height
correlation spectrum than the integral characteristics of
fluctuations, dcw. Both experiments and molecular dy-
namics simulations [12–14,24–26] show that the
macroscopic capillary wave theory works surprisingly
well, down to the nanometer range.

Recent experiments on a time-resolved quasi-elastic
laser scattering (QELS) [30,31] allowed us to measure
the dispersion law of capillary waves, i.e. the relation
between the frequency, v, and their wavelength, 2p/k.
To derive the dispersion law theoretically, one must
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consider the dynamics of the two degrees of freedom:
the dynamic position of the surface, z=j(x, y, t), and
the fluid velocity. In the limit of small viscosities, the
capillary wave theory [6] gives

v2−2ivD(k)2−v2
c(k)=0 (9)

where

v c
2(k)=

k
r1+r2

g(k2+kgr
2 ), D(k)=2k2h1+h2

r1+r2

(10)

r1, r2 and h1, h2 are the densities and viscosities of
contacting liquids. In contrast to neutron and X-ray
scattering experiments [14,24–26], which allow us to
study capillary fluctuations down to the nanometer
scale, QELS measurements provide information on
long wavelength fluctuations only, with wave lengths
and frequencies of the order of 6.6×10−3cm and 10
kHz, respectively [30,31].

3. Capillary waves along electrified interface between
two immiscible electrolytes

Capillary waves at the interface of two immiscible
electrolytes have been observed directly by a time-re-
solved quasi-elastic laser scattering [30,31], investigated
in molecular dynamics computer simulations [12,13]
and described within the framework of a phenomeno-
logical theory [32–34]. We summarize basic principles
of this theory and discuss its results.

3.1. Equations to sol6e

The interface is described in the same way as in the
previous section, using the approximation of smooth
corrugations. The two electrolyte solutions are charac-
terized by the solvent dielectric constants, o1 and o2, and
Debye lengths, k1

−1 and k2
−1. [For 1–1 binary elec-

trolyte solutions k i
−1= (oikBT/8pni

0e2)1/2, where ni
0 is

the bulk electrolyte concentration in the phase i (=1,
2), and e is the charge of proton]. In addition to the
surface tension term, the free energy functional now has
two new terms. These are the electrostatic energy, Fe,
and the term responsible for the entropy of a dilute
electrolyte, Fs, i.e.

F=F0+Fcw[j(R)]+Fe[j(R)]+Fs[j(R)] (11)

where

Fe[j(R)]= −
o1

8p

&
dR

& j(R)

−�

dz [981(z, R)]2

+e
&

dR
& j(R)

−�

dz81(z, R)(n1
+(z, R)−n1

−(z, R))

−
o2

8p

&
dR

&�
j(R)

dz [982(z, R)]2

+e
&

dR
& j(R)

−�

dz82(z, R)(n2
+(z, R)−n2

−(z, R))+EQ

(12)

and

Fs[j(R)]=kBT
&

dR
& j(R)

−�

dz
�

n1
+(z, R) log

�n1
+(z, R)

n1
0

�
+n1

−(z, R) log
�n1

−(z, R)
n1

0

�
− (n1

++n1
−+2n1

0)
n

+kBT
&

dR
&�

j(R)

dz
�

n2
+(z, R) log

�n2
+(z, R)

n2
0

�
+n2

−(z, R) log
�n2

−(z, R)
n2

0

�
− (n2

++n2
−+2n2

0)
n

(13)

The notations used are as follows: fi(z, R) and
ni
9(z, R) are the electrostatic potential and concentra-

tions of positive and negative ions in the phase (i); E is
the overall potential drop across the interface; Q and
−Q are the overall charges in the second and first
phases, respectively.

The first term in Eq. (11), is again the free energy of
the contacting solutions with a flat interface and with
no charge in each of the double layers. The last term
EQ in the expression for electrostatic energy is the extra
work needed to maintain the overall potential differ-
ence E. This term should be included into the free
energy functional when the overall potential drop be-
tween two phases is considered to be fixed [35].

This form of the functional implies a number of
approximations. It assumes that the difference in the
free energy of each ion transfer between water and the
organic phase is so large that each sort of ion is either
in water or in oil. A possible dipolar potential drop
across the contact of the two liquids and its possible
coupling with the ion distribution is not in the model.

The free energy functional depends on three types of
fields: surface fluctuations j(R), electrostatic potential
fi(z, R), and the ionic concentrations ni

9(z, R). Mini-
mizing the functional (Eq. (11)) with respect to fi and
ni
9 at a given j(R), we obtain Poisson–Boltzmann

equations, which describe the distribution of the elec-
trostatic potential

92c1(z, R)=k1
2 sinh(c1(z, R)−V) for zBj(x, y)

(14)

92c2(z, R)=k2
2 sinh(c2(z, R)) for z\j(x, y) (15)

and ionic concentrations

n1
9(z, R)=n1

0 exp[� (c1(z, R)−V)]

n2
9(z, R)=n2

0 exp[�c2(z, R)] (16)
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Here we introduced dimensionless potentials: c1=
ebf1, c2=ebf2, V=ebE, where b= (kBT)−1.

The potential obeys standard boundary conditions at
the interface:
1. continuity of potential:

c1(x, y, z=j(x, y))=c2(x, y, z=j(x, y)) (17)

2. the continuity of the normal component of electric
induction:

o1

#c1(R, z=j(R))
#n

=o2

#c2(R, z=j(R))
#n

(18)

(#/#n denotes the gradient of the field along the
normal to the interface);

3. the fixed value of the overall potential drop, V,

c1�V as z�−�, and c2�0 as z�� (19)

It should be noted that Eqs. (14)–(16) have been
derived under the assumption that the ionic subsystem
is in equilibrium with respect to fluctuations of the
interface. This assumption may be invalid for a high
frequency domain of the capillary wave spectrum.
Complications associated with the breakdown of this
approximation will be discussed in Section 4.

3.2. Perturbation theory

The free energy functional can be essentially sim-
plified if the amplitudes of capillary waves are small, i.e.
if one assumes that for each Fourier-component of
surface fluctuation j(k) the inequality �j(k)�B2p/�k �
holds. Then (for details see Refs. [32,34])

F [j(k), V ]=F0−
S
2

V2CGC+DF [j(k), V ] (20)

Here, S is the apparent (flat cross-section) interfacial
area, CGC is the Gouy–Chapman capacitance of two
back-to-back ionic double layers separated by a flat
interface [4],

1
CGC

=
1

C1

+
1

C2

(21)

Ci=
oiki

4p

�
1+

4p2s0
2

(oiki)2

n(1/2)

, i=1, 2 (22)

and s0 is the charge density in each double layer per
unit area of a flat interface.

The first two terms in Eq. (20) present the free energy
of the contacting solutions with a flat interface for a
given potential drop V. The correction due to interfa-
cial fluctuations is given by

DF [j(k), V ]

=
1
2
& dk

(2p)2j(k)j(−k){g(k2+kgr
2 )−Df(k, V)} (23)

The explicit expression for the potential dependent
function Df(k, V) is cumbersome. It is shown here for
the limit of high concentration of electrolyte in the
aqueous phase (see Appendix A)

Df(k, V)=
k2

3

2p

�kBT
LB

(2)

�>
− f1(k, V)+

4 sinh
�V

2
�

f0(k, V)
f2(k, V)

−
2sinh2�V

2
�

f0(k, V)
�k2

k2
2+ f0(k, V) cosh

�V
2
�n

−Vf3(k, V)+4 sinh2�V
2
�

cosh
�V

2
�

+V sinh
�V

2
��

1−
k2

k2
2f0(k, V)

n?
(24)

where

LB
(2)=

e2

o2kBT

is the Bjerrum length in the non-aqueous solution.
The functions fi(k, V), i=0, 1, 2, 3 have the form

f0(k, V)=
q2(k)

k2

+cosh
�V

2
�

f1(k, V)=sinh
�V

2
�

[Vcosh(V)+3 sinh(V)] (26)

f2(k, V)=sinh
�V

2
��k2

k2
2+ f0(k, V) cosh

�V
2
�n

+
V
2

q2(k)
k2

�k2

k2
2+cosh2�V

2
�n

+
V
2
�q2

2(k)
k2

2 cosh
�V

2
�

−
k2

k2
2f0(k, V)

+sinh2�V
2
��

cosh
�V

2
�

+ f0(k, V)
�n

(27)

f3(k, V)

=
sinh(V)
2f0(k, V)

�
f0(k, V)

�
2

q2(k)
k2

−cosh
�V

2
��

+sinh
�V

2
��

1+
k2

k2q2(k)f0(k, V)
�n

+
q2(k)

k2

sinh3�V
2
�

� k2

q2(k)
+cosh

�V
2
��

2+2
k2

q2(k)
cosh

�V
2
�

+
k2

2

q2
2(k)

�n
(28)
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where

q2(k)=
k2
2+k2

Treating the functional DF [j(k), V ] as a Hamilto-
nian of the fluctuating variable j(k) [26] and acting in
the same way as in the derivation of Eq. (7), we find the
potential dependent Fourier transform of the height–
height correlation function

g(k, V)=
kBT

g [k2+kgr
2 ]−Df(k, V)

(29)

The mean square height of corrugation, d2
cw, depends

on the potential through g(k, V) via Eq. (8). The
interface of two immiscible electrolytes gives rich possi-
bilities to study these quantities, as one can vary the
overall potential drop or electrolyte concentrations in
both phases. It is certainly most challenging to verify
Eq. (29) experimentally, but there is, however a concep-
tual problem with this equation. Indeed, the perturba-
tion theory approach is justified rigorously only when
[g(k, V)]1/2k�p, but at large V the denominator of Eq.
(29) may become small and this condition will not be
fulfilled. Thus, one should not take Eq. (29) too liter-
ally, as it may exceed the accuracy of the approxima-
tions under which it was derived, although
qualitatively, it should give the right trends. It may
appear to work even quantitatively when the denomina-
tor is not too small.

Another experimentally accessible characteristic of
the interface is the differential capacitance C, defined as

C=dQ/dE (30)

The perturbation approach gives for the charge, Q, a
cumbersome but fully closed form expression as a
function of potential drop V. We give the one for the
case of the full screening of the field in the aqueous
phase (high electrolyte concentration) [36]

Q=
ek2S

2pLB
(2) sinh

�V
2
�>

1+
1
2
& dk

(2p)2 k2g(k, V)

<
1−

k2�
k2 cosh

�V
2
�

+q2(k)
�2

=?
(31)

Substituting Eq. (31) into Eq. (30) gives the following
equation for the capacitance

C=CGC(V)R0 (k2, V) (32)

where R0 (k2, V), called the roughness function, reads

R0 (k2, V)=1+
1

4p

& kmax

0

dkk3g(k, V)

Ã
Ã

Ã

Æ

È
1−k2

:
q2(k)−k2 cosh

�V
2
�

+
2k2

cosh
�V

2
�;

�
k2 cosh

�V
2
�

+q2(k)
�3

Ã
Ã

Ã

Ç

É

+ tanh
�V

2
� 1

2pkBT
& kmax

0

dkk3g2(k, V)

(Df(k, V)
(V

<
1−

k2�
k2 cosh

�V
2
�

+q2(k)
�2

=
(33)

The Gouy–Chapman limit (Eqs. (21) and (22)) follows
from this equation when g��. The deviations from
the Gouy–Chapman are accumulated in the roughness
function. Note that the roughness function is deter-
mined not only by the correlation function, g(k, V), but
also by its derivative with respect to the potential.

It should be noted that the above reservations con-
cerning the limits of applicability of the perturbation
theory remain valid for the capacitance too.

Recent experiments on the time-resolved quasi-elastic
laser scattering [30,31] allowed us to measure the dis-
persion relation for the capillary waves at the interface
between two immiscible electrolyte solutions. Our cal-
culations demonstrate that charging of the interface
modifies the dispersion law (Eq. (9)). It now reads,

v2−2ivD(k)−v c
2(k)+

k
r1+r2

Df(k, V)=0 (34)

i.e. charging the interface reduces the frequency of
capillary waves. As we have already mentioned above,
Eq. (34) gives a dispersion relation for long-wave length
capillary fluctuations, which practically do not influence
the capacitance. However, the field-induced correction
to the dispersion relation is determined by the same
function Df(k, V) as the corrections to the capacitance
and to the height–height correlation function.

3.3. Low potential drop: linear response theory

If VBkBT/e, the distribution of the electrostatic
potential c(z, R) can be described by the linearized
version of the Poisson–Boltzmann equations. To ob-
tain the results, we still need the perturbation theory,
but its algebra is much simpler. The linear response
theory was reported in Refs. [32,33]. Due to relative
simplicity of results, it has special tutorial value.

Note, that compact results are obtained here for
arbitrary concentrations of electrolyte in both phases,
and we present them as they are. However, when
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comparing them with those obtained for arbitrary V we
will consider only the case of high concentrations in the
aqueous phase.

The function Df(k, V), which determines the effect of
charging on the interfacial corrugation, follows from
the solutions of the linearized Eqs. (14) and (15):

Df(k,V)

=
4pV2(CGC

(0) )2

o1q1+o2q2

[(q2−k2)(o1q1/o2+k2)

+ (q1−k1)(o2q2/o1+k1)−2(q1−k1)(q2−k2)] (35)

where CGC
(0) is the Gouy–Chapman capacitance of the

flat interface between two electrolyte solutions at the
point of zero charge (pzc)

CGC
(0) =

o1o2k1k2

4p(o1k1+o2k2)
(36)

and

q1
k1
2+k2, q2=
k2

2+k2 (37)

That results in the following asymptotic laws in the
regions of small and large wave vectors:

Df(k, V):
1
2

k2V2CGC
(0) for k�k1, k2 (38)

Df(k, V):4pV2(CGC
(0) )2k

(o1−o2)2

(o1+o2)o1o2

for k�k1, k2

(39)

The substitution of Eq. (38) into Eq. (29) shows that
for k�k1, k2, the electric field affects the corrugation
merely via a decrease of the interfacial tension,

geff=g−
1
2

V2CGC
(0) (40)

That is in line with a standard thermodynamic result
given by the Lippmann equation [37]. However, for
larger wave-vectors the field-effect is not reduced to the
reduction of g ; the dependence is more complicated.

The mean square height of interfacial corrugation
follows from Eqs. (8), (29) and (35)

d cw
2 : (d cw

(0))2+
V2kBT
4pg2 CGC

(0) ln
k1k2

(k1+k2)kgr

(41)

where d cw
(0) is the root mean square height of the pzc.

Eq. (41) shows directly that the charging of the inter-
face leads to an enhancement of surface corrugation.
Note, that the increase of dcw relative to d cw

(0) does not
depend on the upper cut-off.

In Fig. 1 we show the linear response results for the
dependence of the mean square height on the potential
drop at a given (typical) electrolyte concentration and
several values of the interfacial tensions. For low, but
realistic surface tensions the effect is large enough even
for moderate potential drops. The asymptotic expres-
sion (Eq. (41)) works fairly well in this region. Note
that computer simulations for two contacting solvents
(without electrolytes) in an external field show the
V2-law in a much wider range of potentials [13].

Fig. 2 shows the dependence of d2
cwon electrolyte

concentration for a given, moderate potential drop. The
effect is larger the greater the electrolyte concentration.
However, one should be careful in extending this con-
clusion to molar concentrations. It is well known that
the mean field Poisson–Boltzmann theory may break
down here, due to the effects of ion packing leading to
the formation of crystal-like structures [38,39].

Fig. 1. The increase of the mean square height of corrugation,
Ddcw

2 =dcw
2 − (dcw

(0))2, versus the square of the potential drop. o1=80,
o2=10, kmax=2 A, −1, kgr=6×10−8 A, −1 n1=n2=0.1 M. The
effect of interfacial tension at r.t. g, dyn cm−1= (1) 30, (2) 10, (3) 5.
Solid lines present the results of calculations according Eqs. (8), (29)
and (35), dotted lines show the assymtotic solution (Eq. (41)).

Fig. 2. The increase of the mean square height of corrugation,
Ddcw

2 =dcw
2 − (dcw

(0))2, versus the inverse Debye length in the aqueous
phase, k1, at a fixed potential drop eV=2kBT. o1=80, o2=10,
kmax=2 A, −1, kgr=6×10−8 A, −1, g=30 dyn cm−1. The effect of
the inverse Debye length in the non-aqueous phase k2/A, −1= (1) 0.1,
(2) 0.2. Solid lines present the results of calculations according Eqs.
(8), (29) and (35), dotted lines show the asymtotic solution (Eq. (41)).
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The linear response theory gives a simple expression
for the capacitance

C=CGC
(0) R0 (k1, k2, V=0) (42)

where

R0 (k1, k2, V=0)=1+2CGC
(0) & kmax

0

dkg(k, V)=0)

k
o1q1+o2q2

{(q1−k1)[(k1+k2)+q2(o2−o1)/o1]

+ (q2−k2)[(k1+k2)+q1(o1−o2)/o2]} (43)

Thus, in order to calculate the differential capacitance
at the pzc it is sufficient to know the correlation
function of corrugation for V=0, which is given by Eq.
(7).

For g��, Eq. (43) gives R0 (k1, k2)=1 reproducing
the Gouy–Chapman result for the capacitance of a flat
interface. Eqs. (42) and (43) show that the double layer
capacitance at the liquid � liquid interface increases with
the amplitude of surface corrugation, and it is always
larger than the one prescribed by Gouy–Chapman
theory for a flat interface. The effect of corrugation on
the double-layer capacitance is determined by an inter-
play between the Debye lengths in the two electrolytes,
k1 and k2, and the scales of roughness [33]. As ex-
pected, Eq. (43) shows that for the small Debye lengths,
k1

−1 and k2
−1�0, the roughness function, R0 (k1, k2),

approaches the geometrical roughness factor R (=Sreal/
S, i.e. the ratio of the true surface to the apparent
surface). At very large Debye lengths, k1

−1 or k2
−1��,

the roughness of the interface is not seen in the capaci-
tance and R0 =1.

The equation, which is similar to Eq. (43) has been
derived recently in Ref. [40]. The use of the non-local
boundary condition suggested in Ref. [40] is equivalent
to the procedure described in the present work. Actu-
ally, the additional non-local boundary condition [40] is
not a boundary condition. It is a definition of the form
of the approximation used for the potential distribution
at the interface. This condition includes unknown func-
tions which are determined by substituting it into the
usual boundary conditions (Eqs. (17) and (18)). The
results of this procedure are equivalent to the one
described above.

Thus the difference in the approach of Ref. [40] and
our approach (Refs. [32,33] and this paper) is NOT in
different boundary conditions. The points of difference
are as follows.
� The authors of Ref. [40] analyzed the equation for

the capacitance assuming that an interfacial profile
can be described by a sinusoidal function. However,
the corrugation of liquid � liquid interfaces cannot be
described by a single-sinusoidal profile function;
there is a whole spectrum of harmonics that con-
tribute to the capillary fluctuations [2,6]. In our work

we have analyzed equations for the capacitance us-
ing height–height correlation functions (see Eqs. (7)
and (29)) suggested by a standard capillary wave
theory.

� The effect of electric field on the corrugation of
liquid � liquid interfaces was not considered in Ref.
[40]. Here we demonstrate that this effect gives a
large contribution to the double layer capacitance at
soft interfaces. We treat the effect of the electric field
on capillary waves and the effect of capillary waves
on the double layer capacitance in a self-consistent
fashion.
Let us show the typical scale of the effect, first, using

the traditional Parsons–Zobel plots. In Fig. 3 we vary
the concentration of electrolyte in water (one of the
contacting phases) keeping constant the concentration
in the non-aqueous phase. Deviation from the Gouy–
Chapman capacitance depends on the interfacial ten-
sion and dielectric constant of the non-aqueous
medium. Changing the medium, we change both
parameters simultaneously. For tutorial purposes, how-
ever, we show the effect of these two parameters sepa-
rately. In accordance with experimental data
[7,8,41–44] we see that the effect of capillary waves
leads to an increase of the capacitance, relative to CGC.
The lower the dielectric constant of the non-aqueous
medium, the stronger is the deviation (Fig. 3a). The
reason for this effect is clear. The smaller dielectric
constants will decrease the effective Debye length, 1/
k1+1/k2. The electric field then probes the Fourier
components of fluctuations with higher wave vectors
that give the largest contribution to the roughness
function. The increase of the interfacial tension de-
presses the capillary waves (the mean square fluctuation
scales as 1/g) and the deviation from the Gouy–Chap-
man result is smaller (Fig. 3b). The typical absolute
values of the effect lie in the observed interval [7], but
they strongly depend on the cutoff (Fig. 3c).

However, in the context of this problem, the Par-
sons–Zobel plots are rather featureless. Much more
informative is to plot directly the roughness function, in
which the effect of capillary waves is much better seen
(Figs. 4 and 5). It is stronger, the larger the upper
wave-vector cutoff (cf. (a) and (b)). Fig. 4 shows the
roughness function variation with the inverse Debye
length of the aqueous electrolyte for several fixed values
of the ionic concentration in the non-aqueous phase.
The effect of the dielectric constant of the non-aqueous
phase is shown in Fig. 5 for a fixed electrolyte concen-
tration in the non-aqueous phase.

We, thus, suggest treating the experimental data in
terms of the roughness function, varying the concentra-
tions of electrolytes. The theory predicts a definite
shape of this function. If this shape were experimentally
observed, one could fit the data with one adjustable
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Fig. 3. Parsons–Zobel plots calculated by varying the concentration
of electrolyte in water for a given concentration of electrolyte in the
non-aqueous phase, n2=0.1 M. Dotted line shows the Gouy–Chap-
man reference line. (a) g=30 dyn cm−1, kmax=2 A, −1. The effect of
dielectric constant of the non-aqueous solvent. o2= (1) 4, (2) 10, (3)
30. (b) o2=10, kmax=2 A, −1. The effect of interfacial tension at r.t.
g, dyn cm−1= (1) 30, (2) 15, (3) 7.5. (c) g=30 dyn cm−1, o2=10.
The effect of the upper wave-vector cutoff kmax/A, −1= (1) 0.5, (2) 1,
(3) 2.

3.4. Beyond the linear theory

The main drawbacks of the linear theory is that
except for the case of very low interfacial tensions,
remarkable deviations from the Gouy–Chapman the-
ory take place at V\kBT/e, i.e. beyond the limits of
validity of the linear response theory. Thus, in general
we should use the more cumbersome expressions of the
non-linear theory. In Figs. 6–8 we show the predictions
of the linear and non-linear theories.

Fig. 6a demonstrates the increase of the mean square
height of corrugation with the potential drop across the
interface for several fixed values of the electrolyte con-
centration in a non-aqueous solution. We found that
d2

cw grows dramatically when the potential approaches a
critical potential, above which the interface becomes
unstable under the influence of the strong electric field.
For reasonable values of the interfacial tension and
ionic concentrations the critical potential lies in the
range of hundreds mV. For a given potential the en-
hancement of d2

cw increases and a value of the critical

Fig. 4. Roughness function versus the Debye length in the aqueous
phase at a fixed interfacial tension, g=15 dyn cm−1, and a given
dielectric constant of the non-aqueous solvent, o2=10. The upper
wave-vector cutoff kmax/A, −1= (a) 2, (b) 0.5. The effect of electrolyte
concentration in the non-aqueous phase: n2, M= (1) 0.1, (2) 0.05, (3)
0.025.

parameter of the theory: the upper wave-vector cutoff,
kmax. The latter lies in the range of 2–0.5 A, −1

[10,12,45] and is a constant for the given pair of liquids
in contact. Indeed, the concentration dependence of
kmax should be negligible for low and moderate ionic
strengths [6]. The same refers to g.
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Fig. 5. Roughness function versus the Debye length in the aqueous
phase at a fixed interfacial tension, g=15 dyn cm−1, and a given
concentration of non-aqueous phase, n2=0.1 M. The upper wave-
vector cutoff kmax/A, −1= (a) 2, (b) 0.5. The effect of dielectric
constant of the non-aqueous solvent: o2= (1) 4, (2) 10, (3) 30.

theory’, and its potential dependence is steeper than that
of CGC. There are two different effects contributing to
the enhancement of the capacitance: the influence of the
interfacial corrugation on the distribution of the electric
field at the boundary and the field induced increase of
the corrugation. In order to clarify a relative role of
these contributions we compared the results for R0
obtained above with the potential dependence of the

Fig. 6. The dependence of the mean square height of corrugations on
the potential. (a) non-linear Poisson–Boltzman problem; o2=10,
g=30 dyn cm−1, k2/A, −1= (1) 0.2; (2) 0.1; (3) 0.05; (b) the compari-
son between results of the calculations of dcw

2 within non-linear and
linear approach; k2=0.1 A, −1, o2=10, g=30 dyn cm−1.

potential decreases with the increase of the electrolyte
concentration. The reason for these effects is clear. The
increase of the ionic concentration leads to a decrease of
the thickness of the diffuse layer and as a result to an
increase of the electric field acting on the interface.
Obviously a fall in the interfacial tension leads to the
enhancement of the field induced corrugation. Fig. 6b
shows a comparison between results of calculations of
d2

cw within non-linear Poisson–Boltzmann theory and
within the linear theory discussed above. We see that in
the region of high electrode potentials, E\3kT/e, the
linear approximation underestimates the field induced
enhancement of the corrugation.

The enhancement of the interfacial corrugation
should manifest itself in the capacitance measurements.
Fig. 7 shows the potential dependence of the roughness
function, R0 =C/CGC, for several fixed values of the
ionic concentration in the non-aqueous phase. We found
that the double layer capacitance at the interface be-
tween two immiscible electrolytes is always larger than
one prescribed by the ‘flat-interface Gouy–Chapman

Fig. 7. Roughness function versus potential. o2=10, g=30 dyn
cm−1, k2/A, −1= (1) 0.1; (2) 0.05; (3) 0.02.
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Fig. 8. Potential dependences of the roughness function for the fixed
and the potential dependent correlation functions of interfacial corru-
gation. (1) g(k, V=0); (2) g(k, V); o2=10, g=30 dyn cm−1, k2=0.1
A, −1.

4.2. What is the nature of the electrolyte ions?

As we have mentioned in the Introduction, only the
complete atomistic description of ions and molecules of
the solvents can fully describe the smeared character of
the interfacial region, treated above as the wavy sharp
interface. However, before starting such a complicated
enterprise, one may try to mimic the experimentally
observed effect, by allowing the ions to distribute self-
consistently between the two solvents. The basic
Landau free energy should be modified then to incorpo-
rate such a parameter as the standard Gibbs energy of
ion transfer between two solvents (e.g. from water to
oil) [46]. Since this parameter is measurable to the
accuracy of certain plausible assumptions, such an ap-
proach could directly trace the effect of the ion nature:
relaxing the constraints on inter-penetration modifies
the capacitance [7–9]. It is hard to envisage, prior the
detailed analysis, whether the results of such modifica-
tion would be in line with experimental trends, but it is
obvious that the absolute values of the effect will not be
negligible.

4.3. Can dynamics be ignored? Is the quasi-static
theory consistent?

There is also a principle problem. Scattering experi-
ments and simulations [12–14,24–26,45] show that the
correlation function for capillary waves, which we used,
works well up to wave–vectors of inverse molecular
size. According to the capillary wave dispersion relation
(Eq. (9)), this corresponds to formally very high fre-
quencies (up to 1012 s−1), but with even higher decay
decrements. Obviously, the ionic distribution in elec-
trolyte cannot respond to the momentary values of the
surface corrugation, which changes with the frequencies
exceeding the characteristic frequency of the double
layer response. The latter will impose an adiabatic
cut-off frequency, v�. For the Fourier-components of
the fluctuations with the frequency, v\v�, the double
layer will see only the time averaged profile, which
corresponds to the flat interface. Therefore, such a high
frequency domain of the capillary wave spectrum can-
not influence the capacitance. What is the nature of the
cut-off frequency? A first reaction would be to put v�
equal to the inverse Debye relaxation time of the double
layer, vD:D{min(k1, k2)}2, where D is the diffusion
coefficient for ions in the solution. However, our calcu-
lations presented above suggest that v� can be much
higher than vD. Indeed, if we rest our estimates on
simple scaling arguments, we cannot ignore that in the
theory of the roughness effect on capacitance a
newlength scale comes out, introduced by surface corru-
gations. This is, [(min(k1, k2))2+kmax

2 ]−1/2, rather than
simply [min(k1, k1)]−1/2. Based on this length scale we
get v�=D [(min(k1, k2))2+kmax

2 ]. Taking into account

roughness function calculated for a fixed corrugation of
the interface corresponding to the pzc (see Fig. 8). This
comparison clearly demonstrates that in the region of
low and moderate potentials, EB5kT/e, the effect of
the potential on the interfacial profile can be approxi-
mately neglected. However, in the region of high poten-
tials, E\5kT/e, the latter effect plays the main role.

The results obtained show that the linear response
theory both for the amplitude of capillary waves and
for the capacitance works eventually well for VB2–
4kBT/e. At larger potential drops the non-linear theory
predicts stronger effects than the linear theory. The
large V regions, associated with the field induced en-
hancement of the amplitude of the capillary waves and
the consequent enhancement of the double layer capac-
itance, will be in fact terminated by the field induced
destruction of the interface [23]. Of course neither that
critical range, nor the strongly enhanced but still stable
regions cannot be quantitatively described by the for-
mulae based on the perturbation theory, but the pre-
dicted trends seem to be correct.

4. Conclusions

4.1. Do we ha6e a full and consistent theory of
capillary wa6es at soft electrified interfaces?

The theory of capillary waves at electrified liq-
uid � liquid interfaces, as presented above, is incomplete
and in some aspects even internally inconsistent. Al-
though it seems to be basically in line with existing
experimental data, one must be aware of its factual
status.
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that the upper wave-vector cut-off kmax is of the or-
der of 1 A, we see that such a cut-off is much higher
than vD, being of the order of 1011 s−1. As a solid
estimate cannot be made a priori detailed dynamic
theory, we can assert that the cut-off frequency
should lie in the interval between these two limits.

Now the question arises, how does the introduction
of the frequency cut-off modify the height–height
correlation function of fluctuations seen by the dou-
ble layer? In order to answer this question we have to
consider a spectrum of interfacial fluctuations S(k, v)
defined by the equation [47]:

(2p)3d(v−v %)d2(k−k %)S(k, v)=Bj(k, v)j*(k %, v %)\
(44)

where

j(k, v)=
&

dRdt exp(− ikR− ivt)j(R, t) (45)

and j(R, t) is the time-dependent fluctuation of the
interface. The spectrum of the capillary wave fluctua-
tions is described by the following equation [47]

S(k, v)=
4kBTD(k)k/(r1+r2)

[v2−v c
2(k)]2+4D2(k)v2 (46)

Then the height–height correlation function g�(k),
which determines the effect of capillary fluctuations
on the capacitance, can be defined as

g*(k)=
& v�

0

dv

p
S(k, v) (47)

For v�=�, Eq. (47) reduces to the full correlation
function g(k), given by Eq. (7). An expression for a
truncated correlation function g�(k) which results
from Eqs. (46) and (47) is presented in the Appendix
B. In order to reveal the effect of the cut-off fre-
quency on the double layer capacitance we calculated

the roughness function R0 �(k1, k2, V=0) via Eq. (43)
with the truncated correlation function g�(k). As the
exact value of v� is unknown, we vary it in the
range corresponding to the above mentioned two lim-
its.

Fig. 9 demonstrates the effect of v� showing m=
(R0 �−1)/(R0 −1) as a function of the cut-off fre-
quency for fixed values of the Debye lengths in the
solutions. We see that the modified roughness func-
tion R0 �(k1, k2, V=0) approaches the roughness func-
tion given by Eq. (43) with a increase of the cut-off
frequency. Already for v�=1011 s−1, the dynamical
effect is negligible and the results of the present work
can be used without any modifications. As we have
already mentioned above, the value v�=1011 s−1 is
not that unreasonable if we rely on the scaling esti-
mates.

The estimates above were performed for the pzc
case, where the effect of the cut-off is strongest. For
polarized interfaces, the role of the dynamic cut-off
will be diminished, since the integral for the rough-
ness function converges at smaller k and, further-
more, the electric field lowers the frequencies of
capillary waves.

Of course these estimates cannot replace a more
detailed, dynamic variant of the theory. Whether it
will only specify a self-consistent value of the dy-
namic cut-off, or do something unexpected, with a
considerable effect on the capacitance, we do not
know. Future investigations must give the answer to
this question.
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Appendix A

In order to determine the first non-vanishing cor-
rection to the free energy caused by interfacial corru-
gation, we must find c2(r) up to the second order in
the root mean square height of the corrugation,
dcw= (Bj2\ )1/2. For this purpose we expand the
potential in powers of h,

c2(z, R)=c2
(0)(z, R)+c2

(1)(z, R)+c2
(2)(z, R) (A1)

Substituting the expansion (Eq. (A1)) into Eqs. (11)–
(13), we obtain the following equations for the free
energy, F, and for the charge in the second phase, Q

Fig. 9. The influence of dynamical effects on the roughness function,
m={R0 �(k1, k2, V=0)−1}/{R0 (k1, k2, V=0)−1} versus the cut-off
frequency v�. h1,2=1cP, g=10 dyn cm−1, r1,2=1 g cm−3, k1,2=
0.01 A, −1, o1=80, o2=10, kmax=1 A, .
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F [j(R), V ]
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1
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&
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(2)

#z

−
#j(R)
#R

#

#R
(c2
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(1))
n

z=j(R)

(A3)

Here s(R) is the local density of the surface charge on
one side of the interface, which is related to the poten-
tial as

4ps(R)
o2

=
(f2(R, z=j(R))

(n
(A4)

The solutions of non-linear Poisson–Boltzmann equa-
tion (Eq. (15)) for functions c2

(0, 1, 2) have been found
along the lines of Ref. [36], where we solved the non-
linear problem within the context of a double layer
capacitance at a rough metal � electrolyte interface. As a
result we get

c (0)(z, R)c (0)(z)=4 arctan {exp[−k(z+z0)]} (A5)

c2
(1)

(z, k)=A(k) exp[−q2(k)(z+z0)]

[k2 coth(k2(z+z0))+q2(k)] (A6)

c2
(2)(z, 0)

=B0k2
2 exp[−k2(z+z0)][coth(k2(z+z0))+1]

+
k2

4

sinh[k2(z+z0)] sinh2(k2z0)

×
& dk

(2p)2 j(k)j(−k)

exp(−2q2(k)z)[coth(k2(z+z0))+k2/q2(k)]
(k2 coth(k2z0)+q2(k))2 (A7)

where z0 is given by

arctan {exp[−k2z0]}=V/4 (A8)

A(k)=
2k2j(k) exp(q2(k)z0)

sinh(k2z0)[k2 coth(k2z0)+q2(k)]
(A9)

and

B0=
exp(k2z0)

sinh (k2z0)[coth(k2z0)+1]
& dk

(2p)2 j(k)j(−k)

×
�2q2(k)

k2

−coth (k2z0)

+
1

sinh2(k2z0)[coth(k2z0)+q2(k)/k2]�
1+

k2

k2q2(k) coth(k2z0)+q2
2(k)

�n
(A10)

Substitution of the solutions (Eqs. (A5), (A6) and (A7)
into Eqs. (A2) and (A3) leads to Eqs. (24) and (30) for
the free energy functional and for the interfacial charge,
which are presented in the text.

Appendix B

The truncated height–height correlation function
g�(k), given by Eqs. (46) and (47), can be calculated
analytically. In the region of large wave-vectors, which
gives the main contribution to the corrugation-induced
correction to the capacitance, the correlation function
g�(k) can be written in the form

g�(k)

=
4kBTD(k)k

p(r1+r2)h(k)
� 1


f(k)
arctan

v�


f(k)

−
1


p(k)
arctan

v�


p(k)

n
(B1)

where

h(k)=4D(k)[D2(k)−v c
2(k)]1/2

f(k)={D(k)− [D2(k)−v c
2(k)]1/2}2

p(k)={D(k)+ [D2(k)−v c
2(k)]1/2}2 (B2)

It should be noted that in the region of wave-vectors
relevant for the calculations of the capacitance the
damping coefficient, D(k), of the capillary waves is
much larger than their frequency, vc(k).

For the cut-off frequency v�, which is much higher
than vc(k) and D(k), Eq. (B1) reduces to Eq. (7), i.e.
the full expression for the height–height correlation
function. However for realistic values of the parame-
ters, g, h1,2, and r1,2, and k:kmax the cut-off frequency
v� is smaller than vc(k)and D(k). Under the conditions
v��D, v c

2/D the modified correlation function g�(k)
can be approximated by the equation

g�(k):
2
p

g(k)
v�(h1+h2)

gk
(B3)

Thus we see that accounting for the dynamical effects
changes not only the absolute value of the correlation
function, but it also modifies its dependence on the
wave-vector. Eq. (B3) shows that for h1,2:1cP, g=30
dyn cm−1 and k:kmax:1 A, the correlation function
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g�(k)is smaller than g(k) for v�B1011 s−1 and ap-
proaches g(k) for v�:1011 s−1. This conclusion is in
agreement with the results of calculations presented in
Fig. 9, which shows that for v�]1011 s−1 the dynam-
ical effects do not influence the corrugation-induced
corrections to the capacitance.
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