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The effect of surface roughness and the morphology of nonuniform surface films on a quartz crystal
microbalance (QCM) response in liquids has been investigated. Our description of the velocity field in the
interfacial region is based onBrinkman’s equation, commonly employed in the treatment of a flow through
porous media. In this approach one treats the flow of a liquid through a nonuniform surface layer as the
flow of a liquid through a porous medium. The morphology of the interfacial layer is characterized by the
permeability thatdependsonthe “porosity” of the layer. Themodelproposedheregivesaunifiedapproximate
description of the QCM response for various scales of roughness. It includes both the effect of viscous
dissipation in the interfacial layer and the effect of the liquidmass rigidly coupled to the surface. A relation
between the QCM response and the interface geometry has been found. The model discussed here can
be used for the treatment of QCM response of rough electrode surfaces, of porous deposited films, and of
surface polymer films.

Introduction

Oscillating quartz crystals have been employed as
piezoelectric bulk acoustic wave (BAW) sensors of the
thickness shear mode (TSM) variety to investigate in-
terfacial processes at surfaces and in thin films.1 The
TSM resonator is commonly called a quartz crystal
microbalance (QCM). In the last fewyears therehas been
increased attention to the application of QCM for studies
of solid-liquid interfaces.2,3 It was successfully demon-
strated that QCM can serve as a sensitive tool to probe
interfacial friction,4 thin film viscoelasticity,5,6 polymer
filmproperties,3 andabulk liquid viscosity anddensity.7,8
The combination of the QCM technique with electro-
chemicalmethodshasmadepossible insitumeasurements
ofminutemass changes that takeplaceduringadsorption,
underpotential deposition, dissolution of surface films,
and other electrochemical processes.3,9,10 Inmost of these
investigations, frequency changes were interpreted in
terms of rigid mass changes, based on the Saurbrey
equation.11 In liquids, however, the QCM response
depends on various factors such as an electrode micro-
structure, amorphology of surface films, interfacial liquid
properties, and on the solid-liquid coupling at the
interface. In many cases frequency changes are not
consistent with the predictions given by Saurbrey equa-
tions,2,12,13 and a detailed theoretical analysis is needed
to extract information from the experimental results.

Progress has beenmade in characterizing the response
of a smooth resonator operating in contact with a
Newtonian liquid.7,8,14 The oscillating surface generates
plane-parallel laminar flow in the liquid that causes a
decrease in the resonant frequency and the resonator
damping proportional to (Fη),1/2 where F and η are the
liquid density and viscosity. The influence of surface
microstructure on the QCM response in contact with
liquids has only begun to be investigated.15-23 When the
surface of the resonator is rough, the liquid motion
generated by the oscillating surface becomes much more
complicated than for the smooth surface. A variety of
additionalmechanismsof couplingbetweenacousticwaves
and a liquid motion can arise, such as the generation of
a nonlaminar motion, the conversion of the in-plane
surfacemotion into the surface-normal liquidmotion, and
the trapping of liquid by cavities and pores. It has been
experimentally demonstrated16-18,20,21 that roughness-
induced shift of the resonant frequency includes both the
inertial contributiondue to the liquidmass rigidly coupled
to the surface and the contribution due to the additional
viscous energy dissipation caused by the nonlaminar
motion in the liquid. Measurements of the complex shear
mechanical impedance20 have been used to analyze
different contributions to the roughness-induced response
of the quartz resonator and to correlate the experimental
results with the device roughness. Nevertheless, this
subject is highly undeveloped, and the interpretation of
experimental results is ambiguous, which prevents the* To whom correspondence should be addressed. E-mail:

urbakh@ccsg.tau.ac.il.
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QCM technique from being widely employed as an
analytical tool for studies of solid-liquid interfaces.
It is impossible at the present time to provide a unified

description of the QCM response for nonuniform solid-
liquid interfaceswith an arbitrary geometrical structure.
The limiting case of slightly rough surfaces has been
considered in our recent works.22,23 The calculations
demonstrated the generation of the liquidmotion normal
to the surface oscillationsand thenonuniformdistribution
of the liquid pressure in the interfacial layer. In this case
both inertial and viscous components contribute to the
roughness-induced QCM response. The quantitative
relationbetween the observable quantities (the resonance
frequency shift and width) and the surface morphology
have been found.22,23
In the present paper, we derive the course-grained

description of the liquid motion generated by the oscil-
lations of rough solid surfaces. Our description of the
velocity field in the interfacial region is based on Brink-
man’s equation, commonly employed in the treatment of
a flow throughporousmedia.24-28 In this approach,which
has been also successfully used to discuss the hydrody-
namics of polymeric systems,29-31 one treats the flow of
a liquid through a nonuniform surface layer as the flow
of a liquid through a porous medium. The morphology of
the interfacial layer is characterizedbya localpermeability
that depends on the “porosity” of the layer. The model
proposed here gives a unified approximate description of
the QCM response for various scales of roughness. It
includes both the effect of viscous dissipation in the
interfacial layer and the effect of the liquid mass rigidly
coupled to the surface. The model discussed here can be
also used for the treatment of QCM response of porous
deposited films and of surface polymer films. It should
be noted that similar coarse-grained models have been
employed extensively for the consideration of optical and
elasticpropertiesof roughsurfacesandnonuniformfilms.32

The Model
Wenowconsideramodel for the coupling of shearwaves

in a quartz crystal with dampedwaves in the nonuniform
interfacial layer and in the bulk liquid (see Figure 1). We
plot a z-axis pointing toward the liquid and the plane z
) 0 being coincident with the unconstrained face of the
quartz resonator. The second constrained face of the
resonator coincideswith the plane z)d. We consider the
liquid side as a two-layer system: the nonuniform
interfacial layer located in the region d < z < L and the
bulk liquid occupying the semispace z > L.
The solution of the wave equation describing the shear

time-harmonic displacements in the quartz crystal,u(r,t)
) u(r,ω) exp(iωt), has the following form

Here, µq and Fq are the shear modulus and the density of
the quartz crystal, ω is the angular frequency of oscilla-
tions, V0 is the amplitude of the velocity oscillation of the

constrained quartz surface, and d is the thickness of the
resonator. The coordinate system is defined such that
the shear stress lies along the xdirection in the x-yplane.
For hydrodynamic purposes we treat the interfacial

layer as a two-phase (solid-liquid) porous medium24-31

with a permeability of êH
2 . Physical meaning of the

permeability length scale, êH, depends on the nature of
the interfacial layer. For instance, in the case of rough
surface layers êH is related to their porosity, and for an
entangled polymer layer êH is of the same magnitude as
the equilibrium correlation length.33 The local perme-
ability êH

2 can change with the distance from the quartz
surface.30 Here, for simplicity, we do not consider this
effect. In ourmodel êH

2 presents an average permeability
of the layer.
We assume that the solid phase (surface roughnesses,

a porous deposit, a polymer film) is rigidly coupled to the
crystal surface and oscillates with the velocity V0 exp-
(iωt). The liquid flow through the interfacial layer, vx(z,t)
)vx(z,ω) exp(iωt), isdescribedbyBrinkman’s equation24-28

where F and η are the liquid density and viscosity,
respectively. In this equation the effect of the solid phase
on the liquid flow is given by the resistive force that has
a Darcy-like form, ηêH

-2(V0 - vx(z,ω)).
Darcy’s law and Brinkman’s equation (2) have been

derived under the following assumptions:25-28 (a) low
Reynolds number, Re ) (ωarF)/η e 1, where a is the
amplitude of the quartz oscillation; (b) nonslip boundary
conditions at solid-liquid interfaces; and (c) the charac-
teristic size of inhomogeneities, r, less than the thickness
of the interfacial layer, L. It should be noted that the
derivation of Brinkman’s equation does not impose
restrictions on the relation between decay length for the
shear wave launched into the liquid phase, δ ) (2η/ωF)1/2,
and other characteristic lengths in our problem, êH
and r.
Brinkman’s equation presents a variant of the effective

medium approximation that does not describe explicitly
thegenerationofnonlaminar liquidmotionandconversion
of the in-plane surfacemotion into thenormal-to-interface
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ux(r,ω) ) V0 cos(kz)/(iω cos(kd)), k ) ω(Fq/µq)
1/2

uy(r,ω) ) 0 and uz(r,ω) ) 0 (1)

Figure1. Schematic sketchof interfacial geometries: (a) rough
interfacial layer, (b) polymer surface film.

iωFvx(z,ω) ) η d
2

dz2
vx(z,ω) + ηêH

-2(V0 - vx(z,ω)) (2)
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liquidmotion. These effects result in additional channels
of energy dissipation that are effectively included into the
model by the introduction of theDarcy-like resistive force.
It should be noted that QCM response discussed here is
sensitive to the energy dissipation rather than to the
details of the velocity field in the liquid. While the
limitation of Brinkman’s equation are apparent, there is
no alternative equation in the literature that has been
accepted unconditionally.
A number of relations for the permeability êH

2 have
been proposed on the basis of bothmodel calculations and
empirical considerations.25 For instance, the empirical
Kozeny-Carman equation

expresses the permeability in terms of the characteristic
size of inhomogeneities, r, and of the porosity, φ, which
is the volume fraction of the liquid phase in the interfacial
layer.
In the case of high porosity, φ ≈ 1, the resistive force

is small and eq 2 reduces to the Navier-Stocks equation
describing themotion of a liquid in contact with a smooth
quartz surface. The resistive force increases with the
decreaseof theporosityandstrongly influences themotion
of the liquid in the interface region. At very low porosity,
φ,1, all liquid located in the layer is trappedbyroughness
and moves with the velocity that is equal to the velocity
of the crystal surface.
In the case of thick polymer films the hydrodynamic

equation (2) should be augmented with a description of
the polymer network elasticity. However, in the most of
QCM experiments3 the thickness of polymer films is less
than thewavelengthof shear oscillations, and thepolymer
can be considered as rigidly coupled to the surface. For
grafted polymer brushes the length êH has the order of
the equilibrium concentration correlation length,29-31

which is proportional to c-3/4, where c is the average
monomer concentration.
In the frame of the approximation discussed here the

system is treated as macroscopically homogeneous along
thesurfaceplanex-y. Theonly inhomogeneity takesplace
in the z-direction normal to the surface of the quartz
crystal. In writing eq 2 we have taken into account that
thepressure is constant for systems thatarehomogeneous
along the plane of oscillation.
The plane-parallel laminar flow generated in the bulk

liquid is described by the velocity field vx(r,ω) that is the
solution of the linearized Navier-Stokes equation34

where q0 ) (iωF/η)1/2.
Boundary conditions for the velocity field in the liquid

include (a) thenonslip boundary conditionat the interface
z)d: vx(d,ω))V0; (b) the continuity of the liquid velocity
at the interface z ) L; and (c) the equality of the absolute
values and the opposite directions of the shear stresses
on two sides of the interface z ) L:

After the determination of the velocity profile in the
interfacial layer and in the bulk liquid the resonance
frequency shift and width can be found from the energy
balance in the system under consideration.22,23 The rate
of the change of the kinetic (Ekin

(q) ) and the elastic (U(q))

energy of the quartz crystal and the kinetic energy of the
liquid both in the interfacial layer (Ekin

(s) ) and in the bulk
(Ekin

(b) ) should be equal to the rate of the energy dissipation
in the layer (Q(s)) and in the bulk (Q(b))

The expressions for the energetic terms in eq 4 have the
form

The expression (8) for the energy dissipation rate in the
surface layer results from Brinkman’s equation (2) (see
Appendix). The second term in the right hand side (rhs)
of eq 8 presents the energy dissipation due to the friction
between liquid and solid phases in this layer. The
contribution corresponding to the kinetic energy of the
solid phase of the interfacial layer has not been included
in the energy balance (4). This contribution leads to the
frequency shift that is proportional to the mass of the
solid phase and is given by the Saurbrey equation.
The solution of eq 2 with the boundary conditions a-c

can be written as follows:

Here q1
2 ) q0

2 + êH
-2, and the coefficients C1 and C2 have

the form

Equations 10-13 show that the velocity profile is
determined by two parameters: δ/L and êH/L, which are
the ratios of the decay length of the velocity field in the
bulk liquid, δ ) (2η/ωF)1/2, and of the permeability length
scale,êH, to the thickness of the interfacial layer,L. Figure
2presents thevelocityprofiles in the liquidnear thequartz
crystal surface for different values of the parameters δ/L
and êH/L. We see that the effect of the interfacial layer
is most pronounced for small values of êH/L. The velocity
gradient in the layer decreases with the decrease of êH/L,
and for êH/L , 1 the majority of the layer moves with a

(34) Landau, L. D.; Lifshitz, E. M. Fluid Mechanics, 2nd ed.;
Pergamon: New York, 1987.

êH
2 ∝ r2φ3/(1 - φ)2

vx(r,ω) ) vx(L) exp(-q0(z - L)) (3)

dvx(z,ω)
dz

|z)L-0 )
dvx(z,ω)

dz
|z)L+0

d
dt
(Ekin

(q) + U(q) + Ekin
(s) + Ekin

(b) ) ) Q(s) + Q(b) (4)

Ekin
(q) )

Fq
2∫dz ( ∂∂tux(z,t))

2
(5)

U(q) )
µq
2∫dz ( ∂∂zux(z,t))

2
(6)

Ekin
(s) ) F

2∫dLdz (vx(z,t))2; Ekin
(b) ) F

2∫L∞dz (vx(z,t))2 (7)

Q(s) ) -η∫dL dz(( ∂∂zvx(z,t))
2

+

êH
-2(V0 exp(iωt) - vx(z,t))

2) (8)
Q(b) ) -η∫L∞dz ( ∂∂zvx(z,t))

2
(9)

νx(z,ω) ) V0
1

êH
2 q1

2
+ C1 exp(q1(z - d)) +

C2 exp(-q1(z - d)) (10)

C1 )
V0

2W((q1 - q0) exp(-q1L)(1 - 1
êH
2 q1

2) -
q0

êH
2 q1

2) (11)

C2 )
V0

2W((q1 + q0) exp(q1L)(1 - 1
êH
2 q1

2) +
q0

êH
2 q1

2) (12)

W ) q1 cosh(q1L) + q0 sinh(q1L) (13)
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velocity equal to the velocity of the quartz surface, V0.
This behavior reflects the trapping of the liquid by the
surface roughness. For higher values of the parameter
êH/L g 1, the influence of the interfacial layer goes down
and the velocity field approaches the velocity field at the
smooth solid-liquid interface.
After substitution of eqs 1, 2, and 10-13 into eq 4 we

arrived at the following equation for the determination of
the resonance frequency:

Now the liquid-induced shift,∆ω, and the width, Γ, of the
resonance frequency may be written in the form

Here ∆ω ) ω - ω0 and ω0 ) (π/d)(µq/Fq)1/2 is the resonant

frequency of the uncoated smooth quartz crystal film
operating in air. The first terms in the rhs of eqs 15 and
16 describe the QCM response for the smooth quartz
crystal-bulk liquid interface.7 It should be mentioned
that in this case the liquid-induced shift and width are
equal. The additional terms present the shift and the
width of the QCM resonance caused by the interaction of
the liquid with the nonuniform interfacial layer.

Discussion

Let us focus on the limiting behaviors of eqs 15 and 16.
When the permeability length scale is the shortest length
of the problem, êH , δ and êH , L, eqs 15 and 16 reduce
to

We see that the layer-induced shift is proportional to the
liquid density and does not depend on the viscosity. It
has the form of the frequency shift due to a mass loading.
The effect results from the inertial motion of the liquid
trapped by the inhomogeneities in the interfacial layer.
The effective thickness of the liquid film rigidly coupled

Figure2. Velocity profiles in the liquidnear the quartz crystal
surface for two-layer thicknesses: 2a, L ) 0.5δ; b, L ) 2δ. The
calculations were carried out for the following values of the
parameters: (1) êH/L ) 0.2, (2) êH/L ) 0.5, (3) êH/L . 1, which
corresponds to the smooth solid-liquid interface.

tg(kd) ) - kF
Fqqq{1 + q0

L
êH
2 q1

2
-
q1
W

1
êH
2 q1

2
×

[2q02q12 (cosh(q1L) - 1) +
q0
q1
sinh(q1L)]} (14)

∆ω ) -
ω0
2F

π(µqFq)
1/2
Re{ 1q0 + L

êH
2 q1

2
-

1
W

1
êH
2 q1

2[2q0q1 (cosh(q1L) - 1) + sinh(q1L)]} (15)

Γ ) -
ω0
2F

π(µqFq)
1/2
Im{ 1q0 + L

êH
2 q1

2
-

1
W

1
êH
2 q1

2[2q0q1 (cosh(q1L) - 1) + sinh(q1L)]} (16)

Figure 3. Layer-induced shift of the resonance frequency
versus (ηF)1/2 (at fixed value F ) 1 g cm-3) for two-layer
thicknesses, 3a, L ) 0.5δ0; 3b, L ) 2δ0, where δ0 ) 250 nm is
the decay length of shear waves in water when the frequency
is 5 MHz. The calcualtions were carried out for the following
values of the parameters: f ) ω0/2π ) 5 MHz and (1) êH/L )
0.5, (2) êH/L ) 0.2.

∆ω ) -
ω0
2

π(µ1Fq)
1/2(( Fη

2ω0
)1/2 + F(L - êH)) (17)

Γ ) -
ω0
2

π(µqFq)
1/2(( Fη

2ω0
)1/2 + FL

êH
2 Fω0

η (1 + 1
2L( 2η

Fω0
)1/2))
(18)
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to the oscillating surface is equal toL- êH and is less than
the thickness of the inhomogeneous layer, L. This point
must be taken into account in interpreting theQCMdata.
In the limiting case considered here, êH , δ and êH , L,
the layer-induced correction to thewidth of the resonance
ismuch less than the correction to the shift. The increase
of the permeability êH

2 leads to the enhancement of the
velocity gradient in the layer (see Figure 2), which results
in thedecreaseof themass loadingshift and in the increase
of the width caused by the energy dissipation.
When the layer thickness is the shortest length of the

problem, L , δ, L , êH, and êH , δ, eqs 15 and 16 can
be rewritten in the form

In this limit the layer-induced shift is also proportional
to the liquid density and does not depend on viscosity.
However, in contrast to the previous case, it cannot be
related to the mass of trapped liquid. The correction to
the width of the resonance depends on the viscosity, and
it is substantially less than the layer-induced shift. We
would like to stress that in both limiting cases discussed
above the corrections to the shift and to the width of the
resonance differ considerably. This difference has been
ignored by the authors of ref 16 in interpreting of QCM
measurements at rough surfaces.

When the decay length δ is the longest length in the
problem, δ . êH and δ . L, the following relationship
between the shift and the broadening of the resonance
due to the presence of the interfacial layer can be derived
as

where ∆ω0 and Γ0 are the shift and the width of the
resonance at the smooth crystal-liquid interface

We see that the experimentally measurable ratio (∆ω -
∆ω0)/(Γ - Γ0)1/2 depends on the single intrinsic charac-
teristic of the interfacial layer, êH/L. Equation 21 can be
used to estimate the permeability êH

2 from the experi-
mental data. For L/êH , 1 and L/êH . 1 the rhs of eq 21
reduces to the following simple expressions
(2x2/3)L/êH and x2L/êH, correspondingly.
The usual form of the description of the experimental

data in liquids is the representation of the real and
imaginary components of QCM response as functions of

Figure 4. Layer-induced shift of the resonance frequency
versus F (at fixed value η ) 1 cP) for two-layer thicknesses, 4a,
L ) 0.5δ0; 4b, L ) 2δ0, where δ0 ) 250 nm is the decay length
of shear waves in water when the frequency is 5 MHz. The
calculations were carried out for the following values of the
parameters: f ) ω0/2π ) 5 MHz and (1) êH/L ) 0.5, (2) êH/L )
0.2.

∆ω ) -
ω0
2

π(µqFq)
1/2{( Fη

2ω0
)1/2 + 1

3
FL(L/êH)

2} (19)

Γ )
ω0
2

π(µqFq)
1/2{( Fη

2ω0
)1/2 + 1

4
FL(L/êH)

2(Fω0

2η )1/2L} (20)

Figure 5. Layer-induced width of the resonance frequency
versus (ηF)1/2 (at fixed value F ) 1 g cm-3) for two-layer
thicknesses, 5a, L) 0.5δ0; b, L) 2δ0, where δ0 ) 250 nm is the
decay length of shear waves in water when the frequency is 5
MHz. The calculationswere carried out for the followingvalues
of the parameters: f ) ω0/2π ) 5 MHz and (1) êH/L ) 0.5, (2)
êH/L ) 0.2.

∆ω - ∆ω0

(Γ - Γ0)
1/2

1
|∆ω0|1/2

)

x2(L/êH - tanh(L/êH)) cosh(L/êH)

cosh(L/êH) - 1
(21)

Γ0 ) -∆ω0 )
ω0
2

π(µqFq)
1/2( Fη

2ω0
)1/2 (22)
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the liquid density F and of the parameter (Fη)1/2. Figures
3-6 show the dependencies of the layer-induced shift and
thewidthof the resonance frequencyonFand (Fη)1/2,which
have been calculated according to eqs 15 and 16. The
common features of all curvesare the increase of theQCM-
response with the increase of the film thickness and with
thedecrease of the ratio êH/L. The frequency shift changes
rapidly with (Fη)1/2 in the region of (Fη)1/2 < t*(L/δ, êH/L),
where the limiting value t* is of the order of unity, and
slowly increases with the increase of the parameters L/δ
and êH/L. For higher values of (Fη)1/2 the function
∆ω((Fη)1/2) tends toaconstant (seeFigure3). Thisbehavior
reflects the fact that in the high viscosity limit, when L/δ
, 1, the gradient of the velocity in the interfacial layer
is small and the layer influences only slightly the velocity
field in the bulk liquid. As a result, the viscosity-
dependent contribution to the frequency shift, which is
proportional to the velocity gradient, would remain the
same as for the smooth solid-liquid interface. This point
also explains the decrease of the layer-induced width of
the resonance with increasing (Fη)1/2 for (Fη)1/2 > t*(L/δ,
êH/L) (see Figure 5). We remark that the plots∆ω versus
(Fη)1/2 presented on Figure 3 closely resemble the plots
that have been obtained for slightly rough surfaceswithin
theperturbationapproach.22 Thepredicteddependencies
of ∆ω on (Fη)1/2 agree qualitatively with experimental
data15 found for rough solid surfaces in contact with
methanol-water mixtures and alcohols.
Figure 4 shows that the frequency shift is linear in the

liquiddensity for small thicknesses of the interfacial layer,
L/δ ,1, and thedeviations fromthe linearproportionality

ariseas the thickness increases. Thedeviationsarecaused
by the increaseof the contributionof theenergydissipation
processes to the QCM response with the increase of the
thicknesses.
Our calculations predict the interesting feature of the

layer-inducedwidthof the resonanceasa functionof (Fη)1/2
(see Figure 5). For L g δ the curves for Γ versus (Fη)1/2
have the maxima located at (Fη)1/2 ≈ t*(L/δ, êH/L). The
appearance of the maxima results from the fact that the
energy dissipation induced by the interfacial layer di-
minishes for both high and low viscosities. This effect
has been already discussed above. The dependencies of
the resonancewidthon the liquiddensity shownonFigure
6 reflect the influence of both the mass loading and the
energy dissipation contributions. For the thin layers the
curves Γ versus F have the quadratic form, as predicted
by eq 20.
Our model demonstrates that in the case of polymer

films being in contact with a liquid the QCM response
strongly depends on the thickness of the film and on the
correlation length. These parameters are changed dras-
tically under phase transitions. The QCM response of
theamphotericpolymer filmundergoingphase transitions
between the isoelectric and the cationic andanionic forms
has been studied in ref 35. Large resonance frequency
shifts, which are not consistent with the mass changes,
have been observed for polymer films in the vicinity of the
phase transition point.35 The phase measurement inter-
ferometric microscopy demonstrated that phase transi-
tions were accompanied by dramatic changes in the film
thickness. Ourmodel explains the observed effect by the
variation of the thickness or/and correlation length of the
polymers filmunderphase transition. Inorder toestimate
the changes of the film thickness and of the correlation
length both the real and the imaginary part of QCM
response should be measured.

Conclusions

Anewapproach for thedescriptionof theeffect of surface
roughness on the QCM response in contact with a liquid
has beenproposed. The approach is based onBrinkman’s
equation for thevelocity field in thenonuniform interfacial
region. Within our model the roughness-induced shift
and width of the resonant frequency are determined by
two parameters: δ/L and êH/L. They are the ratios of the
decay length of the shear wave in the liquid and the
permeability length scale in the interfacial layer to the
thickness of this layer. The frequency changes due to
both the inertial motion of a liquid rigidly coupled to the
surface and due to the additional viscous energy dissipa-
tion induced by roughness have been found. The results
obtained are as follows:
(1) In the case of thin rough layers, L < δ, the resonant

frequency decreases rapidly with the increase of (Fη)1/2.
When L approaches δ, the resonant frequency loses the
dependence on (Fη)1/2 and tends to a constant. This
behavior agrees with the results derived within the
perturbation approach.22 The linear dependence of the
frequency shift on the liquid density has been found for
L < δ. The slope of the lines ∆ω versus F increases with
the decrease of the parameter êH

2 /L. For, L g δ, the
dependence of the shift on the liquiddensitybecomesmore
complicated.

(35) Wang, J.; Ward, M. D.; Ebersole, R. C.; Foss, R. P. Anal. Chem.
1993, 65, 2553.

Figure 6. Layer-induced width of the resonance frequency
versus F (at fixed value η ) 1 cP) for two-layer thicknesses, 6a,
L ) 0.5δ0; 6b, L ) 2δ0, where δ0 ) 250 nm is the decay length
of shear waves in water when the frequency is 5 MHz. The
calculations were carried for the following values of the
parameters: f ) ω0/2π ) 5 MHz and (1) êH/L ) 0.5, (2) êH/L )
0.2.
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(2)Our calculationspredict that the roughness-induced
width of the resonance, Γ, has a maximum as a function
of (Fη)1/2. The position of the maximum moves to lower
values of (Fη)1/2 with the decrease of the thickness of the
interfacial layer. The roughness-inducedwidth increases
with the increase of the liquiddensity. For thin interfacial
layers, L < δ, curves Γ versus F have a quadratic form.
(3) Our calculations demonstrate thatwhile for smooth

surfaces liquid-induced shift and width of the resonance
are equal they differ essentially for rough surfaces. This
effect, ignored by the authors of ref 16, has been observed
in ref 20. Our results show that empirical representation
of the QCM response in a liquid as a linear combination
of a (Fη)1/2 anda F terms20 canbeapplied for thedescription
of the shift of the resonant frequency in the case of thin
rough layers, L < δ.

Appendix
Using eqs 5-7 and Brinkman’s equation (2) one can

present the energy balance in the form

The boundary conditions (b) and (c) for the velocity field
result in the compensation of the energy fluxes through

the interface z ) L. Hence, eq A.1 can be reduced to

The first and the second terms in rhs of eq A.2 describe
the viscous dissipation in the interfacial layer and in the
bulk, respectively. The third, negatively defined term in
eqA.2 can be interpreted as an additional dissipation due
to interactions between the liquid and solid phases in the
layer. The remaining terms in the rhs of eq A.2 can be
rewritten as

The first and the second terms in the brackets are the
shear stresses at the surface z ) d that arise from
oscillations of the quartz crystal and the liquid. The last
term describes the integral stress that results from the
liquid-solid interactions in the layer and is transmitted
through the rigid phase to the quartz crystal surface, z )
d. Since thenet stressapplied to the interface z)d should
be zero, eq A.2 reduces to eq 4 in the text.

LA950763D

d
dt
(Ekin

(q) + U(q) + Ekin
(s) + Ekin

(b) ) ) µqV0 ×

exp(iωt) ∂
∂z
ux(z,t)|z)d + ηêH

-2∫dLdz vx(z,t)(V0 exp(iωt) -

vx(z,t)) + η[(vx(z,t) ∂∂zvx(z,t))|z)L-0 -

(vx(z,t) ∂∂zvx(z,t))|z)d] - η∫dLdz( ∂∂zvx(z,t))
2

-

η(vx(z,t) ∂∂zvx(z,t))|z)L+0 - η∫L∞dz ( ∂∂zvx(z,t))
2
(A.1)

d
dt
(Ekin

(q) + U(q) + Ekin
(s) + Ekin

(b) ) )

-η∫dLdz ( ∂∂zvx(z,t))
2

- η∫L∞dz( ∂∂zvx(z,t))
2

-

ηêH
-2∫dLdx (V0 exp(iωt) - vx(z,t))

2 +

µqV0 exp(iωt)
∂

∂z
ux(z,t)|z)d + ηêH

-2V0 exp(iωt)∫dLdz ×
(V0 exp(iωt) - vx(z,t)) - η(vx(z,t) ∂∂zvx(z,t))|z)d (A.2)

V0 exp(iωt)[µq ∂∂zux(z,t)|z)d - η ∂
∂z

νx(z,t)|z)d +

ηêH
-2∫dLdz (V0 exp(iωt) - νx(z,t))] (A.3)
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