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Stick-Slip Motion and Force Fluctuations in a Driven Two-Wave Potential
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A model of a particle interacting with two periodic potentials, one of which is externally driven,
is analyzed. Three regimes are identified in the motion of the driven plate: (a) stick-slip motion,
(b) intermittent stick slip characterized by force fluctuations, and (c) sliding which occurs above a
critical driving velocity ve. In the vicinity of v, the power spectra of the force obeyaa? law
and the force fluctuations decrease(as — v)/? for v < v.. Our calculations suggest that stick-
slip dynamics is characterized by chaotic behavior of the top plate and the embedded molecular
system. An equation is derived which provides a coarse-grained description of the plate motion near
ve. [S0031-9007(96)00727-2]

PACS numbers: 68.15.+e, 05.40.+j, 05.45.+b, 46.30.Pa

Stick-slip motion has been a subject of active researcimoving with a velocityv (see Fig. 1 for the sketch of the
related to a broad range of phenomena from friction inmodel geometry).
nanoscale liquid films [1,2] to geophysics and earthquake The coupled equations of motion for the top plate and
faults [3,4]. In recent experiments on friction, in particu- the particle can be written in a dimensionless form as
lar on confined molecular systems under shear, stick-slip v, VI 20v _
motion has been carefully analyzed [5,6]. Attention has Y+ eyY =y) + oY —vr)
been paid to the_ dete_rministic features of friction and also € sif27(y — Y)] =0, (1a)
to force fluctuations in terms of their power spectra. It 2T
has been observed [1,2,5,6] that stick-slip behavior is fol-
lowed by an intermittent stick slip and then by sliding as v+ yQ2y —Y) + isin(zﬂ.y)Jr
the shear rate increases. Different models have been pro- 2m
posed to account for this type of motion, including spring- 1 .
block models [3] and chain or layer motion on a substrate o si2w(y = Y)] =0, (1b)
[7,8]. Stick-slip behavior has also been seen in direct

; : . wherey andY are the coordinates of the particle and
molecular dynamical simulations [9—11]. However, the . . . . .
. e . . T plate, respectively, in units of the period of the poterttial
microscopic origin of stick-slip dynamics is still not well

understood T = wt is the dimensionless timey = (27 /b)/Ug/m
In_this Letter we introduce a model of a single is the frequency of the small oscillations of the particle in

particle which interacts with two corrugated plates, one oi@i??&?@ﬁiﬁﬁiﬂiﬂg);& 'ziigln;teigﬁlzrg?; fr'ﬂgonnons
which is externally driven. We demonstrate that various e 1D : pr
nd/or other excitationg, = m/M is the ratio of particle

properties typical of thin liquids under shear are alread)gnd plate masses, and— Q /e is the ratio of frequencies

observed in the framework of our single-particle system. f the free oscillations of the top plate and the particle,

The model can be related to various problems in nonlineay, JK/M. The second terms in Egs. (1a) and (1b)

dynamics [12-14]. ) > .
Consider a one-dimensional model which includes tWodescrlbe the dissipative forces between the particle and the

rigid plates and a single particle of mass embedded plates and are proportional to their relative velocities. The

between them. The interaction between the particle anfpri]r.d r:erm in Eq'.trfltr?) is thet drivin? fqrceEdue ttp the 1stage
each of the plates is described by the periodic potentia\fv ICh MOVes wi e constant velocity Equa |ons_( 6.‘)
U(x) = —Upcog2wx/b). There is no direct interaction a}nd (1) relate to th_e p“’b'.e”? of friction in lubricating

. films [6,7,10], and, in the limita — <, reduce to the
between the plates. The top plate of miéss pulled by

a linea : ith force constakt connected to a stage problems of a pa_rticle .in a two-wave potentia_l [12,13]
inear spring wi fee cons : 1898 and of a parametric oscillator [14], actively studied in the

theory of nonlinear dynamical systems.
We focus on the dynamical behavior of the top plate
and of the particle as the driving velocity of the stage is

M K 5 : : . L .
| Values of Tterest. there are. thrce different dynamica
%/////////////////4@/////////////////////////////////% regimes: (a) At low velocities we observed a regular

stick-slip motion of the plate; (b) as the stage velocity
FIG. 1. Schematic sketch of a model geometry. increases, the top plate ceases to stop (time intervals
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between rare stop events increase rapidly widh and each of them for times much longer than the characteristic
stick-slip motion becomes more erratic and intermittentmodulation time induced by the stage motion (natural
(c) smooth sliding occurs when the stage velocity isperiod),1/v. We note that windows of sliding motion
above the critical velocityw.. Figure 2 illustrates these appear within the intermittent stick-slip region [15].
phenomena showing the time dependence of the spring A sharp boundary atv = v is observed between
force which acts on the top plate. In the calculationsthe intermittent stick slip and sliding regimes. When
reported below we use the following values of thethe velocity approaches the critical velocity, from
parametersae = 0.02, y = 0.1, ¢ = 0.125 for which the  below, the amplitude of oscillations of the spring force
system is underdamped. Other ranges of parameter valudscreases agvc — v and sliding sets in. (The spring
are discussed elsewhere [15]. force amplitude exhibits hysteretic behavior aroumd
The motion of the top plate in the first regime is typical [15].) In the sliding regime the spring force performs
of relaxation oscillations. The top plate is initially at “microscopic” oscillations with a period of the ordéfv,
rest, and the spring connecting it to the stage stretcheend with amplitudes much smaller than in regimes (a)
linearly in time. When the force on the plate exceedsand (b). The critical velocityv. depends on the mass
the static frictional force~s, which in our model equals of the particle, particle-plate interaction, and the friction
27rUp/b, the top plate begins to slide. Since the frictional coefficient y. Within the accuracy of our calculations
force in this kinetic state is less thaRs, the plate we have found no dependence of on the mass of
accelerates. Owing to the inertia, the velocity of thethe top plate and on the spring constant, in contrast to
plate, Y, is initially lower than the driving velocityy,  previous findings [9,11]. In the sliding regime the particle
and the spring will continue to extend until finally >  does not jump between the two plates but rather clings
v. The maximum spring force will therefore be greaterto one of them and oscillates within one cell of the
than Fs. When the plate velocity i¥ > v, the spring  corrugated potentidl (x). The transition from regular to
force decreases until it reaches some value where thigtermittent stick slip occurs through a sequence of period
motion stops and then the process repeats. We hawoubling bifurcations and windows of chaotic behavior
also noticed that at low stage velocities the amplitude ofind depends on the mass of the top plate and the spring
the spring force does not depend on and the period constant.
of oscillations decreases with the increasevof In this The trajectories of the top plate and the particle in
range of velocities the time averaged velocity and théegimes (a) and (b) demonstrate high sensitivity to initial
displacement of the particle are much smaller than théonditions, which is a manifestation of the dynamical
average velocity and the displacement of the top plate. chaos in the system. Positive values of the largest
In the second regime the amplitude of the spring forcd-iapunov exponent have been obtained, which provide
strongly depends on the stage velocity Here the @ guantitative measure of the degree of stochasticity
frictional force is less than the static friction practically of the trajectories. As the stage velocity increases and
for all times. As we show below, the nature of the approachesy, the largest Liapunov exponent decreases.
intermittent behavior in this regime is determined by anThis concurs with the reductions of the amplitude of the
effective velocity-dependent friction force. We have alsospring force oscillations. It should be mentioned that
found that in this case the time averaged velocity and-iapunov exponents can be extracted from experimental
displacement of the particle are close to half of those offata on time dependencies of the spring force or the
the top plate. The trajectory of the particle shows thatelocity of the top plate [16].

the particle jumps between the two plates. It clings to We have also calculated the power spectra of the spring
force, and of the velocities of the top plate and the

particle. The power spectrd(w) depend on the stage
velocity, and forv < v; show a power law behavior

() v <<, S(w) ~ w2 for frequencies above some cutoff (see
Fs Fig. 3).
(b) It should be emphasized that, although our model
8 v<n, © is a single-particle model, the observed phenomena of
2 stick slip, intermittent stick slip, criticabe, and w 2
£ 07t power spectra are in qualitative agreement with recent
? experiments on sheared nanoscale liquids [1,2,6].
o - It is possible to give an analytical description of
the motion of the top plate connected to the spring
L L L which predicts the transition at.. We introduce two
2000 8000 7000 13000 7000 13000 assumptions for the top plate dynamics in the vicinity of
time ve: (@) The characteristic frequency of the large scale
FIG. 2. The three regimes of top plate motion. plate motion is much smaller than both the characteristic
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FIG. 3. The power spectrum of the spring force fluctuations,rig. 4. Friction forces acting on the top plate as a function of

v = 036, v < vc. The dotted line of slope-2 is provided for  pjate velocity. The lower curve is the dissipative contribution:

reference. The inset shows the power spectrumufer 0.4, the upper curve is the net force. The arrows indicate velocities

v > Ve of the plate corresponding to particle trajectories shown in
Fig. 5.

frequency of the particle oscillations and the natural .

frequencyv; (b) the mass of the particle is smaller thanfriction ¢(Y), given by the averaged Eq. (4), contains
the mass of the top plate, i.e.,< 1. Hence the top plate two terms. The first one is the potential component
and the particle display “slow” and “fast” motions, and of the frictional force and the second one describes
there is a separation of time scales, namely, the adiabattbe dissipative contribution (see Fig. 4). The structure
approximation prevails. Under these assumptions, wén the velocity dependence of the frictional forge(Y)
solve Egs. (1a) and (1b). For Eqg. (1b) we assume thatorresponds to different types of particle trajectories, as
the plate moves with a constant velocty= V. Forthe shown in Fig. 5. We see that the motion of the particle

particle motion we get has two characteristic behaviors: At low velocitdés<
. 1 V*, the average velocity of the particle predominantly
y+y@y -V)+ py. sin(2my)+ equals3V, except for short windows where the particle
is trapped by one of the plates; for > V™, the particle
1 sin2mw(y — Vr)] =0. (2) aways clings to one of the plates. This is illustrated
2m clearly by the dissipative component of the frictional force

Equation (2) has been used to describe a dissipativeresented in Fig. 4.

parametrically driven pendulum and a dissipative motion There are three types of particle trajectories ¥or<

of a particle in two waves. In spite of its apparentV*: (1) The particle jumps between two plates being

simplicity, Eq. (2) is not integrable and predicts a rich settrapped by each of them for time much longer than

of phenomena ([12-14], and references therein). V~1 (curve 2 in Fig. 5); (2) the particle undergoes fast
The solutions of Eq. (2)(7,Y) depend parametrically oscillations with the periodV ~!, around the trajectory

onY. Substitutingy(7,Y) into Eq. (1a), we get

Y - GF(T,Y,Y.) + a’(Y —vr) =0, 3)
where the particle-plate interaction force

Fr, YY) = oo sif2a(y = V)] = vV =) @

contains fast-oscillating components. Averaging Egs. (3)
and (4) over the fast oscillations, we obtain an equation
for the slow-oscillating component of the spring length

3)

L(7) = Y(7) — vr, 2 ol 1
[ — ep(L +v) + @?L =0, (5) ///l;)/

where the time-averaged forQﬁ(Y) = (F(r,Y,Y)) de-
pends only on the velocity of the plate, and presents the
effective friction for the plate motion. time

Before we solve Eg.(5), we discuss the veloCityF|G. 5. Particle trajectories for selected values of the plate
dependence of the time-averaged force. The effectiveelocities.
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X = %Vt (curve 3 in Fig. 5); (3) the particle clings to one crucial condition for the existence of force fluctuations.
of the plates (curve 4 in Fig. 5). In the first two cases thdt should be mentioned that Eq. (5) does not account for
time-averaged velocity of the particle equépg, and in chaotic character of motion, but correctly describes the
the third case it equalé or 0. The dissipative component a@mplitudes of force oscillations.
of the friction (lower curve in Fig. 4) reflects clearly these TO summarize, a single-particle model has been
features of the motion. The local minima and maxima inProposed which demonstrates the dynamical features
the velocity dependence of the net frictional force showrpbserved experimentally and through simulations in
in Fig. 4 correspond to the trajectories of types (3) andlanoscale liquid films under shear. Our calculations
(4). 1t should be stressed that for all trajectories in thesuggest that the information obtained following the
regionV < V* (except forvV = 0.23, which corresponds Mmacroscopic motion of a plate does not allow one to draw
to a stable motion of the particle with the veIocéy) the an unambiguous conclusion on the dynamical structure
fluctuations of the particle velocity are of the order of, orof @ molecular system embedded between the plates.
even larger than, the velocity of the top plate. Curve 1 inPreh.mmary result's |nd|cate'that the general characteristics
Fig. 5 describes the case > V*. obtglngd for a single particle hold .When an embedded
The velocity-dependent features described above afehain is considered [15]. For a wide range of system
similar to those discussed within our original model. NoteParameters we find that the motion is chaotic. Therefore
that the transition velocity * found in the reduced model the use of recently proposed chaos-controlling approaches
is somewhat smaller than the previously determined critiiS POssible in order to convert chaos into periodic motion.
cal velocityve. However, motion with small fluctuations _ Financial support provided for this work by the Israel
in the particle velocity occurs only fof > ve. In spite SC|en_ce Foundation, ad_n_1|n|st_ered by the Israel Academy
of the particle being trapped by one of the plates in theof Science and Humanities, is gratefully acknowledged.
regionV* < V < v, the fluctuations of the velocity are M- R. acknowledges the support of the Alexander von
large, being of the order of. The fluctuations decrease Humboldt Stiftung and the Estonian Science Foundation
when we approachye from below. The decay of the under Grant No. 350.
potential component of the frictional force in the region
V* <V < v, which is proportional to the square of the
amplitude of the velocity fluctuations, manifests the tran-
sition from erratic to smooth sliding. The sharp decrease
of the potential component of the effective friction corre-  *on |eave from Institute of Physics, Riia 142, EE2400
sponds to the disappearance of global chaos in the dynam-  Tartu, Estonia
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