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Stick-Slip Motion and Force Fluctuations in a Driven Two-Wave Potential

M. G. Rozman,* M. Urbakh, and J. Klafter
School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel

(Received 20 February 1996)

A model of a particle interacting with two periodic potentials, one of which is externally driven,
is analyzed. Three regimes are identified in the motion of the driven plate: (a) stick-slip motion,
(b) intermittent stick slip characterized by force fluctuations, and (c) sliding which occurs above a
critical driving velocity yc. In the vicinity of yc the power spectra of the force obey av22 law
and the force fluctuations decrease assyc 2 yd1y2 for y , yc. Our calculations suggest that stick-
slip dynamics is characterized by chaotic behavior of the top plate and the embedded molecular
system. An equation is derived which provides a coarse-grained description of the plate motion near
yc. [S0031-9007(96)00727-2]

PACS numbers: 68.15.+e, 05.40.+j, 05.45.+b, 46.30.Pa

Stick-slip motion has been a subject of active research
related to a broad range of phenomena from friction in
nanoscale liquid films [1,2] to geophysics and earthquake
faults [3,4]. In recent experiments on friction, in particu-
lar on confined molecular systems under shear, stick-slip
motion has been carefully analyzed [5,6]. Attention has
been paid to the deterministic features of friction and also
to force fluctuations in terms of their power spectra. It
has been observed [1,2,5,6] that stick-slip behavior is fol-
lowed by an intermittent stick slip and then by sliding as
the shear rate increases. Different models have been pro-
posed to account for this type of motion, including spring-
block models [3] and chain or layer motion on a substrate
[7,8]. Stick-slip behavior has also been seen in direct
molecular dynamical simulations [9–11]. However, the
microscopic origin of stick-slip dynamics is still not well
understood.

In this Letter we introduce a model of a single
particle which interacts with two corrugated plates, one of
which is externally driven. We demonstrate that various
properties typical of thin liquids under shear are already
observed in the framework of our single-particle system.
The model can be related to various problems in nonlinear
dynamics [12–14].

Consider a one-dimensional model which includes two
rigid plates and a single particle of massm embedded
between them. The interaction between the particle and
each of the plates is described by the periodic potential
Usxd ­ 2U0 coss2pxybd. There is no direct interaction
between the plates. The top plate of massM is pulled by
a linear spring with force constantK connected to a stage

FIG. 1. Schematic sketch of a model geometry.

moving with a velocityy (see Fig. 1 for the sketch of the
model geometry).

The coupled equations of motion for the top plate and
the particle can be written in a dimensionless form as

Ÿ 1 egs ÙY 2 Ùyd 1 a2sY 2 ytd2

e

2p
sinf2ps y 2 Ydg ­ 0 , (1a)

ÿ 1 gs2Ùy 2 ÙYd 1
1

2p
sins2pyd1

1
2p

sinf2ps y 2 Y dg ­ 0 , (1b)

where y and Y are the coordinates of the particle and
plate, respectively, in units of the period of the potentialb,
t ­ vt is the dimensionless time,v ­ s2pybd

p
U0ym

is the frequency of the small oscillations of the particle in
the minima of potentialUsxd, g is a dimensionless friction
constant which accounts for dissipation due to phonons
and/or other excitations,e ­ myM is the ratio of particle
and plate masses, anda ­ Vyv is the ratio of frequencies
of the free oscillations of the top plate and the particle,
V ­

p
KyM. The second terms in Eqs. (1a) and (1b)

describe the dissipative forces between the particle and the
plates and are proportional to their relative velocities. The
third term in Eq. (1a) is the driving force due to the stage
which moves with the constant velocityy. Equations (1a)
and (1b) relate to the problem of friction in lubricating
films [6,7,10], and, in the limita ! `, reduce to the
problems of a particle in a two-wave potential [12,13]
and of a parametric oscillator [14], actively studied in the
theory of nonlinear dynamical systems.

We focus on the dynamical behavior of the top plate
and of the particle as the driving velocity of the stage is
varied. Our simulations demonstrate that, within velocity
values of interest, there are three different dynamical
regimes: (a) At low velocities we observed a regular
stick-slip motion of the plate; (b) as the stage velocity
increases, the top plate ceases to stop (time intervals
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between rare stop events increase rapidly withy), and
stick-slip motion becomes more erratic and intermittent;
(c) smooth sliding occurs when the stage velocity is
above the critical velocityyc. Figure 2 illustrates these
phenomena showing the time dependence of the spring
force which acts on the top plate. In the calculations
reported below we use the following values of the
parameters:a ­ 0.02, g ­ 0.1, e ­ 0.125 for which the
system is underdamped. Other ranges of parameter values
are discussed elsewhere [15].

The motion of the top plate in the first regime is typical
of relaxation oscillations. The top plate is initially at
rest, and the spring connecting it to the stage stretches
linearly in time. When the force on the plate exceeds
the static frictional forceFs, which in our model equals
2pU0yb, the top plate begins to slide. Since the frictional
force in this kinetic state is less thanFs, the plate
accelerates. Owing to the inertia, the velocity of the
plate, ÙY , is initially lower than the driving velocityy,
and the spring will continue to extend until finallyÙY .

y. The maximum spring force will therefore be greater
than Fs. When the plate velocity isÙY . y, the spring
force decreases until it reaches some value where the
motion stops and then the process repeats. We have
also noticed that at low stage velocities the amplitude of
the spring force does not depend ony, and the period
of oscillations decreases with the increase ofy. In this
range of velocities the time averaged velocity and the
displacement of the particle are much smaller than the
average velocity and the displacement of the top plate.

In the second regime the amplitude of the spring force
strongly depends on the stage velocityy. Here the
frictional force is less than the static friction practically
for all times. As we show below, the nature of the
intermittent behavior in this regime is determined by an
effective velocity-dependent friction force. We have also
found that in this case the time averaged velocity and
displacement of the particle are close to half of those of
the top plate. The trajectory of the particle shows that
the particle jumps between the two plates. It clings to

FIG. 2. The three regimes of top plate motion.

each of them for times much longer than the characteristic
modulation time induced by the stage motion (natural
period), 1yy. We note that windows of sliding motion
appear within the intermittent stick-slip region [15].

A sharp boundary aty ­ yc is observed between
the intermittent stick slip and sliding regimes. When
the velocity approaches the critical velocityyc from
below, the amplitude of oscillations of the spring force
decreases as

p
yc 2 y and sliding sets in. (The spring

force amplitude exhibits hysteretic behavior aroundyc

[15].) In the sliding regime the spring force performs
“microscopic” oscillations with a period of the order1yy,
and with amplitudes much smaller than in regimes (a)
and (b). The critical velocityyc depends on the mass
of the particle, particle-plate interaction, and the friction
coefficient g. Within the accuracy of our calculations
we have found no dependence ofyc on the mass of
the top plate and on the spring constant, in contrast to
previous findings [9,11]. In the sliding regime the particle
does not jump between the two plates but rather clings
to one of them and oscillates within one cell of the
corrugated potentialUsxd. The transition from regular to
intermittent stick slip occurs through a sequence of period
doubling bifurcations and windows of chaotic behavior
and depends on the mass of the top plate and the spring
constant.

The trajectories of the top plate and the particle in
regimes (a) and (b) demonstrate high sensitivity to initial
conditions, which is a manifestation of the dynamical
chaos in the system. Positive values of the largest
Liapunov exponent have been obtained, which provide
a quantitative measure of the degree of stochasticity
of the trajectories. As the stage velocity increases and
approachesyc, the largest Liapunov exponent decreases.
This concurs with the reductions of the amplitude of the
spring force oscillations. It should be mentioned that
Liapunov exponents can be extracted from experimental
data on time dependencies of the spring force or the
velocity of the top plate [16].

We have also calculated the power spectra of the spring
force, and of the velocities of the top plate and the
particle. The power spectraSsvd depend on the stage
velocity, and for y , yc show a power law behavior
Ssvd , v22 for frequencies above some cutoff (see
Fig. 3).

It should be emphasized that, although our model
is a single-particle model, the observed phenomena of
stick slip, intermittent stick slip, criticalyc, and v22

power spectra are in qualitative agreement with recent
experiments on sheared nanoscale liquids [1,2,6].

It is possible to give an analytical description of
the motion of the top plate connected to the spring
which predicts the transition atyc. We introduce two
assumptions for the top plate dynamics in the vicinity of
yc: (a) The characteristic frequency of the large scale
plate motion is much smaller than both the characteristic
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FIG. 3. The power spectrum of the spring force fluctuations,
y ­ 0.36, y , yc. The dotted line of slope22 is provided for
reference. The inset shows the power spectrum fory ­ 0.4,
y . yc.

frequency of the particle oscillations and the natural
frequencyy; (b) the mass of the particle is smaller than
the mass of the top plate, i.e.,e , 1. Hence the top plate
and the particle display “slow” and “fast” motions, and
there is a separation of time scales, namely, the adiabatic
approximation prevails. Under these assumptions, we
solve Eqs. (1a) and (1b). For Eq. (1b) we assume that
the plate moves with a constant velocityÙY ­ V . For the
particle motion we get

ÿ 1 gs2Ùy 2 V d 1
1

2p
sins2pyd1

1
2p

sinf2ps y 2 Vtdg ­ 0 . (2)

Equation (2) has been used to describe a dissipative
parametrically driven pendulum and a dissipative motion
of a particle in two waves. In spite of its apparent
simplicity, Eq. (2) is not integrable and predicts a rich set
of phenomena ([12–14], and references therein).

The solutions of Eq. (2)yst, ÙY d depend parametrically
on ÙY . Substitutingyst, ÙY d into Eq. (1a), we get

Ÿ 2 eFst, Y , ÙYd 1 a2sY 2 ytd ­ 0 , (3)

where the particle-plate interaction force

Fst, Y , ÙY d ­
1

2p
sinf2ps y 2 Ydg 2 gs ÙY 2 Ùyd (4)

contains fast-oscillating components. Averaging Eqs. (3)
and (4) over the fast oscillations, we obtain an equation
for the slow-oscillating component of the spring length
Lstd ­ Y std 2 yt,

L̈ 2 efs ÙL 1 yd 1 a2L ­ 0 , (5)

where the time-averaged forcefs ÙY d ­ kFst, Y , ÙYdl de-
pends only on the velocity of the plate, and presents the
effective friction for the plate motion.

Before we solve Eq. (5), we discuss the velocity
dependence of the time-averaged force. The effective

FIG. 4. Friction forces acting on the top plate as a function of
plate velocity. The lower curve is the dissipative contribution;
the upper curve is the net force. The arrows indicate velocities
of the plate corresponding to particle trajectories shown in
Fig. 5.

friction fs ÙY d, given by the averaged Eq. (4), contains
two terms. The first one is the potential component
of the frictional force and the second one describes
the dissipative contribution (see Fig. 4). The structure
in the velocity dependence of the frictional forcefs ÙY d
corresponds to different types of particle trajectories, as
shown in Fig. 5. We see that the motion of the particle
has two characteristic behaviors: At low velocitiesV ,

Vp, the average velocity of the particle predominantly
equals 1

2V , except for short windows where the particle
is trapped by one of the plates; forV . Vp, the particle
always clings to one of the plates. This is illustrated
clearly by the dissipative component of the frictional force
presented in Fig. 4.

There are three types of particle trajectories forV ,

Vp: (1) The particle jumps between two plates being
trapped by each of them for time much longer than
V 21 (curve 2 in Fig. 5); (2) the particle undergoes fast
oscillations with the periodV 21, around the trajectory

FIG. 5. Particle trajectories for selected values of the plate
velocities.
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x ­
1
2Vt (curve 3 in Fig. 5); (3) the particle clings to one

of the plates (curve 4 in Fig. 5). In the first two cases the
time-averaged velocity of the particle equals1

2V , and in
the third case it equalsV or 0. The dissipative component
of the friction (lower curve in Fig. 4) reflects clearly these
features of the motion. The local minima and maxima in
the velocity dependence of the net frictional force shown
in Fig. 4 correspond to the trajectories of types (3) and
(4). It should be stressed that for all trajectories in the
regionV , Vp (except forV ­ 0.23, which corresponds
to a stable motion of the particle with the velocity1

2V ) the
fluctuations of the particle velocity are of the order of, or
even larger than, the velocity of the top plate. Curve 1 in
Fig. 5 describes the caseV . Vp.

The velocity-dependent features described above are
similar to those discussed within our original model. Note
that the transition velocityVp found in the reduced model
is somewhat smaller than the previously determined criti-
cal velocityyc. However, motion with small fluctuations
in the particle velocity occurs only forV . yc. In spite
of the particle being trapped by one of the plates in the
regionVp , V , yc, the fluctuations of the velocity are
large, being of the order ofV . The fluctuations decrease
when we approachyc from below. The decay of the
potential component of the frictional force in the region
Vp , V , yc, which is proportional to the square of the
amplitude of the velocity fluctuations, manifests the tran-
sition from erratic to smooth sliding. The sharp decrease
of the potential component of the effective friction corre-
sponds to the disappearance of global chaos in the dynam-
ics of the particle.

In the rangeV . Vp we approximate the effective
friction forcefsV d by a cubic polynomial

fs ÙY d ­ a 1 b ÙY 1 c ÙY 2 1 d ÙY3. (6)

We now return to Eq. (5) which, upon substituting the
approximated force of Eq. (6), is of the Rayleigh-type
differential equation that describes the stage motion. For
stage velocitiesy , yc, Eq. (5) has solutions which
correspond to an oscillating spring force (limit cycle).
For y . yc it has a static solution (fixed point) which
describes the sliding regime. An analytical solution of
Eq. (5) can be obtained using the Bogoliubov-Krylov
technique. One finds that the critical velocity coincides
with the position of the minimum of the effective friction
force in Eq. (6). The value of the critical velocity found
from the adiabatic approximation, Eqs. (5) and (6), agrees
well with the results of the numerical analysis of Eqs. (1a)
and (1b). For velocities slightly less thanyc the amplitude
of the force oscillations really scale asL , p

yc 2 y, as
observed numerically.

The above considerations demonstrate that the adiabatic
approach reasonably describes the dynamics of the top
plate when the driving velocity is close toyc. Within
this picture, the presence of velocity intervals where
the friction force decreases with increasing velocity is a

crucial condition for the existence of force fluctuations.
It should be mentioned that Eq. (5) does not account for
chaotic character of motion, but correctly describes the
amplitudes of force oscillations.

To summarize, a single-particle model has been
proposed which demonstrates the dynamical features
observed experimentally and through simulations in
nanoscale liquid films under shear. Our calculations
suggest that the information obtained following the
macroscopic motion of a plate does not allow one to draw
an unambiguous conclusion on the dynamical structure
of a molecular system embedded between the plates.
Preliminary results indicate that the general characteristics
obtained for a single particle hold when an embedded
chain is considered [15]. For a wide range of system
parameters we find that the motion is chaotic. Therefore
the use of recently proposed chaos-controlling approaches
is possible in order to convert chaos into periodic motion.
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