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7 Example: the Brownian web as a black noise

7a Convolution semigroup of the Brownian web

A one-dimensional array of random signs can produce some classical and nonclassical noises
in the scaling limit, but I still do not know, whether it can produce a black noise, or not.
This is why I turn to a two-dimensional array of random signs (a).
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It produces a system of coalescing random walks (b) that converges to the so-called Brown-
ian web (c), consisting of infinitely many coalescing Brownian motions (independent before
coalescence).

The Brownian web was investigated by Arratia, Toth, Werner, Soucaliuc, and recently
by Fontes, Isopi, Newman and Ravishankar [2]| (other references may be found therein). The
scaling limit may be interpreted in several ways, depending on the choice of ‘observables’, and
may involve delicate points, because of complicated topological properties of the Brownian
web as a random geometric configuration on the plane. However, we avoid these delicate
points by treating the Brownian web as a stochastic flow in the sense of Sect. 4, that is, a
two-parameter family of random variables in a semigroup.

In order to keep finite everything that can be kept finite, we consider Brownian motions
in the circle T = R/Z rather than the line R.

It is well-known that a countable dense set of coalescing ‘particles’, given at the initial
instant, becomes finite, due to coalescence, after any positive time. Moreover, the finite
number is of finite expectation. Thus, for any given ¢ > 0, the Brownian web on the time
interval (0,t) gives us a random map T — T of such an elementary form (a step function):

o | N e
T
. g L1 <o <xp <y, Y1 <o <Yp <y (cyclically),
ob =" Y (1) = ypy for © € (g, Tpy] -
Of course, n is random, as well as x1,...,2, and y1,...,y,. The value at x; does not matter;
we let it be y;, for convenience, but equally well it could be y1, or remain undefined. Points
Z1,...,%, will be called left critical points of the map, while yy,...,y, are right critical

points.

We introduce the set G, consisting of all step functions T — T and in addition, the
identity function. If f, g € G then their composition fg belongs to G, thus G is a
semigroup. It consists of pieces of dimensions 2,4, 6,... and the identity. Similarly to G3
(recall (4d2)), G is not a topological semigroup, since the composition is discontinuous.
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The distribution of the random map is a probability measure u; on Go,. These maps
form a convolution semigroup, ps * py = ps1¢. Similarly to 4e, discontinuity of composition
does not harm, since the composition is continuous almost everywhere (w.r.t. ps ® p;). Left
and right critical points do not meet.2°

Having the convolution semigroup, we can construct the stochastic flow, that is, a family
of G -valued random variables (&;;)s<; such that

Est ~ Mt—s,
gr,sgs,t = gr,t a.s.

whenever —oo < r < s <t < 00, and
Etitar- - > &ty 14, are independent

whenever —co < t; <+ < t, < 00.

Indeed, for each 7 we can take independent & /; 541y : €2[i] = G for k € Z and define
Ekyifi = Ekjisk1)/i - - - §a—1)/4,17i- For any two coarse instants s < ¢, the distribution of &§p;),4
converges weakly (for i — 00) t0 ft4o0)—s[cc]- The refinement gives us

5 o Q — G é‘ ;= fyl(s5t)a“-7yn(s,t)(5’t) .

T1 (sat))--wwn(s,t) (s)t) ’

zk(+,-) and yg(-, -) are continuous a.s. Also,

(7al) En(s,t) < 0o.

We consider the sub-o-field F; generated by all &, , for (u,v) C (s,t) and get a continuous
factorization. Time shifts are introduced evidently, and so, we get a noise, — the noise of
coalescence.

7b Some general arguments

Random variables of the form ¢(&, ;) for arbitrary s < ¢ and arbitrary bounded Borel function
¢ : G — R generate the whole o-field F. Polynomials of such random variables are dense
in Ly, however, we have no reason to think that linear combinations of such random variables
are dense in L.

Denote by @ the orthogonal projection of Ls(£2, F, P) onto the first chaos.

7b1l Lemma. Linear combinations of all Qg(;,) are dense in the first chaos.

Proof: follows easily from the next (quite general) result, or rather, its evident general-
ization to n factors.

7b2 Lemma. Let r < s < t, X € Ly(F,,), Y € Ly(F,,). Then Q(XY) = Q(X) -E(Y) +
E(X) - Q(Y).

26They meet with probability 0, as far as s and t are fixed. Otherwise, delicate points are involved. . .
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Hint to a proof: if M € C satisfies |M N (r,t)| = 1 then either |M N (r,s)| = 1 and
Mn(s,t)|=0,0r [MN(r,s)|=0and MnN(st) =1.

In order to prove that the noise (of coalescence) is black, it suffices to prove that
Qy(&s:) = 0 for all s,t, . We’ll prove that Q(&p,1) = 0; the general case is similar. Assum-
ing E¢(&,1) = 0 we use Prop. 6a2. Note that [|Qro(&o,1)[|* = IE (@(&o,1) | Forys ) 1P+ +
IE (@(&,1) | Fonisn ) |I?- It suffices to prove that

IE ((£0,1) ‘ Fier) |l =0(v/E) fore—0,

uniformly in £. When doing so, we may assume that ¢ is bounded away from 0 and 1. Indeed,
IE(¢(&,1) | Fei) | = 0 for t — 1— due to continuity of the factorization (recall 3d).

7b3 Lemma. E ( (&) | Fiep) =E(¢(&0,1) |§t—s,t) :

Hint to a proof:
E( (p(ftl,t5) |ft2,t3, fts,m) = // 90(512523534545) dpsg, 4, (f12)dut57t4 (545) =K ( 90(&1,1:5) |§tz,t4) .

7c The key argument

Similarly to 6a4, we consider X = ¢(&1) = @(§o4—c&t—c 1), EX =0, | X| < 1 as. We
have to prove that ||E (X [&—..) || = o(y/€) for ¢ — 0, uniformly in ¢, when ¢ is bounded
away from 0 and 1. Clearly,

E(X &) = / / o(Foh) dpn—o(F)dpro(h)

where g = é-t—e,t-

s € t
We choose 7 € (3,1) and divide the strip (¢t —¢,¢) x T into ~ ™7 ‘cells’ (t —&,t) X (2k, 2k+1)
of height 2,1 — 2z ~ €.

-

€

We want to think of g as consisting of independent cells. Probably it can be done in contin-
uous time, but we have no such technique for now. Instead, we retreat to the discrete-time
model. The needed inequality for continuous time results in the scaling limit ¢ — oo provided
that in discrete time our estimations are uniform in ¢ (for ¢ large enough).
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So, random signs that produce g are divided into cells. Cells are independent and, taken
together, they determine g uniquely.

However, a path may cross many cells. That is rather improbable, since v < 1/2, but it
may happen. We enforce locality by a forgery! Namely, if the path starting at the middle
of a cell reaches the bottom or the top edge of the cell, we replace the whole cell with some
other cell (it may be chosen once and for all) where it does not happen.

|-

\ 4

Now cells are ‘local’; a path cannot cross more than two cells; but of course, the stochastic
flow is changed. Namely, g is changed with an exponentially small (for ¢ — 0) probability,
which changes E (X |&_..) by o(y/€) (much less, in fact). Still, cells are independent.

Does a cell (of g) influence the composition, fgh? It depends on f and h. If the left edge
{t —e} X |2k, zk+1] of the cell contains no right critical point of f, the cell can influence, since
a path starting in an adjacent cell can cross the boundary between cells. However, if the
enlarged left edge {t — e} X [zx — &7, 241 + €7] contains no right critical point of f (in which
case we say ‘the cell is blocked by f’), then the cell cannot influence, because of the enforced
locality. Similarly, if the enlarged right edge {t} x [z — €7, 2g4+1 + 7] contains no left critical
point of A (in which case we say ‘the cell is blocked by h’), the cell cannot influence.

The probability of being not blocked by f is the same for all cells, since the distribution
of f is invariant under rotations of T (discretized...). The sum of these probabilities does
not exceed 3En(0,t — ¢) (recall (7al)), which is O(1) when ¢ — 0. (Here we need ¢ to be
bounded away from 0.) Thus,

P ( a given cell is not blocked by f) =0(");
P (a given cell is not blocked by h) = O(£7);;
P (a given cell is not blocked ) = O(e*) ;
P ( at least one cell is not blocked) =0().

In the latter case we may say that g is not blocked (by f, h).
Denote by A the event “g is not blocked by f, h” (it is determined by f and h, not g).
We have

P(A4)=0();
X=X-EX=(X "14-E(X 14)+ (X-(1-14) —E(X - (1 —14)));
E(X-(1-14)]g) =E(X - (1—14));

E(X|g) =E(X-14]|g) —E(X -14);

we have to prove that |[E (X -14|g) —E(X - 14)|| = o(/€). Note that it does not result

from the trivial estimation [|X - 14]| < ||14]] = /P (A4) = O(e"?), v € (%,1). Note also
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that, when ¢ influences, its influence is usually not small (irrespective of ¢) because of the
stepwise nature of f and h.
We have
IE(X-1a]g) —E(X -14)|| = sipcm(x 14,%(9))

where the supremum is taken over all Borel functions ¥ : G, — R such that Var (w(g)) <1
Using the correlation coefficient
Cov (X 1 A, )

Corr (X - 14,%(g)) = VVar(X - 1,4)4/Var(i(g))

we may prove that
Corr (X - 14,%(g)) = o(e1=1/2) |

since it implies Cov(...) = o(e0"1/2) . || X - 14|| = o(e'=/27/2) = o(,/€). Instead of
0(e(1=/2) we’ll get O(e?), which is also enough, since v > 1/3.

It remains to apply a quite general lemma given below, interpreting its Yj as the whole
k-th cell (of g), X, as the indicator of the event “the k-th cell is not blocked” (k =1,...,n),
Xy as the pair (f, h), and ¢(...) as X -14. The lemma is formulated for real-valued random
variables Y, but it does not matter; the same holds evidently for arbitrary spaces, and in
fact, we need only finite spaces. The product XY} is a trick for ‘blocking’ Y, when X; = 0.
Note that dependence between X, X1, ..., X, is allowed.

7cl Lemma. Let (Xo, Xq,...,X,,) and (Yl, ..., Y,) be two independent random vectors,

Vi Q>R Xp:Q—{0,1} for k=1,...,n, Xo:Q — R, and random variables Y3,... Y,
are independent. Then

Corr(p(Xo, X1, .-, Xo; XiY1, ..., XoY5), ¥(Yh, ..., Y,)) < \/ max P(X;=1)

k=1,...n

for every Borel functions ¢ : R x {0,1}" x R* — R, ¢ : R* — R such that the correlation is
well-defined (that is, 0 < Varp(...) < 0o, 0 < Vary(...) < 00).

Proof. Consider the orthogonal (in Lo(f2)) projection @ from the space of all
random variables of the form (Y3,...,Y,) to the space of all random vari-
ables of the form ¢(Xo, Xi,...,Xn; X1Y1,...,X,Y,), that is, Qu(Yy,...,Y,) =
E(y(Yr,...,Ys) | Xo, X1,..., Xn; X1Y4,..., XY, ). The space of all ¢(Yy,...,Y,) is
spanned by factorizable random variables ¥ (Y1,...,Y,) = ¥1(Y1)...¥,(Y,). For such a
1) we have

Qw(}/laayn) :E(wl(}/l)wn(yn)‘XOaXla:Xnqu}/ia:XnYn) =

:( 11 Mk(yk))( I1 wkm));

k!Xk:O k:XkZI
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[QU(Y, . Yol =E(E(1Q0(V, . Ya) ? | Koy o, Xn) ) =

=E ((kx O|E¢k V)| )(k)(HlEh/)k‘(}/k)F)) :

If, in addition, E¢y (Y1) = 0 then [[Qy(Y1,...,Ya)[? < P(Xy = 1) - [9(V,..., V)|
Similarly,

1QU(Y, .., Ya)I? < (maxP (X =1)) - (Y, .., Vo)

if E¢(Y1,...,Y,) = 0 and, of course, ¢ is factorizable, that is, ¥(Yi,...,Y,) =
1(Y1) ..., (Yy). The latter assumption cannot be eliminated just by saying that factoriz-
able random variables of zero mean span all random variables of zero mean. Instead, we use
two facts.

The first fact: the space of all random variables (. .. ) has an orthogonal basis consisting
of factorizable random variables satisfying an additional condition: each factor ¥ (Yy) is
either of zero mean, or equal to 1. (For a proof, start with an orthogonal basis for functions
of Y7 only, the first basis function being constant; do the same for Y5; take all products; and
so on.)

The second fact: the operator () maps orthogonal factorizable random variables, satisfy-
ing the additional condition, into orthogonal random variables. Indeed, let ¢(Y7,...,Y,) =
(Y1) . (Yn), ¥'(Yh,...,Y,) = ¥i(Y1)... ¥ (Y,), and each vy (Yy) either is of zero
mean, or equals 1; the same for each ¢ (Yy). If ]E(¢(Y1, L Y)Y, .,Yn)) = 0 then
E (v (Y)Y, (Ys)) = 0 for at least one k; let it happen for & = 1. We have not only
E (¢1(Y1)¥}(Y1)) = 0 but also (Evy (Y1) (E¢}(Y1)) = 0, since ¢y and | cannot both be
equal to 1. Therefore

E(Qy((Y,....Yn) (Qy'(V1,....Y,)) =
=FE (( H (Ewk(Yk))(Ewk Yyi) )( H V(Y wk(Yk)>> —0,

since the first term vanishes whenever X; = 0, and the second term vanishes whenever
X1 == 1
]

Combining all together, we get the conclusion.

7c2 Theorem. The noise of coalescence is black.

7d Remarks

Another proof of Theorem 7c2 should be possible, by showing that all random variables
are sensitive (recall 5b5). To this end, we divide the time axis R into intervals of small
length e, choose a random subset of intervals such that each interval is chosen with a small
probability 1 —p = 1 —e~* ~ ), independently of others. On each chosen interval we replace
local random data with fresh (independent) data.
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Consider the path X (-) of the Brownian web, starting at the origin, X (¢) = & .(0) for
t € [0,00); it behaves like a Brownian motion. After the replacement we get another path
Y(-). Their difference, (X(t) — Y (¢))/v/2, behaves like another Brownian motion when
outside 0, but is somewhat sticky at 0. Namely, during each chosen (to the random set)
time interval, the point 0 has nothing special; however, outside these time intervals, the
point 0 is absorbing. In this sense, chosen time intervals act like factors f, in the random
product of factors f , fi, f. studied in Sect. 4. There, f, occurs with a small probability
1/(2v/i) — 0 (recall 4ed), which produces a non-degenerate stickiness in the scaling limit.
Here, in contrast, a time interval is chosen with probability 1 — p ~ A that does not tend to
0 when the interval length ¢ tends to 0. Naturally, stickiness disappears in the limit ¢ — 0
(a proof uses the idea of (4¢9)). That is, interaction between X (-) and Y'(-) disappears in
the limit. They become independent.

Probably, the same argument works for any finite number of paths X (t) = & .(xx); they
should be asymptotically independent of Y;(-) for £ — 0, but I did not prove it.

The spectral measure px of the random variable X = & (0) is written down explicitly in
[8]. Or rather, its discrete counterpart is found; the scaling limit follows by (a generalization
of) Theorem 3cb (see also [9]). The measure py is a probability measure (since || X|| = 1),
it may be thought of as the distribution of a random perfect subset of (0,1). Note that
the random subset is not at all a function on the probability space (€2, F, P) that carries
the Brownian web. There is no sense to speak about ‘the joint distribution of the random
set and the Brownian web’. In fact, they may be treated as incompatible (non-commuting)
measurements in the framework of quantum probability, see [7].

A wonder: px is the distribution of (# — M) N (0,1), where M is the set of zeros of the
usual Brownian motion, and 6 is independent of M and distributed uniformly on (0, 1).

Moreover, the corresponding equality holds exactly (not only asymptotically) in the
discrete-time model. Strangely enough, the Brownian motion (or rather, random walk)
does not appear in the calculation of the spectral measure. The relation to Brownian motion
is observed at the end, as a surprise!

7d1 Question. Can py (for X = & 1(0)) be found via some natural construction of a
Brownian motion whose zeros form the spectral set (after the transformation z — 6 — x)?
(See [8, Problem 1.5].)

We see that px (for X = &;1(0)) is concentrated on sets of Hausdorff dimension 1/2.

7d2 Question. Is py concentrated on sets of Hausdorff dimension 1/2 for an arbitrary
random variable X (over the noise of coalescence)?

A positive answer would probably give us another proof that the noise is black. A stronger
conjecture may be made.

7d3 Question. Is pyx for an arbitrary F;;-measurable X (over the noise of coalescence)
absolutely continuous w.r.t. g, (o) ?



