Contents

4	Random walks										
	4a	Reflection	40								
	4b	Recurrence	43								

4 Random walks

4a Reflection

Consider the one-dimensional simple random walk: $S_n = X_1 + \cdots + X_n$ (where X_k are independent random signs, as in 1a), and let $M_n = \max(S_0, \ldots, S_n)$. We know the distribution of S_n : $\mathbb{P}(S_n = m) = 2^{-n} \binom{n}{\frac{n+m}{2}}$ for m = -n, $-n + 2, \ldots, n$. Interestingly, we can calculate the distribution of M_n , and moreover, the joint distribution of S_n and M_n .

4a1 Proposition. For every $m \ge 0$,

$$\mathbb{P}(M_n = m) = \mathbb{P}(S_n = m) + \mathbb{P}(S_n = m+1) =$$
$$= 2^{-n} \cdot \begin{cases} \binom{n}{2 \pm \frac{m}{2}} & \text{for } m+n \text{ even,} \\ \binom{n}{\frac{1}{2} \pm \frac{m+1}{2}} & \text{for } m+n \text{ odd.} \end{cases}$$

4a2 Lemma. $\mathbb{E}\left(f(S_n - m)\mathbb{1}_{M_n \ge m}\right) = 0$ for all $m \ge 0$ and every odd (anti-symmetric) function f^{1} .

In other words, the conditional distribution (if defined) is symmetric around m.

Proof. For m = 0: trivial. For m > 0: define "first hit" events

$$A_k = \{S_1 < m, \dots, S_{k-1} < m, S_k = m\}$$
 for $k = 1, \dots, n$;

clearly, $A_1 \uplus \cdots \uplus A_n = \{M_n \ge m\}$; it is sufficient to prove that $\mathbb{E}(f(S_n - m)\mathbb{1}_{A_k}) = 0$ for all k.

In terms of the corresponding sets $B_k \subset \mathbb{R}^k$ defined by

$$B_k = \{(x_1, \dots, x_k) : x_1 < m, x_1 + x_2 < m, \dots, x_1 + \dots + x_{k-1} < m, x_1 + \dots + x_k = m\}$$

¹That is, $\forall x \ f(-x) = -f(x)$.

we have

$$\mathbb{E}\left(f(S_n-m)\mathbb{1}_{A_k}\right) = 2^{-n} \sum_{\substack{x_1,\dots,x_n=\pm 1\\x_1,\dots,x_k=\pm 1}} f(x_1+\dots+x_n-m)\mathbb{1}_{B_k}(x_1,\dots,x_k) = 2^{-n} \sum_{\substack{x_1,\dots,x_k=\pm 1\\x_{k+1},\dots,x_n=\pm 1}} \mathbb{1}_{B_k}(x_1,\dots,x_k) \sum_{\substack{x_{k+1},\dots,x_n=\pm 1\\x_{k+1}+\dots+x_n-m}} f(m+x_{k+1}+\dots+x_n-m) = 0.$$

4a3 Corollary. $\mathbb{E}\left(f(S_n - m)\mathbb{1}_{M_n < m}\right) = \mathbb{E}\left(f(S_n - m)\right)$ for $m \ge 0$ and odd functions f.

4a4 Lemma. $\mathbb{P}(M_n < m) = \mathbb{P}(S_n < m) - \mathbb{P}(S_n > m)$ for all $m \ge 0$. *Proof.* Applying 4a3 to f = sgn and noting that $S_n \le M_n$ we get $-\mathbb{P}(M_n < m) = \mathbb{P}(S_n - m > 0) - \mathbb{P}(S_n - m < 0)$.

Proof of 4a1.

$$\mathbb{P}(M_n = m) = \mathbb{P}(M_m < m+1) - \mathbb{P}(M_n < m) =$$

= $\mathbb{P}(S_n < m+1) - \mathbb{P}(S_n > m+1) - \mathbb{P}(S_n < m) + \mathbb{P}(S_n > m) =$
= $\mathbb{P}(S_n = m) + \mathbb{P}(S_n = m+1).$

4a5 Proposition. For every s, m such that $m \ge 0$ and $m \ge s$,

$$\mathbb{P}(S_n = s, M_n = m) = \mathbb{P}(S_n = 2m - s) - \mathbb{P}(S_n = 2m - s + 2).$$

4a6 Lemma. $\mathbb{P}(S_n = m - c, M_n < m) = \mathbb{P}(S_n = m - c) - \mathbb{P}(S_n = m + c)$ for all $m \ge 0$ and $c \ge 0$.

Proof. For c = 0: trivial. For c > 0: apply 4a3 to f(c) = -1, f(-c) = 1, $f(\cdot) = 0$ otherwise.

In other words,

$$\mathbb{P}(S_n = s, M_n < m) = \mathbb{P}(S_n = s) - \mathbb{P}(S_n = 2m - s)$$

for all $m \ge 0$ and $s \le m$.

Proof of 4a5.

$$\mathbb{P}(S_n = s, M_n = m) = \mathbb{P}(S_n = s, M_n < m+1) - \mathbb{P}(S_n = s, M_n < m) =$$
$$= (\mathbb{P}(S_n = s) - \mathbb{P}(S_n = 2(m+1) - s)) - (\mathbb{P}(S_n = s) - \mathbb{P}(S_n = 2m - s)) =$$
$$= \mathbb{P}(S_n = 2m - s) - \mathbb{P}(S_n = 2m - s + 2).$$

4a7 Proposition.¹

For every a, b such that $a > b \ge 0$,

$$\mathbb{P}(S_1 > 0, \dots, S_{a+b} > 0 | S_{a+b} = a - b) = \frac{a-b}{a+b}.$$

The latter is well-known as 'the ballot theorem' (1878): "Suppose that in an election candidate A gets a votes and candidate B gets b votes where b < a. Then the (conditional) probability that throughout the counting Aalways beats B is (a - b)/(a + b)."

4a8 Lemma. $\mathbb{P}(S_1 < 0, \dots, S_n < 0; S_n = -c) = \frac{1}{2}\mathbb{P}(S_{n-1} = c-1) - \frac{1}{2}\mathbb{P}(S_{n-1} = c+1)$ for $c \ge 0$.

Proof.

$$\mathbb{P}\left(S_{1} < 0, \dots, S_{n} < 0; S_{n} = -c\right) = \\
\mathbb{P}\left(S_{1} = -1; S_{2} - S_{1} \le 0, \dots, S_{n} - S_{1} \le 0; S_{n} - S_{1} = -c + 1\right) = \\
\frac{1}{2}\mathbb{P}\left(S_{1} \le 0, \dots, S_{n-1} \le 0; S_{n-1} = -c + 1\right) = \frac{1}{2}\mathbb{P}\left(M_{n-1} < 1; S_{n-1} = -c + 1\right) = \\
= \frac{1}{2}\left(\mathbb{P}\left(S_{n-1} = -c + 1\right) - \mathbb{P}\left(S_{n-1} = 2 \cdot 1 - (-c + 1)\right)\right),$$

since $(S_2 - S_1, \dots, S_n - S_1) \sim (S_1, \dots, S_{n-1}).$

In other words, $\mathbb{P}(S_1 > 0, ..., S_n > 0; S_n = s) = \frac{1}{2}\mathbb{P}(S_{n-1} = s - 1) - \frac{1}{2}\mathbb{P}(S_{n-1} = s + 1)$ for all $s \ge 0$.

Proof of 4a7. Denoting n = a + b and s = a - b we have

$$\mathbb{P}(S_1 > 0, \dots, S_{a+b} > 0; S_{a+b} = a - b) = \mathbb{P}(S_1 > 0, \dots, S_n > 0; S_n = s) = \frac{1}{2}\mathbb{P}(S_{n-1} = s - 1) - \frac{1}{2}\mathbb{P}(S_{n-1} = s + 1);$$

$$\mathbb{P}\left(S_{1} > 0, \dots, S_{a+b} > 0 \left| S_{a+b} = a-b \right) = \frac{\mathbb{P}\left(S_{n-1} = s-1\right) - \mathbb{P}\left(S_{n-1} = s+1\right)}{2\mathbb{P}\left(S_{n} = s\right)}$$
$$= \frac{2^{-(n-1)} \left(\frac{n-1}{\frac{n-1}{2} \pm \frac{s-1}{2}}\right) - 2^{-(n-1)} \left(\frac{n-1}{\frac{n-1}{2} \pm \frac{s+1}{2}}\right)}{2 \cdot 2^{-n} \left(\frac{n}{\frac{n}{2} \pm \frac{s}{2}}\right)} =$$
$$\frac{\frac{n-s}{2}! \frac{n+s}{2}!}{n!} \left(\frac{(n-1)!}{\frac{n-s}{2}! (\frac{n+s}{2}-1)!} - \frac{(n-1)!}{(\frac{n-s}{2}-1)! \frac{n+s}{2}!}\right) = \frac{1}{n} \left(\frac{n+s}{2} - \frac{n-s}{2}\right) = \frac{s}{n} = \frac{a-b}{a+b}.$$

 1 [KS, Sect. 6.2, Lemma 6.6], [D, Sect. 3.3].

Here is another use of reflection. Let us say that k is a point of increase if

$$S_l < S_k \quad \text{for } l = 0, \dots, k - 1,$$

$$S_l \ge S_k \quad \text{for } l = k + 1, \dots, n.$$

4a9 Proposition. The expected number of points of increase is equal to 1.

However, it is well-known that for large n the walk typically has no points of increase. A paradox! What do you think? A clue: I tried 1000 paths of length n = 100 and got the following empirical distribution for the number of points of increase:

value	0	1	2	3	4	5	6	7	8	9	10	11	12	14	19	21
occurs	722	63	45	41	34	24	20	9	14	8	7	1	4	4	2	2

Proof of 4a9. Consider events

 $\begin{array}{ll} A_k: & k \text{ is a point of increase, that is,} \\ & S_0 < S_k, \dots, S_{k-1} < S_k, \ S_{k+1} \geq S_k, \dots, S_n \geq S_k; \\ B_k: & k \text{ is the first maximizer, that is,} \\ & S_0 < S_k, \dots, S_{k-1} < S_k, \ S_{k+1} \leq S_k, \dots, S_n \leq S_k. \end{array}$

We have $\mathbb{P}(A_k) = \mathbb{P}(B_k)$ for each k, since $(x_1, \ldots, x_n) \in A_k$ if and only if $(x_1, \ldots, x_k, -x_{k+1}, \ldots, -x_n) \in B_k$. The expected number of points of increase $\sum \mathbb{P}(A_k)$ is equal to $\sum \mathbb{P}(B_k) = 1$ (exactly one first maximizer).

4b Recurrence

The two-dimensional simple random walk is $S_n = X_1 + \cdots + X_n$ where X_k are independent identically distributed two-dimensional random vectors taking on the four values (1,0), (-1,0), (0,1), (0,-1) with equal probabilities (0.25). (Note that the first coordinate is *not* a one-dimensional simple random walk.) The *d*-dimensional simple random walk is defined similarly.

4b1 Theorem. ¹ (Polya) The simple *d*-dimensional random walk returns to the origin (almost surely) infinitely many times if $1 \le d \le 2$ (recurrence), but only finitely many times if $d \ge 3$ (transience).

¹[D, Sect. 3.2, Th. (2.3)]; [KS, Sect. 6.1, Th. 6.5].

'A drunk man will find his way home but a drunk bird may get lost forever' (Kakutani).

The proof uses Propositions 4b2 and 4b3.

Denote by $p_n^{(d)}$ the probability of the event $S_n = 0$ for the *d*-dimensional simple random walk (S_0, \ldots, S_n) . Clearly, $p_n^{(d)} = 0$ for odd n.

4b2 Proposition.¹

$$p_{2n}^{(1)} = 2^{-2n} \binom{2n}{n};$$

$$p_{2n}^{(2)} = (p_{2n}^{(1)})^2 = 4^{-2n} \binom{2n}{n}^2;$$

$$p_{2n}^{(3)} = 6^{-2n} \binom{2n}{n} \sum_{k+l+m=n} \binom{n}{k,l,m}^2.$$

Note that $p_{2n}^{(3)} \neq (p_{2n}^{(1)})^3$. A *d*-dimensional random walk (general, not just simple) is $S_n = X_1 + \cdots +$ X_n where X_k are independent identically distributed d-dimensional random vectors (their common distribution being arbitrary).

4b3 Proposition.² The following three conditions are equivalent for every d-dimensional random walk $(S_n)_n$:

- (a) $S_n = 0$ for at least one $n \ge 1$, almost surely;
- (b) $S_n = 0$ for infinitely many n, almost surely; (c) $\sum_{n=1}^{\infty} \mathbb{P}(S_n = 0) = \infty$.

Proof of 4b1, assuming 4b2 and 4b3. Case d = 1: by 1a13, $p_{2n}^{(1)} \sim \frac{2}{\sqrt{2\pi \cdot 2n}}$ Thus, $\sum p_{2n}^{(1)} = \infty$. Use 4b3.

Case d = 2: by 4b2 and the above, $p_{2n}^{(2)} = (p_{2n}^{(1)})^2 \sim \frac{4}{2\pi \cdot 2n}$. Still, a divergent series.

Case d = 3. First, by 4b3 it is sufficient to prove that the series converges. To this end it is sufficient to prove that

$$\sum_{k+l+m=n} \binom{n}{k,l,m}^2 \le \operatorname{const} \cdot \frac{3^{2n}}{n},$$

since $p_{2n}^{(3)} = p_{2n}^{(1)} \cdot 3^{-2n} \sum_{k+l+m=n} {\binom{n}{k,l,m}}^2$ by 4b2, and $\sum \frac{1}{n} p_{2n}^{(1)} < \infty$.

 1 [D, Sect. 3.2].

²[D, Sect. 3.2, Th. (2.2)]; [KS, Sect. 6.1, Lemma 6.4].

Second, it is sufficient to prove that

$$\max_{k+l+m=n} \binom{n}{k,l,m} \le \operatorname{const} \cdot \frac{3^n}{n},$$

since $\sum_{k+l+m=n} {n \choose k,l,m} = 3^n$, and $\sum_{k,l,m} {n \choose k,l,m}^2 \le \max {n \choose k,l,m} \cdot \sum_{k,l,m} {n \choose k,l,m}$. Third, we may assume $n \in 3\mathbb{Z}$, since the maximum is increasing in n; indeed, ${n+1 \choose k+1,l,m} \ge {n \choose k,l,m}$.

The maximum is reached at k = l = m = n/3 only (think, why). It remains to prove that

$$\binom{n}{n/3, n/3, n/3} \le \operatorname{const} \cdot \frac{3^n}{n} \quad \text{for } n \in 3\mathbb{Z},$$

which follows easily from the Stirling formula (check it).

Case d > 3. We take the 3-dimensional projection of the d-dimensional walk, discard adjacent equal points, and get the 3-dimensional simple random walk; eventually it leaves the origin forever.¹

Proof of 4b2. Case d = 1: we choose n positions for -1 among the given 2n positions $\binom{2n}{n}$ possibilities).

Case d = 2: let $S_k = (S'_k, S''_k)$, then $S'_k - S''_k$ and $S'_k + S''_k$ are independent 1-dimensional simple random walks.

Case d = 3: we should have a sum like this:

$$-e_2 + e_3 + e_3 + e_1 - e_3 + e_2 - e_1 - e_3 = 0;$$

we choose the signs first $\binom{2n}{n}$ possibilities); then, among the *n* minus terms, we choose some k positions for e_1 , l positions for e_2 and m positions for $e_3 \binom{n}{k,l,m}$ possibilities), and the same among the *n* plus terms (also $\binom{n}{k,l,m}$ possibilities).

By the way, you may try to do it otherwise: first, choose 2k positions for $\pm e_1$, 2l positions for $\pm e_2$ and 2m positions for $\pm e_3$, and then choose the signs... Try it also for d = 2...

Toward 4b3

Given a random walk (S_n) (general, not just simple; *n*-dimensional), we define $\tau_1, \tau_2, \cdots : \Omega \to \{1, 2, \dots\} \cup \{\infty\}$:

$$\tau_1 = \inf\{n > 0 : S_n = 0\}; \quad \tau_2 = \inf\{n > \tau_1 : S_n = 0\}; \text{ and so on}$$

¹In fact, $p_{2n}^{(d)} \sim \text{const}(d)/n^{d/2}$.

Can we say that random variables $\tau_{n+1} - \tau_n$ are independent, identically distributed? Not quite; it may happen that $\tau_n = \infty$, then necessarily $\tau_{n+1} = \infty$, and $\tau_{n+1} - \tau_n$ is not defined. But still, (4b4) $\mathbb{P}(\tau_1 = t_1, \tau_2 - \tau_1 = t_2, \dots, \tau_n - \tau_{n-1} = t_n) = \mathbb{P}(\tau_1 = t_1) \dots \mathbb{P}(\tau_1 = t_n)$ for all *n* and all $t_1, \dots, t_n \in \{1, 2, \dots\}$. (Infinity disallowed!) *Proof of* (4b4) for n = 2. Consider sets (here $s_i = x_1 + \dots + x_i$) $A = \{(x_1, \dots, x_{k+l}) : s_1 \neq 0, \dots, s_{k-1} \neq 0, s_k = 0, s_{k+1} \neq 0, \dots, s_{k+l-1} \neq 0, s_{k+l} = 0\};$ $B = \{(x_1, \dots, x_k) : s_1 \neq 0, \dots, s_{l-1} \neq 0, s_l = 0\};$ $C = \{(x_1, \dots, x_l) : s_1 \neq 0, \dots, s_{l-1} \neq 0, s_l = 0\}.$

TAU 2013

We have $A = B \times C$;

$$\mathbb{P}(\tau_{1} = k, \tau_{2} = k+l) = \int \mathbb{1}_{A} d\mu^{k+l} = \int_{\mathbb{R}^{k+l}} \mathbb{1}_{A}(x_{1}, \dots, x_{k+l}) \,\mu(dx_{1}) \dots \mu(dx_{k+l}) = \\
= \int_{\mathbb{R}^{k+l}} \mathbb{1}_{B}(x_{1}, \dots, x_{k}) \,\mathbb{1}_{C}(x_{k+1}, \dots, x_{k+l}) \,\mu(dx_{1}) \dots \mu(dx_{k+l}) = \\
\left(\int_{\mathbb{R}^{k}} \mathbb{1}_{B}(x_{1}, \dots, x_{k}) \,\mu(dx_{1}) \dots \mu(dx_{k})\right) \left(\int_{\mathbb{R}^{l}} \mathbb{1}_{C}(x_{k+1}, \dots, x_{k+l}) \,\mu(dx_{k+1}) \dots \mu(dx_{k+l})\right) \\
= \left(\int \mathbb{1}_{B} \,d\mu^{k}\right) \left(\int \mathbb{1}_{C} \,d\mu^{l}\right) = \mathbb{P}\left(\tau_{1} = k\right) \mathbb{P}\left(\tau_{1} = l\right).$$

The proof for any n is similar. Thus,

$$\mathbb{P}(\tau_2 < \infty) = \sum_{k,l} \mathbb{P}(\tau_1 = k, \tau_2 = k+l) = \sum_{k,l} \mathbb{P}(\tau_1 = k) \mathbb{P}(\tau_1 = l) =$$
$$= \left(\sum_k \mathbb{P}(\tau_1 = k)\right)^2 = \left(\mathbb{P}(\tau_1 < \infty)\right)^2;$$

similarly,

(4b5)
$$\mathbb{P}(\tau_n < \infty) = (\mathbb{P}(\tau_1 < \infty))^n.$$

Proof of 4b3. We reformulate the conditions in terms of τ_n : (a) $\mathbb{P}(\tau_1 < \infty) = 1$; (b) $\mathbb{P}(\tau_n < \infty) = 1$ for all n; (c) $\mathbb{E} \sup\{n : \tau_n < \infty\} = \infty$. Trivially, (b) implies both (a) and (c). By (4b5), (a) implies (b). Finally, (c) implies (a), since $\max\{n : \tau_n < \infty\}$ cannot be distributed geometrically and have infinite expectation.