Contents

4 Random walks 40
4a Reflection 40
4b Recurrence 43

4 Random walks

4a Reflection

Consider the one-dimensional simple random walk: $S_{n}=X_{1}+\cdots+X_{n}$ (where X_{k} are independent random signs, as in 1a), and let $M_{n}=\max \left(S_{0}, \ldots, S_{n}\right)$. We know the distribution of $S_{n}: \mathbb{P}\left(S_{n}=m\right)=2^{-n}\binom{n}{\frac{n+m}{2}}$ for $m=-n$, $-n+2, \ldots, n$. Interestingly, we can calculate the distribution of M_{n}, and moreover, the joint distribution of S_{n} and M_{n}.

4a1 Proposition. For every $m \geq 0$,

$$
\begin{aligned}
\mathbb{P}\left(M_{n}=m\right)=\mathbb{P}\left(S_{n}=m\right)+\mathbb{P}\left(S_{n}\right. & =m+1)= \\
& =2^{-n} \cdot \begin{cases}\left(\frac{n}{2} \pm \frac{m}{2}\right) & \text { for } m+n \text { even }, \\
\left.\frac{n}{2} \pm \frac{m+1}{2}\right) & \text { for } m+n \text { odd. }\end{cases}
\end{aligned}
$$

4a2 Lemma. $\mathbb{E}\left(f\left(S_{n}-m\right) \mathbb{1}_{M_{n} \geq m}\right)=0$ for all $m \geq 0$ and every odd (antisymmetric) function $f .{ }^{1}$

In other words, the conditional distribution (if defined) is symmetric around m.

Proof. For $m=0$: trivial. For $m>0$: define "first hit" events

$$
A_{k}=\left\{S_{1}<m, \ldots, S_{k-1}<m, S_{k}=m\right\} \quad \text { for } k=1, \ldots, n ;
$$

clearly, $A_{1} \uplus \cdots \uplus A_{n}=\left\{M_{n} \geq m\right\}$; it is sufficient to prove that $\mathbb{E}\left(f\left(S_{n}-m\right) \mathbb{1}_{A_{k}}\right)=0$ for all k.

In terms of the corresponding sets $B_{k} \subset \mathbb{R}^{k}$ defined by
$B_{k}=\left\{\left(x_{1}, \ldots, x_{k}\right): x_{1}<m, x_{1}+x_{2}<m, \ldots, x_{1}+\cdots+x_{k-1}<m, x_{1}+\cdots+x_{k}=m\right\}$

[^0]we have
\[

$$
\begin{aligned}
& \mathbb{E}\left(f\left(S_{n}-m\right) \mathbb{1}_{A_{k}}\right)=2^{-n} \sum_{x_{1}, \ldots, x_{n}= \pm 1} f\left(x_{1}+\cdots+x_{n}-m\right) \mathbb{1}_{B_{k}}\left(x_{1}, \ldots, x_{k}\right)= \\
= & 2^{-n} \sum_{x_{1}, \ldots, x_{k}= \pm 1} \mathbb{1}_{B_{k}}\left(x_{1}, \ldots, x_{k}\right) \sum_{x_{k+1}, \ldots, x_{n}= \pm 1} f\left(m+x_{k+1}+\cdots+x_{n}-m\right)=0 .
\end{aligned}
$$
\]

4a3 Corollary. $\mathbb{E}\left(f\left(S_{n}-m\right) \mathbb{1}_{M_{n}<m}\right)=\mathbb{E}\left(f\left(S_{n}-m\right)\right)$ for $m \geq 0$ and odd functions f.
4a4 Lemma. $\mathbb{P}\left(M_{n}<m\right)=\mathbb{P}\left(S_{n}<m\right)-\mathbb{P}\left(S_{n}>m\right)$ for all $m \geq 0$.
Proof. Applying 4a3 to $f=\operatorname{sgn}$ and noting that $S_{n} \leq M_{n}$ we get $-\mathbb{P}\left(M_{n}<\right.$ $m)=\mathbb{P}\left(S_{n}-m>0\right)-\mathbb{P}\left(S_{n}-m<0\right)$.

Proof of $4 a 1$.

$$
\begin{aligned}
& \mathbb{P}\left(M_{n}=m\right)=\mathbb{P}\left(M_{m}<m+1\right)-\mathbb{P}\left(M_{n}<m\right)= \\
& =\mathbb{P}\left(S_{n}<m+1\right)-\mathbb{P}\left(S_{n}>m+1\right)-\mathbb{P}\left(S_{n}<m\right)+\mathbb{P}\left(S_{n}>m\right)= \\
& \quad=\mathbb{P}\left(S_{n}=m\right)+\mathbb{P}\left(S_{n}=m+1\right) .
\end{aligned}
$$

4a5 Proposition. For every s, m such that $m \geq 0$ and $m \geq s$,

$$
\mathbb{P}\left(S_{n}=s, M_{n}=m\right)=\mathbb{P}\left(S_{n}=2 m-s\right)-\mathbb{P}\left(S_{n}=2 m-s+2\right)
$$

4a6 Lemma. $\mathbb{P}\left(S_{n}=m-c, M_{n}<m\right)=\mathbb{P}\left(S_{n}=m-c\right)-\mathbb{P}\left(S_{n}=m+c\right)$ for all $m \geq 0$ and $c \geq 0$.

Proof. For $c=0$: trivial. For $c>0$: apply 4a3 to $f(c)=-1, f(-c)=1$, $f(\cdot)=0$ otherwise.

In other words,

$$
\mathbb{P}\left(S_{n}=s, M_{n}<m\right)=\mathbb{P}\left(S_{n}=s\right)-\mathbb{P}\left(S_{n}=2 m-s\right)
$$

for all $m \geq 0$ and $s \leq m$.

Proof of $4 a 5$.

$$
\begin{array}{r}
\mathbb{P}\left(S_{n}=s, M_{n}=m\right)=\mathbb{P}\left(S_{n}=s, M_{n}<m+1\right)-\mathbb{P}\left(S_{n}=s, M_{n}<m\right)= \\
=\left(\mathbb{P}\left(S_{n}=s\right)-\mathbb{P}\left(S_{n}=2(m+1)-s\right)\right)-\left(\mathbb{P}\left(S_{n}=s\right)-\mathbb{P}\left(S_{n}=2 m-s\right)\right)= \\
=\mathbb{P}\left(S_{n}=2 m-s\right)-\mathbb{P}\left(S_{n}=2 m-s+2\right) .
\end{array}
$$

4a7 Proposition. ${ }^{1}$

For every a, b such that $a>b \geq 0$,

$$
\mathbb{P}\left(S_{1}>0, \ldots, S_{a+b}>0 \mid S_{a+b}=a-b\right)=\frac{a-b}{a+b}
$$

The latter is well-known as 'the ballot theorem' (1878): "Suppose that in an election candidate A gets a votes and candidate B gets b votes where $b<a$. Then the (conditional) probability that throughout the counting A always beats B is $(a-b) /(a+b)$."

4a8 Lemma. $\mathbb{P}\left(S_{1}<0, \ldots, S_{n}<0 ; S_{n}=-c\right)=\frac{1}{2} \mathbb{P}\left(S_{n-1}=c-1\right)-$ $\frac{1}{2} \mathbb{P}\left(S_{n-1}=c+1\right)$ for $c \geq 0$.

Proof.

$$
\begin{aligned}
& \mathbb{P}\left(S_{1}<0, \ldots, S_{n}<0 ; S_{n}=-c\right)= \\
& \quad \mathbb{P}\left(S_{1}=-1 ; S_{2}-S_{1} \leq 0, \ldots, S_{n}-S_{1} \leq 0 ; S_{n}-S_{1}=-c+1\right)= \\
& \frac{1}{2} \mathbb{P}\left(S_{1} \leq 0, \ldots, S_{n-1} \leq 0 ; S_{n-1}=-c+1\right)=\frac{1}{2} \mathbb{P}\left(M_{n-1}<1 ; S_{n-1}=-c+1\right)= \\
& \quad \quad=\frac{1}{2}\left(\mathbb{P}\left(S_{n-1}=-c+1\right)-\mathbb{P}\left(S_{n-1}=2 \cdot 1-(-c+1)\right)\right)
\end{aligned}
$$

since $\left(S_{2}-S_{1}, \ldots, S_{n}-S_{1}\right) \sim\left(S_{1}, \ldots, S_{n-1}\right)$.
In other words, $\mathbb{P}\left(S_{1}>0, \ldots, S_{n}>0 ; S_{n}=s\right)=\frac{1}{2} \mathbb{P}\left(S_{n-1}=s-1\right)-$ $\frac{1}{2} \mathbb{P}\left(S_{n-1}=s+1\right)$ for all $s \geq 0$.
Proof of 4a7. Denoting $n=a+b$ and $s=a-b$ we have

$$
\begin{gathered}
\mathbb{P}\left(S_{1}>0, \ldots, S_{a+b}>0 ; S_{a+b}=a-b\right)=\mathbb{P}\left(S_{1}>0, \ldots, S_{n}>0 ; S_{n}=s\right)= \\
=\frac{1}{2} \mathbb{P}\left(S_{n-1}=s-1\right)-\frac{1}{2} \mathbb{P}\left(S_{n-1}=s+1\right) ; \\
\mathbb{P}\left(S_{1}>0, \ldots, S_{a+b}>0 \mid S_{a+b}=a-b\right)=\frac{\mathbb{P}\left(S_{n-1}=s-1\right)-\mathbb{P}\left(S_{n-1}=s+1\right)}{2 \mathbb{P}\left(S_{n}=s\right)} \\
=\frac{2^{-(n-1)}\binom{n-1}{\frac{n-1}{2} \pm \frac{s-1}{2}}-2^{-(n-1)}\binom{n-1}{\frac{n-1}{2} \pm \frac{s+1}{2}}}{2 \cdot 2^{-n}\left(\frac{n}{2} \pm \frac{s}{2}\right)}= \\
\frac{\frac{n-s}{2}!\frac{n+s}{2}!}{n!}\left(\frac{(n-1)!}{\frac{n-s!}{2}!\left(\frac{n+s}{2}-1\right)!}-\frac{(n-1)!}{\left(\frac{n-s}{2}-1\right)!\frac{n+s}{2}!}\right)=\frac{1}{n}\left(\frac{n+s}{2}-\frac{n-s}{2}\right)=\frac{s}{n}=\frac{a-b}{a+b} .
\end{gathered}
$$

[^1]Here is another use of reflection. Let us say that k is a point of increase if

$$
\begin{array}{ll}
S_{l}<S_{k} & \text { for } l=0, \ldots, k-1 \\
S_{l} \geq S_{k} & \text { for } l=k+1, \ldots, n
\end{array}
$$

4 a 9 Proposition. The expected number of points of increase is equal to 1 .
However, it is well-known that for large n the walk typically has no points of increase. A paradox! What do you think? A clue: I tried 1000 paths of length $n=100$ and got the following empirical distribution for the number of points of increase:

value	0	1	2	3	4	5	6	7	8	9	10	11	12	14	19	21
occurs	722	63	45	41	34	24	20	9	14	8	7	1	4	4	2	2

Proof of 4a9. Consider events
$A_{k}: \quad k$ is a point of increase, that is,

$$
S_{0}<S_{k}, \ldots, S_{k-1}<S_{k}, S_{k+1} \geq S_{k}, \ldots, S_{n} \geq S_{k}
$$

$B_{k}: k$ is the first maximizer, that is,

$$
S_{0}<S_{k}, \ldots, S_{k-1}<S_{k}, S_{k+1} \leq S_{k}, \ldots, S_{n} \leq S_{k}
$$

We have $\mathbb{P}\left(A_{k}\right)=\mathbb{P}\left(B_{k}\right)$ for each k, since $\left(x_{1}, \ldots, x_{n}\right) \in A_{k}$ if and only if $\left(x_{1}, \ldots, x_{k},-x_{k+1}, \ldots,-x_{n}\right) \in B_{k}$. The expected number of points of increase $\sum \mathbb{P}\left(A_{k}\right)$ is equal to $\sum \mathbb{P}\left(B_{k}\right)=1$ (exactly one first maximizer).

4b Recurrence

The two-dimensional simple random walk is $S_{n}=X_{1}+\cdots+X_{n}$ where X_{k} are independent identically distributed two-dimensional random vectors taking on the four values $(1,0),(-1,0),(0,1),(0,-1)$ with equal probabilities (0.25). (Note that the first coordinate is not a one-dimensional simple random walk.) The d-dimensional simple random walk is defined similarly.

4b1 Theorem. ${ }^{1}$ (Polya) The simple d-dimensional random walk returns to the origin (almost surely) infinitely many times if $1 \leq d \leq 2$ (recurrence), but only finitely many times if $d \geq 3$ (transience).

[^2]'A drunk man will find his way home but a drunk bird may get lost forever' (Kakutani).

The proof uses Propositions 4b2 and 4b3,
Denote by $p_{n}^{(d)}$ the probability of the event $S_{n}=0$ for the d-dimensional simple random walk $\left(S_{0}, \ldots, S_{n}\right)$. Clearly, $p_{n}^{(d)}=0$ for odd n.

4b2 Proposition. ${ }^{1}$

$$
\begin{aligned}
& p_{2 n}^{(1)}=2^{-2 n}\binom{2 n}{n} ; \\
& p_{2 n}^{(2)}=\left(p_{2 n}^{(1)}\right)^{2}=4^{-2 n}\binom{2 n}{n}^{2} ; \\
& p_{2 n}^{(3)}=6^{-2 n}\binom{2 n}{n} \sum_{k+l+m=n}\binom{n}{k, l, m}^{2} .
\end{aligned}
$$

Note that $p_{2 n}^{(3)} \neq\left(p_{2 n}^{(1)}\right)^{3}$.
A d-dimensional random walk (general, not just simple) is $S_{n}=X_{1}+\cdots+$ X_{n} where X_{k} are independent identically distributed d-dimensional random vectors (their common distribution being arbitrary).

4b3 Proposition. ${ }^{2}$ The following three conditions are equivalent for every d-dimensional random walk $\left(S_{n}\right)_{n}$:
(a) $S_{n}=0$ for at least one $n \geq 1$, almost surely;
(b) $S_{n}=0$ for infinitely many n, almost surely;
(c) $\sum_{n=1}^{\infty} \mathbb{P}\left(S_{n}=0\right)=\infty$.

Proof of 4b1, assuming 4b2 and 4b3. Case $d=1$: by 1a13, $p_{2 n}^{(1)} \sim \frac{2}{\sqrt{2 \pi \cdot 2 n}}$. Thus, $\sum p_{2 n}^{(1)}=\infty$. Use 4b3.

Case $d=2$: by 4b2 and the above, $p_{2 n}^{(2)}=\left(p_{2 n}^{(1)}\right)^{2} \sim \frac{4}{2 \pi \cdot 2 n}$. Still, a divergent series.

Case $d=3$. First, by 4b3 it is sufficient to prove that the series converges. To this end it is sufficient to prove that

$$
\sum_{k+l+m=n}\binom{n}{k, l, m}^{2} \leq \text { const } \cdot \frac{3^{2 n}}{n}
$$

since $p_{2 n}^{(3)}=p_{2 n}^{(1)} \cdot 3^{-2 n} \sum_{k+l+m=n}\binom{n}{k, l, m}^{2}$ by 4b2, and $\sum \frac{1}{n} p_{2 n}^{(1)}<\infty$.

[^3]Second, it is sufficient to prove that

$$
\max _{k+l+m=n}\binom{n}{k, l, m} \leq \text { const } \cdot \frac{3^{n}}{n}
$$

since $\sum_{k+l+m=n}\binom{n}{k, l, m}=3^{n}$, and $\sum_{i}\binom{n}{k, l, m}^{2} \leq \max \binom{n}{k, l, m} \cdot \sum\binom{n}{k, l, m}$.
Third, we may assume $n \in 3 \mathbb{Z}$, since the maximum is increasing in n; indeed, $\binom{n+1}{k+1, l, m} \geq\binom{ n}{k, l, m}$.

The maximum is reached at $k=l=m=n / 3$ only (think, why). It remains to prove that

$$
\binom{n}{n / 3, n / 3, n / 3} \leq \mathrm{const} \cdot \frac{3^{n}}{n} \quad \text { for } n \in 3 \mathbb{Z}
$$

which follows easily from the Stirling formula (check it).
Case $d>3$. We take the 3 -dimensional projection of the d-dimensional walk, discard adjacent equal points, and get the 3 -dimensional simple random walk; eventually it leaves the origin forever. ${ }^{1}$

Proof of 4b2. Case $d=1$: we choose n positions for -1 among the given $2 n$ positions ($\binom{2 n}{n}$ possibilities).

Case $d=2$: let $S_{k}=\left(S_{k}^{\prime}, S_{k}^{\prime \prime}\right)$, then $S_{k}^{\prime}-S_{k}^{\prime \prime}$ and $S_{k}^{\prime}+S_{k}^{\prime \prime}$ are independent 1-dimensional simple random walks.

Case $d=3$: we should have a sum like this:

$$
-e_{2}+e_{3}+e_{3}+e_{1}-e_{3}+e_{2}-e_{1}-e_{3}=0
$$

we choose the signs first $\binom{2 n}{n}$ possibilities); then, among the n minus terms, we choose some k positions for e_{1}, l positions for e_{2} and m positions for $e_{3}\binom{n}{k, l, m}$ possibilities), and the same among the n plus terms (also $\binom{n}{k, l, m}$ possibilities).

By the way, you may try to do it otherwise: first, choose $2 k$ positions for $\pm e_{1}, 2 l$ positions for $\pm e_{2}$ and $2 m$ positions for $\pm e_{3}$, and then choose the signs... Try it also for $d=2 \ldots$

Toward 4b3
Given a random walk $\left(S_{n}\right)$ (general, not just simple; n-dimensional), we define $\tau_{1}, \tau_{2}, \cdots: \Omega \rightarrow\{1,2, \ldots\} \cup\{\infty\}$:

$$
\tau_{1}=\inf \left\{n>0: S_{n}=0\right\} ; \quad \tau_{2}=\inf \left\{n>\tau_{1}: S_{n}=0\right\} ; \text { and so on. }
$$

[^4]Can we say that random variables $\tau_{n+1}-\tau_{n}$ are independent, identically distributed? Not quite; it may happen that $\tau_{n}=\infty$, then necessarily $\tau_{n+1}=$ ∞, and $\tau_{n+1}-\tau_{n}$ is not defined. But still,

$$
\begin{equation*}
\mathbb{P}\left(\tau_{1}=t_{1}, \tau_{2}-\tau_{1}=t_{2}, \ldots, \tau_{n}-\tau_{n-1}=t_{n}\right)=\mathbb{P}\left(\tau_{1}=t_{1}\right) \ldots \mathbb{P}\left(\tau_{1}=t_{n}\right) \tag{4b4}
\end{equation*}
$$

for all n and all $t_{1}, \ldots, t_{n} \in\{1,2, \ldots\}$. (Infinity disallowed!)
Proof of (4b4) for $n=2$. Consider sets (here $s_{i}=x_{1}+\cdots+x_{i}$)

$$
\begin{gathered}
A=\left\{\left(x_{1}, \ldots, x_{k+l}\right): s_{1} \neq 0, \ldots, s_{k-1} \neq 0, s_{k}=0, s_{k+1} \neq 0, \ldots, s_{k+l-1} \neq 0, s_{k+l}=0\right\} ; \\
B=\left\{\left(x_{1}, \ldots, x_{k}\right): s_{1} \neq 0, \ldots, s_{k-1} \neq 0, s_{k}=0\right\} ; \\
C=\left\{\left(x_{1}, \ldots, x_{l}\right): s_{1} \neq 0, \ldots, s_{l-1} \neq 0, s_{l}=0\right\} .
\end{gathered}
$$

We have $A=B \times C$;

$$
\begin{gathered}
\mathbb{P}\left(\tau_{1}=k, \tau_{2}=k+l\right)=\int \mathbb{1}_{A} \mathrm{~d} \mu^{k+l}=\int_{\mathbb{R}^{k+l}} \mathbb{1}_{A}\left(x_{1}, \ldots, x_{k+l}\right) \mu\left(\mathrm{d} x_{1}\right) \ldots \mu\left(\mathrm{d} x_{k+l}\right)= \\
=\int_{\mathbb{R}^{k+l}} \mathbb{1}_{B}\left(x_{1}, \ldots, x_{k}\right) \mathbb{1}_{C}\left(x_{k+1}, \ldots, x_{k+l}\right) \mu\left(\mathrm{d} x_{1}\right) \ldots \mu\left(\mathrm{d} x_{k+l}\right)= \\
\left(\int_{\mathbb{R}^{k}} \mathbb{1}_{B}\left(x_{1}, \ldots, x_{k}\right) \mu\left(\mathrm{d} x_{1}\right) \ldots \mu\left(\mathrm{d} x_{k}\right)\right)\left(\int_{\mathbb{R}^{l}} \mathbb{1}_{C}\left(x_{k+1}, \ldots, x_{k+l}\right) \mu\left(\mathrm{d} x_{k+1}\right) \ldots \mu\left(\mathrm{d} x_{k+l}\right)\right) \\
=\left(\int \mathbb{1}_{B} \mathrm{~d} \mu^{k}\right)\left(\int \mathbb{1}_{C} \mathrm{~d} \mu^{l}\right)=\mathbb{P}\left(\tau_{1}=k\right) \mathbb{P}\left(\tau_{1}=l\right) .
\end{gathered}
$$

The proof for any n is similar.
Thus,

$$
\begin{aligned}
\mathbb{P}\left(\tau_{2}<\infty\right)=\sum_{k, l} \mathbb{P}\left(\tau_{1}=k, \tau_{2}=\right. & k+l)=\sum_{k, l} \mathbb{P}\left(\tau_{1}=k\right) \mathbb{P}\left(\tau_{1}=l\right)= \\
& =\left(\sum_{k} \mathbb{P}\left(\tau_{1}=k\right)\right)^{2}=\left(\mathbb{P}\left(\tau_{1}<\infty\right)\right)^{2}
\end{aligned}
$$

similarly,

$$
\begin{equation*}
\mathbb{P}\left(\tau_{n}<\infty\right)=\left(\mathbb{P}\left(\tau_{1}<\infty\right)\right)^{n} \tag{4b5}
\end{equation*}
$$

Proof of 4b3. We reformulate the conditions in terms of τ_{n} : (a) $\mathbb{P}\left(\tau_{1}<\right.$ $\infty)=1$; (b) $\mathbb{P}\left(\tau_{n}<\infty\right)=1$ for all n; (c) $\mathbb{E} \sup \left\{n: \tau_{n}<\infty\right\}=\infty$. Trivially, (b) implies both (a) and (c). By (4b5), (a) implies (b). Finally, (c) implies (a), since max $\left\{n: \tau_{n}<\infty\right\}$ cannot be distributed geometrically and have infinite expectation.

[^0]: ${ }^{1}$ That is, $\forall x f(-x)=-f(x)$.

[^1]: ${ }^{1}$ [KS, Sect. 6.2, Lemma 6.6], [D, Sect. 3.3].

[^2]: ${ }^{1}$ [D, Sect. 3.2, Th. (2.3)]; [KS, Sect. 6.1, Th. 6.5].

[^3]: ${ }^{1}$ [D, Sect. 3.2].
 ${ }^{2}$ [D, Sect. 3.2, Th. (2.2)]; [KS, Sect. 6.1, Lemma 6.4].

[^4]: ${ }^{1}$ In fact, $p_{2 n}^{(d)} \sim \operatorname{const}(d) / n^{d / 2}$.

