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4 Random walks

4a Reflection

Consider the one-dimensional simple random walk: Sn = X1+· · ·+Xn (where
Xk are independent random signs, as in 1a), and let Mn = max(S0, . . . , Sn).
We know the distribution of Sn: P

(

Sn = m
)

= 2−n
(

n
n+m

2

)

for m = −n,

−n + 2, . . . , n. Interestingly, we can calculate the distribution of Mn, and
moreover, the joint distribution of Sn and Mn.

4a1 Proposition. For every m ≥ 0,

P
(

Mn = m
)

= P
(

Sn = m
)

+ P
(

Sn = m+ 1
)

=

= 2−n ·

{
(

n
n

2
±m

2

)

for m+ n even,
(

n
n

2
±m+1

2

)

for m+ n odd.

4a2 Lemma. E
(

f(Sn −m)1lMn≥m

)

= 0 for all m ≥ 0 and every odd (anti-
symmetric) function f .1

In other words, the conditional distribution (if defined) is symmetric
around m.

Proof. For m = 0: trivial. For m > 0: define “first hit” events

Ak = {S1 < m, . . . , Sk−1 < m,Sk = m} for k = 1, . . . , n ;

clearly, A1 ⊎ · · · ⊎ An = {Mn ≥ m}; it is sufficient to prove that
E
(

f(Sn −m)1lAk

)

= 0 for all k.
In terms of the corresponding sets Bk ⊂ R

k defined by

Bk = {(x1, . . . , xk) : x1 < m, x1+x2 < m, . . . , x1+· · ·+xk−1 < m, x1+· · ·+xk = m}

1That is, ∀x f(−x) = −f(x).
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we have

E
(

f(Sn −m)1lAk

)

= 2−n
∑

x1,...,xn=±1

f(x1 + · · ·+ xn −m)1lBk
(x1, . . . , xk) =

= 2−n
∑

x1,...,xk=±1

1lBk
(x1, . . . , xk)

∑

xk+1,...,xn=±1

f(m+xk+1+· · ·+xn−m) = 0 .

4a3 Corollary. E
(

f(Sn −m)1lMn<m

)

= E
(

f(Sn −m)
)

for m ≥ 0 and odd
functions f .

4a4 Lemma. P
(

Mn < m
)

= P
(

Sn < m
)

− P
(

Sn > m
)

for all m ≥ 0.

Proof. Applying 4a3 to f = sgn and noting that Sn ≤ Mn we get −P
(

Mn <
m
)

= P
(

Sn −m > 0
)

− P
(

Sn −m < 0
)

.

Proof of 4a1.

P
(

Mn = m
)

= P
(

Mm < m+ 1
)

− P
(

Mn < m
)

=

= P
(

Sn < m+ 1
)

− P
(

Sn > m+ 1
)

− P
(

Sn < m
)

+ P
(

Sn > m
)

=

= P
(

Sn = m
)

+ P
(

Sn = m+ 1
)

.

4a5 Proposition. For every s,m such that m ≥ 0 and m ≥ s,

P
(

Sn = s,Mn = m
)

= P
(

Sn = 2m− s
)

− P
(

Sn = 2m− s+ 2
)

.

4a6 Lemma. P
(

Sn = m− c,Mn < m
)

= P
(

Sn = m− c
)

−P
(

Sn = m+ c
)

for all m ≥ 0 and c ≥ 0.

Proof. For c = 0: trivial. For c > 0: apply 4a3 to f(c) = −1, f(−c) = 1,
f(·) = 0 otherwise.

In other words,

P
(

Sn = s,Mn < m
)

= P
(

Sn = s
)

− P
(

Sn = 2m− s
)

for all m ≥ 0 and s ≤ m.

Proof of 4a5.

P
(

Sn = s,Mn = m
)

= P
(

Sn = s,Mn < m+ 1
)

− P
(

Sn = s,Mn < m
)

=

=
(

P
(

Sn = s
)

−P
(

Sn = 2(m+1)−s
))

−
(

P
(

Sn = s
)

−P
(

Sn = 2m−s
))

=

= P
(

Sn = 2m− s
)

− P
(

Sn = 2m− s+ 2
)

.
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4a7 Proposition. 1

For every a, b such that a > b ≥ 0,

P
(

S1 > 0, . . . , Sa+b > 0
∣

∣Sa+b = a− b
)

=
a− b

a+ b
.

The latter is well-known as ‘the ballot theorem’ (1878): “Suppose that
in an election candidate A gets a votes and candidate B gets b votes where
b < a. Then the (conditional) probability that throughout the counting A
always beats B is (a− b)/(a + b).”

4a8 Lemma. P
(

S1 < 0, . . . , Sn < 0;Sn = −c
)

= 1
2
P
(

Sn−1 = c − 1
)

−
1
2
P
(

Sn−1 = c+ 1
)

for c ≥ 0.

Proof.

P
(

S1 < 0, . . . , Sn < 0;Sn = −c
)

=

P
(

S1 = −1;S2 − S1 ≤ 0, . . . , Sn − S1 ≤ 0;Sn − S1 = −c + 1
)

=
1
2
P
(

S1 ≤ 0, . . . , Sn−1 ≤ 0;Sn−1 = −c+1
)

= 1
2
P
(

Mn−1 < 1;Sn−1 = −c+1
)

=

= 1
2

(

P
(

Sn−1 = −c+ 1
)

− P
(

Sn−1 = 2 · 1− (−c+ 1)
))

,

since (S2 − S1, . . . , Sn − S1) ∼ (S1, . . . , Sn−1).

In other words, P
(

S1 > 0, . . . , Sn > 0;Sn = s
)

= 1
2
P
(

Sn−1 = s − 1
)

−
1
2
P
(

Sn−1 = s+ 1
)

for all s ≥ 0.

Proof of 4a7. Denoting n = a+ b and s = a− b we have

P
(

S1 > 0, . . . , Sa+b > 0;Sa+b = a− b
)

= P
(

S1 > 0, . . . , Sn > 0;Sn = s
)

=

=
1

2
P
(

Sn−1 = s− 1
)

−
1

2
P
(

Sn−1 = s+ 1
)

;

P
(

S1 > 0, . . . , Sa+b > 0
∣

∣Sa+b = a−b
)

=
P
(

Sn−1 = s− 1
)

− P
(

Sn−1 = s + 1
)

2P
(

Sn = s
)

=
2−(n−1)

(

n−1
n−1

2
± s−1

2

)

− 2−(n−1)
(

n−1
n−1

2
± s+1

2

)

2 · 2−n
(

n
n

2
± s

2

) =

n−s
2
!n+s

2
!

n!

(

(n− 1)!
n−s
2
!(n+s

2
− 1)!

−
(n− 1)!

(n−s
2

− 1)!n+s
2
!

)

=
1

n

(n+ s

2
−
n− s

2

)

=
s

n
=

a− b

a+ b
.

1[KS, Sect. 6.2, Lemma 6.6], [D, Sect. 3.3].
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Here is another use of reflection. Let us say that k is a point of increase
if

Sl < Sk for l = 0, . . . , k − 1 ,

Sl ≥ Sk for l = k + 1, . . . , n .

4a9 Proposition. The expected number of points of increase is equal to 1.

However, it is well-known that for large n the walk typically has no points
of increase. A paradox! What do you think? A clue: I tried 1000 paths of
length n = 100 and got the following empirical distribution for the number
of points of increase:

value 0 1 2 3 4 5 6 7 8 9 10 11 12 14 19 21
occurs 722 63 45 41 34 24 20 9 14 8 7 1 4 4 2 2

Proof of 4a9. Consider events

Ak : k is a point of increase, that is,

S0 < Sk, . . . , Sk−1 < Sk, Sk+1 ≥ Sk, . . . , Sn ≥ Sk;

Bk : k is the first maximizer, that is,

S0 < Sk, . . . , Sk−1 < Sk, Sk+1 ≤ Sk, . . . , Sn ≤ Sk .

We have P
(

Ak

)

= P
(

Bk

)

for each k, since (x1, . . . , xn) ∈ Ak if and only
if (x1, . . . , xk,−xk+1, . . . ,−xn) ∈ Bk. The expected number of points of
increase

∑

P
(

Ak

)

is equal to
∑

P
(

Bk

)

= 1 (exactly one first maximizer).

4b Recurrence

The two-dimensional simple random walk is Sn = X1+· · ·+Xn where Xk are
independent identically distributed two-dimensional random vectors taking
on the four values (1, 0), (−1, 0), (0, 1), (0,−1) with equal probabilities (0.25).
(Note that the first coordinate is not a one-dimensional simple random walk.)
The d-dimensional simple random walk is defined similarly.

4b1 Theorem. 1 (Polya) The simple d-dimensional random walk returns to
the origin (almost surely) infinitely many times if 1 ≤ d ≤ 2 (recurrence),
but only finitely many times if d ≥ 3 (transience).

1[D, Sect. 3.2, Th. (2.3)]; [KS, Sect. 6.1, Th. 6.5].
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‘A drunk man will find his way home but a drunk bird may get lost
forever’ (Kakutani).

The proof uses Propositions 4b2 and 4b3.
Denote by p

(d)
n the probability of the event Sn = 0 for the d-dimensional

simple random walk (S0, . . . , Sn). Clearly, p
(d)
n = 0 for odd n.

4b2 Proposition. 1

p
(1)
2n = 2−2n

(

2n

n

)

;

p
(2)
2n = (p

(1)
2n )

2 = 4−2n

(

2n

n

)2

;

p
(3)
2n = 6−2n

(

2n

n

)

∑

k+l+m=n

(

n

k, l,m

)2

.

Note that p
(3)
2n 6= (p

(1)
2n )

3.
A d-dimensional random walk (general, not just simple) is Sn = X1+· · ·+

Xn where Xk are independent identically distributed d-dimensional random
vectors (their common distribution being arbitrary).

4b3 Proposition. 2 The following three conditions are equivalent for every
d-dimensional random walk (Sn)n:

(a) Sn = 0 for at least one n ≥ 1, almost surely;
(b) Sn = 0 for infinitely many n, almost surely;
(c)

∑∞
n=1 P

(

Sn = 0
)

= ∞.

Proof of 4b1, assuming 4b2 and 4b3. Case d = 1: by 1a13, p
(1)
2n ∼ 2√

2π·2n .

Thus,
∑

p
(1)
2n = ∞. Use 4b3.

Case d = 2: by 4b2 and the above, p
(2)
2n =

(

p
(1)
2n

)

2 ∼ 4
2π·2n . Still, a divergent

series.
Case d = 3. First, by 4b3 it is sufficient to prove that the series converges.

To this end it is sufficient to prove that

∑

k+l+m=n

(

n

k, l,m

)2

≤ const ·
32n

n
,

since p
(3)
2n = p

(1)
2n · 3−2n

∑

k+l+m=n

(

n

k,l,m

)2
by 4b2, and

∑

1
n
p
(1)
2n < ∞.

1[D, Sect. 3.2].
2[D, Sect. 3.2, Th. (2.2)]; [KS, Sect. 6.1, Lemma 6.4].
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Second, it is sufficient to prove that

max
k+l+m=n

(

n

k, l,m

)

≤ const ·
3n

n
,

since
∑

k+l+m=n

(

n

k,l,m

)

= 3n, and
∑

(

n

k,l,m

)2
≤ max

(

n

k,l,m

)

·
∑

(

n

k,l,m

)

.
Third, we may assume n ∈ 3Z, since the maximum is increasing in n;

indeed,
(

n+1
k+1,l,m

)

≥
(

n

k,l,m

)

.

The maximum is reached at k = l = m = n/3 only (think, why). It
remains to prove that

(

n

n/3, n/3, n/3

)

≤ const ·
3n

n
for n ∈ 3Z ,

which follows easily from the Stirling formula (check it).
Case d > 3. We take the 3-dimensional projection of the d-dimensional

walk, discard adjacent equal points, and get the 3-dimensional simple random
walk; eventually it leaves the origin forever.1

Proof of 4b2. Case d = 1: we choose n positions for −1 among the given
2n positions (

(

2n
n

)

possibilities).
Case d = 2: let Sk = (S ′

k, S
′′
k), then S ′

k − S ′′
k and S ′

k + S ′′
k are independent

1-dimensional simple random walks.
Case d = 3: we should have a sum like this:

−e2 + e3 + e3 + e1 − e3 + e2 − e1 − e3 = 0 ;

we choose the signs first (
(

2n
n

)

possibilities); then, among the n minus terms,
we choose some k positions for e1, l positions for e2 and m positions for
e3 (

(

n

k,l,m

)

possibilities), and the same among the n plus terms (also
(

n

k,l,m

)

possibilities).

By the way, you may try to do it otherwise: first, choose 2k positions
for ±e1, 2l positions for ±e2 and 2m positions for ±e3, and then choose the
signs. . . Try it also for d = 2. . .

Toward 4b3

Given a random walk (Sn) (general, not just simple; n-dimensional), we
define τ1, τ2, · · · : Ω → {1, 2, . . . } ∪ {∞}:

τ1 = inf{n > 0 : Sn = 0} ; τ2 = inf{n > τ1 : Sn = 0} ; and so on.

1In fact, p
(d)
2n ∼ const(d)/nd/2.
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Can we say that random variables τn+1 − τn are independent, identically
distributed? Not quite; it may happen that τn = ∞, then necessarily τn+1 =
∞, and τn+1 − τn is not defined. But still,
(4b4)

P
(

τ1 = t1, τ2 − τ1 = t2, . . . , τn − τn−1 = tn
)

= P
(

τ1 = t1
)

. . .P
(

τ1 = tn
)

for all n and all t1, . . . , tn ∈ {1, 2, . . . }. (Infinity disallowed!)

Proof of (4b4) for n = 2. Consider sets (here si = x1 + · · ·+ xi)

A = {(x1, . . . , xk+l) : s1 6= 0, . . . , sk−1 6= 0, sk = 0, sk+1 6= 0, . . . , sk+l−1 6= 0, sk+l = 0} ;

B = {(x1, . . . , xk) : s1 6= 0, . . . , sk−1 6= 0, sk = 0} ;

C = {(x1, . . . , xl) : s1 6= 0, . . . , sl−1 6= 0, sl = 0} .

We have A = B × C;

P
(

τ1 = k, τ2 = k+l
)

=

∫

1lAdµ
k+l =

∫

Rk+l

1lA(x1, . . . , xk+l)µ(dx1) . . . µ(dxk+l) =

=

∫

Rk+l

1lB(x1, . . . , xk)1lC(xk+1, . . . , xk+l)µ(dx1) . . . µ(dxk+l) =

(
∫

Rk

1lB(x1, . . . , xk)µ(dx1) . . . µ(dxk)

)(
∫

Rl

1lC(xk+1, . . . , xk+l)µ(dxk+1) . . . µ(dxk+l)

)

=

(
∫

1lB dµk

)(
∫

1lC dµl

)

= P
(

τ1 = k
)

P
(

τ1 = l
)

.

The proof for any n is similar.
Thus,

P
(

τ2 < ∞
)

=
∑

k,l

P
(

τ1 = k, τ2 = k + l
)

=
∑

k,l

P
(

τ1 = k
)

P
(

τ1 = l
)

=

=
(

∑

k

P
(

τ1 = k
)

)2

=
(

P
(

τ1 < ∞
))

2 ;

similarly,

(4b5) P
(

τn < ∞
)

=
(

P
(

τ1 < ∞
))

n .

Proof of 4b3. We reformulate the conditions in terms of τn: (a) P
(

τ1 <
∞

)

= 1; (b) P
(

τn < ∞
)

= 1 for all n; (c) E sup{n : τn < ∞} = ∞.
Trivially, (b) implies both (a) and (c). By (4b5), (a) implies (b). Finally, (c)
implies (a), since max{n : τn < ∞} cannot be distributed geometrically and
have infinite expectation.
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