6 Infinite random sequences

6a Introductory remarks; almost certainty

There are two main reasons for entering continuous probability:

- infinitely high resolution;
- endless coin tossing.

Of course, both are theoretical idealizations. ${ }^{64}$ Infinite resolution was discussed in Sect. 1 C Endless coin tossing was discussed in 1f4 and 2b5-2b7. Except for these digressions, Sections $1-5$ are directed towards infinitely high resolution rather than endless coin tossing. ${ }^{65}$ Now we turn to the latter (and its generalizations).

Almost certainty was introduced in Sect. IC recall the terminology:

Discrete probability gives us only trivial examples of almost certain events. Continuous probability gives better examples: let X have a continuous distribution, and x be a number, ${ }^{66}$ then $X \neq x$ almost surely. Much deeper examples arise from (infinite) sequences of events or random variables, as we'll see soon.

Let a coin be tossed endlessly, giving independent identically distributed random variables X_{1}, X_{2}, \ldots each taking on two equiprobable values, say, +1 and -1 (or 0 and 1, if you like). What about $\lim _{n \rightarrow \infty} X_{n} ?^{67}$

Probably you believe that the limit does not exist. Why? Since there is a subsequence of $(+1)$, and another sequence of (-1). However, why they exist? What if X_{n} cease to change after some n ? It seems unreasonable, but we need a proof. Consider an event ${ }^{68} 69$

$$
A=\left\{\exists n \forall m>n X_{m}=+1\right\} ;
$$

we want to prove that $\mathbb{P}(A)=0$. Introduce events

$$
\begin{aligned}
& A_{1}=\left\{X_{1}=+1, X_{2}=+1, X_{3}=+1, \ldots\right\}, \\
& A_{2}=\left\{\quad X_{2}=+1, X_{3}=+1, \ldots\right\} \text {, } \\
& A_{3}=\left\{\quad X_{3}=+1, \ldots\right\},
\end{aligned}
$$

[^0]and so on; $A_{n}=\left\{\forall m \geq n X_{m}=+1\right\}$. We have $\mathbb{P}\left(A_{1}\right)=0$ by the following argument:
$$
\mathbb{P}\left(A_{1}\right) \leq \mathbb{P}\left(X_{1}=+1, \ldots, X_{n}=+1\right)=\left(\frac{1}{2}\right)^{n}=\frac{1}{2^{n}}
$$
for every $n=1,2, \ldots$, therefore $\mathbb{P}\left(A_{1}\right)=0$. The same argument ${ }^{70}$ shows that $\mathbb{P}\left(A_{2}\right)=0$, and similarly $\mathbb{P}\left(A_{n}\right)=0$ for all n.

We have an increasing sequence of events, $A_{1} \subset A_{2} \subset \ldots$ (think, why), and A is their union. We may say that $A=\lim _{n \rightarrow \infty} A_{n}$, according to the definition given after 2d9. ${ }^{71}$

$$
\lim _{n \rightarrow \infty} A_{n}= \begin{cases}A_{1} \cup A_{2} \cup \ldots & \text { if } A_{1} \subset A_{2} \subset \ldots, \tag{6a1}\\ A_{1} \cap A_{2} \cap \ldots & \text { if } A_{1} \supset A_{2} \supset \ldots\end{cases}
$$

Recall that probability depends continuously on an event, in the following sense:

$$
\begin{equation*}
\mathbb{P}\left(\lim _{n \rightarrow \infty} A_{n}\right)=\lim _{n \rightarrow \infty} \mathbb{P}\left(A_{n}\right) \tag{6a2}
\end{equation*}
$$

for every monotone sequence of events (see 2d9). So,

$$
\mathbb{P}(A)=\mathbb{P}\left(\lim _{n \rightarrow \infty} A_{n}\right)=\lim _{n \rightarrow \infty} \mathbb{P}\left(A_{n}\right)=\lim _{n \rightarrow \infty} 0=0
$$

Almost surely, there is no limit $\lim _{n \rightarrow \infty} X_{n}$ for the "coin tossing" sequence X_{n}.
We may treat X_{n} as binary digits ${ }^{72}$ of a random point ω of $[0,1]$ (recall 2b5),

$$
\omega=\left(0 \cdot X_{1} X_{2} \ldots\right)_{2}
$$

That is, we may take $\Omega=[0,1]$ (with Lebesgue measure) as our probability space. Events A_{n} become subsets of $[0,1]$:

$$
A_{1}=\{1\}, \quad A_{2}=\left\{\frac{1}{2}, 1\right\}, \quad A_{3}=\left\{\frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1\right\}, \quad \ldots
$$

(think, why). Their limit is the set of all binary-rational points of $[0,1]$,

$$
A=\lim _{n \rightarrow \infty} A_{n}=\left\{\frac{k}{2^{n}}: n=0,1,2, \ldots, k=0,1, \ldots, 2^{n}\right\}
$$

We have

$$
\mathbb{P}(A)=0 ; \quad \mathbb{P}([0,1] \backslash A)=1
$$

Both A and $[0,1] \backslash A$ are dense in $[0,1]$, but A is negligible, while $[0,1] \backslash A$ is not. ${ }^{73}$

[^1]Is there an empirical test for the statement that $\omega \notin A$ almost surely? No. Any physical random choice of ω, being of a finite resolution, does not allow to decide, whether $\omega \in A$ or not. Similarly, any physical coin tossing process, being of finite length, is not enough for determining $\lim _{n \rightarrow \infty} X_{n}$. In this sense, "convergence of random sequences" is a formal mathematical theory with no empirical basis.

Then, why do we learn the elegant but groundless ${ }^{74}$ theory? For a simple reason: it helps us to understand long finite sequences.

6a3 Exercise. Let $X_{1}, X_{2}, \cdots: \Omega \rightarrow \mathbb{R}$ be independent identically distributed random variables. Can it happen that $X_{n} \rightarrow+\infty$?

Hint: consider the median $\mathrm{Me}=X^{*}(1 / 2)$; we have $\mathbb{P}\left(X_{n}>\mathrm{Me}\right) \leq 1 / 2$. It follows that the event $A=\left\{\exists n \forall m>n X_{m}>\mathrm{Me}\right\}$ is of probability 0 .

6a4 Exercise. Let $X_{1}, X_{2}, \cdots: \Omega \rightarrow \mathbb{R}$ be independent identically distributed random variables having exponential distribution

$$
\mathbb{P}\left(X_{n} \leq x\right)=1-e^{-x} \quad \text { for } x>0
$$

What is the probability that $X_{n}>2^{-n}$ for all n ?
Hint. ${ }^{75}$

$$
\begin{aligned}
& \mathbb{P}\left(X_{1}>2^{-1}, X_{2}>2^{-2}, \ldots\right)=\mathbb{P}\left(X_{1}>2^{-1}\right) \cdot \mathbb{P}\left(X_{2}>2^{-2}\right) \cdot \ldots= \\
& \quad=\exp \left(-\frac{1}{2}\right) \cdot \exp \left(-\frac{1}{4}\right) \cdot \ldots=\exp \left(-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots\right)\right)=e^{-1} \approx 0.37 .
\end{aligned}
$$

6a5 Exercise. For the same X_{n} as before, what is the probability that $X_{n}>\frac{1}{n}$ for all n ?
Hint.

$$
\exp \left(-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\ldots\right)\right)=e^{-\infty}=0
$$

You see, the event $\exists n X_{n} \leq 2^{-n}$ has a non-degenerate probability $1-\frac{1}{e} \approx 0.63$; in contrast, the event $\exists n X_{n} \leq \frac{1}{n}$ occurs almost surely. In order to distinguish between the two cases, we need distinguish between convergent and divergent series. Recall some relevant arguments:

$$
\begin{aligned}
& \underbrace{\cdots \ll \frac{1}{2^{n}}<\cdots \ll \frac{1}{n^{3}} \ll \frac{1}{n^{2}}}_{\text {convergence }} \ll \underbrace{\frac{1}{n} \ll \frac{1}{\sqrt{n}} \ll \frac{1}{\sqrt[3]{n}} \ll \cdots \frac{1}{\log n} \ll \ldots}_{\text {divergence }} \\
& \sum \frac{1}{1.01^{n}}<\infty ; \quad \sum \frac{1}{n^{1.01}}<\infty ; \quad \sum \frac{1}{n}=\infty ; \quad \sum \frac{1}{n \log ^{2} n}<\infty ; \quad \sum \frac{1}{n \log n}=\infty ; \\
& \sum a_{n}<\infty \Longleftrightarrow \sum 2^{n} a_{2^{n}}<\infty \quad \text { for } a_{n} \downarrow 0 ; \\
& \sum f\left(a_{n}\right)<\infty \Longleftrightarrow \sum a_{n}<\infty \quad \text { whenever } f(0)=0, f^{\prime}(0)>0, \text { and } a_{n} \rightarrow 0+
\end{aligned}
$$

[^2]The case $f(a)=-\ln (1-a)=\ln \frac{1}{1-a}$ is especially important: for any $a_{n} \in[0,1)$

$$
\begin{gather*}
\prod\left(1-a_{n}\right)>0 \Longleftrightarrow \sum \ln \left(1-a_{n}\right)>-\infty \quad \Longleftrightarrow \\
\Longleftrightarrow \sum \log \frac{1}{1-a_{n}}<\infty \Longleftrightarrow \sum a_{n}<\infty . \tag{6a6}
\end{gather*}
$$

6b Borel-Cantelli lemma

Sequences that do not converge are quite usual in probability theory. Having no limit, such a sequence has its upper limit (limsup) and lower limit ($\lim \inf$). Given $a_{1}, a_{2}, \cdots \in \mathbb{R}$, we define

$$
\begin{align*}
& \liminf _{n \rightarrow \infty} a_{n}=a_{*}=\sup _{n} \inf _{m \geq n} a_{m}=\lim _{n \rightarrow \infty} \inf \left(a_{n}, a_{n+1}, \ldots\right) ; \\
& \limsup _{n \rightarrow \infty} a_{n}=a^{*}=\inf _{n} \sup _{m \geq n} a_{m}=\lim _{n \rightarrow \infty} \sup \left(a_{n}, a_{n+1}, \ldots\right) . \tag{6b1}
\end{align*}
$$

In general,

$$
\begin{equation*}
-\infty \leq \inf _{n} a_{n} \leq \liminf _{n \rightarrow \infty} a_{n} \leq \limsup _{n \rightarrow \infty} a_{n} \leq \sup _{n} a_{n} \leq+\infty \tag{6b2}
\end{equation*}
$$

If $\lim \inf a_{n}=\lim \sup a_{n}$ then $\lim a_{n}$ exists and is equal to both. Otherwise $\lim a_{n} \operatorname{does}$ not exist.

Similarly, given events $A_{1}, A_{2}, \cdots \subset \Omega$, we define

$$
\begin{align*}
& \liminf _{n \rightarrow \infty} A_{n}=A_{*}=\bigcup_{n=1}^{\infty} \bigcap_{m=n}^{\infty} A_{m}=\lim _{n \rightarrow \infty} \bigcap_{m=n}^{\infty} A_{m} \\
& \limsup _{n \rightarrow \infty} A_{n}=A^{*}=\bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} A_{m}=\lim _{n \rightarrow \infty} \bigcup_{m=n}^{\infty} A_{m} \tag{6b3}
\end{align*}
$$

In other words, ${ }^{76}$

$$
\begin{align*}
& \omega \in \liminf _{n \rightarrow \infty} A_{n} \Longleftrightarrow \exists n \forall m \geq n \omega \in A_{m} \Longleftrightarrow \\
& \Longleftrightarrow \#\left\{m: \omega \notin A_{m}\right\}<\infty \quad \Longleftrightarrow \quad \omega \in A_{n} \text { eventually } \\
& \omega \in \underset{n \rightarrow \infty}{\limsup } A_{n} \Longleftrightarrow \nexists n \exists m \geq n \omega \in A_{m} \Longleftrightarrow \tag{6b4}\\
& \Longleftrightarrow \#\left\{m: \omega \in A_{m}\right\}=\infty \quad \Longleftrightarrow \omega \in A_{n} \text { infinitely often }
\end{align*}
$$

[^3]In general,

$$
\begin{equation*}
\emptyset \subset \bigcap_{n=1}^{\infty} A_{n} \subset \liminf _{n \rightarrow \infty} A_{n} \subset \limsup _{n \rightarrow \infty} A_{n} \subset \bigcup_{n=1}^{\infty} A_{n} \subset \Omega \tag{6b5}
\end{equation*}
$$

Now we are in position to generalize (6a1) for non-monotone sequences of events. By definition, if $\lim \inf A_{n}=\lim \sup A_{n}$ then $\lim A_{n}$ exists and is equal to both. Otherwise $\lim A_{n}$ does not exist. If $\lim A_{n}$ exists then $\mathbb{P}\left(\lim A_{n}\right)=\lim \mathbb{P}\left(A_{n}\right)$ by the sandwich argument (compare it with (6a21).

A geometric example. Consider geometric figures of the following form:

Let $\varphi_{n}=n-1\left(\right.$ which means $n-1$ radians 77), then vertices of $A_{n}=A\left(r, R, \varphi_{n}\right)$ are a non-periodic sequence dense in the R-circle:

A point of the small disk belongs to A_{n} for all n. A point of the annulus (between the two circles) belongs to A_{n} infinitely often, but not eventually (recall (6b4)). A point outside of the large disk belongs to no one of A_{n}. Thus, ${ }^{78} \cap A_{n}=\lim \inf A_{n}=$ (the r-disk), and $\lim \sup A_{n}=\cup A_{n}=\left(\right.$ the R-disk). There is no $\lim A_{n}$. If you want all the six sets in (6b5) to differ, try $A_{n}=A\left(r_{n}, R_{n}, \varphi_{n}\right)$ with $r_{n} \uparrow r, R_{n} \downarrow R, r<R$.
6b6 Exercise. Consider "coin tossing" $X_{1}, X_{2}, \cdots: \Omega \rightarrow\{0,1\}$ and let $A_{n}=\left\{X_{n}=1\right\}=$ $\left\{X_{n} \neq 0\right\}$. Show that

$$
\begin{aligned}
& \bigcap_{n=1}^{\infty} A_{n}=\left\{\sum_{n=1}^{\infty}\left(1-X_{n}\right)=0\right\} ; \quad \bigcup_{n=1}^{\infty} A_{n}=\left\{\sum_{n=1}^{\infty} X_{n}>0\right\} \\
& \liminf _{n \rightarrow \infty} A_{n}=\left\{\sum_{n=1}^{\infty}\left(1-X_{n}\right)<\infty\right\}=\left\{X_{n} \rightarrow 1\right\} \\
& \limsup _{n \rightarrow \infty} A_{n}=\left\{\sum_{n=1}^{\infty} X_{n}=\infty\right\}=\left\{X_{n} \nrightarrow 0\right\}
\end{aligned}
$$

Does $\lim _{n \rightarrow \infty} A_{n}$ exist? What about probability of the difference $\left(\lim \sup A_{n}\right) \backslash\left(\lim \inf A_{n}\right)$?

[^4]Probably you know elementary relations for two indicators, ${ }^{79}$

$$
\begin{align*}
& A=B \cap C \quad \Longleftrightarrow \quad \mathbf{1}_{A}=\min \left(\mathbf{1}_{B}, \mathbf{1}_{C}\right) \\
& A=B \cup C \quad \Longleftrightarrow \quad \mathbf{1}_{A}=\max \left(\mathbf{1}_{B}, \mathbf{1}_{C}\right) \tag{6b7}
\end{align*}
$$

Now we have similar relations for infinite sequences of indicators:

$$
\begin{align*}
A=\bigcap_{n=1}^{\infty} A_{n} & \Longleftrightarrow \mathbf{1}_{A}=\inf _{n} \mathbf{1}_{A_{n}} ; \\
A=\bigcup_{n=1}^{\infty} A_{n} & \Longleftrightarrow \mathbf{1}_{A}=\sup _{n} \mathbf{1}_{A_{n}} ; \tag{6b8}\\
A=\liminf _{n \rightarrow \infty} A_{n} & \Longleftrightarrow \mathbf{1}_{A}=\liminf _{n \rightarrow \infty} \mathbf{1}_{A_{n}} ; \\
A=\limsup _{n \rightarrow \infty} A_{n} & \Longleftrightarrow \mathbf{1}_{A}=\limsup _{n \rightarrow \infty} \mathbf{1}_{A_{n}} .
\end{align*}
$$

The following result, traditionally called "the first Borel-Cantelli lemma" (or "the first part of Borel-Cantelli lemma") is in fact an important theorem.
6 b 9 Theorem. For any ${ }^{80}$ events A_{1}, A_{2}, \ldots

$$
\sum_{n=1}^{\infty} \mathbb{P}\left(A_{n}\right)<\infty \quad \Longrightarrow \quad \mathbb{P}\left(\limsup _{n \rightarrow \infty} A_{n}\right)=0
$$

Proof. First,

$$
\mathbb{P}\left(\bigcup_{m=n}^{\infty} A_{m}\right) \leq \sum_{m=n}^{\infty} \mathbb{P}\left(A_{m}\right)
$$

which is the limit (for $k \rightarrow \infty$) of

$$
\mathbb{P}\left(A_{m} \cup A_{m+1} \cup \cdots \cup A_{m+k}\right) \leq \mathbb{P}\left(A_{m}\right)+\mathbb{P}\left(A_{m+1}\right)+\cdots+\mathbb{P}\left(A_{m+k}\right)
$$

Second, ${ }^{81} 82$

$$
\begin{aligned}
& \mathbb{P}\left(\limsup _{n \rightarrow \infty} A_{n}\right)=\mathbb{P}\left(\lim _{n \rightarrow \infty} \bigcup_{m=n}^{\infty} A_{m}\right)= \\
& =\lim _{n \rightarrow \infty} \mathbb{P}\left(\bigcup_{m=n}^{\infty} A_{m}\right) \leq \lim _{n \rightarrow \infty} \sum_{m=n}^{\infty} \mathbb{P}\left(A_{m}\right)= \\
& =\lim _{n \rightarrow \infty}\left(\sum_{m=1}^{\infty} \mathbb{P}\left(A_{m}\right)-\sum_{m=1}^{n-1} \mathbb{P}\left(A_{m}\right)\right)= \\
& =\sum_{m=1}^{\infty} \mathbb{P}\left(A_{m}\right)-\lim _{n \rightarrow \infty} \sum_{m=1}^{n-1} \mathbb{P}\left(A_{m}\right)=0 .
\end{aligned}
$$

[^5]Another proof. Introduce indicators $X_{n}=\mathbf{1}_{A_{n}}$, then $A_{n}=\left\{X_{n}=1\right\}$ and $\lim \sup A_{n}=$ $\left\{\sum X_{n}=\infty\right\}$. We have ${ }^{83}$

$$
\mathbb{E}\left(X_{1}+\cdots+X_{n}\right)=\mathbb{E} X_{1}+\cdots+\mathbb{E} X_{n}=\mathbb{P}\left(A_{1}\right)+\cdots+\mathbb{P}\left(A_{n}\right) .
$$

Markov inequality ${ }^{84}$ gives

$$
\mathbb{P}\left(X_{1}+\cdots+X_{n} \geq M\right) \leq \frac{\mathbb{P}\left(A_{1}\right)+\cdots+\mathbb{P}\left(A_{n}\right)}{M}
$$

for every $M \in(0, \infty)$. The limit for $n \rightarrow \infty$ gives

$$
\mathbb{P}\left(\sum X_{n} \geq M\right) \leq \frac{1}{M} \sum \mathbb{P}\left(A_{n}\right)
$$

Another limit, for $M \rightarrow \infty$, gives

$$
\mathbb{P}\left(\sum X_{n}=\infty\right)=0
$$

What about the converse,

$$
\sum_{n=1}^{\infty} \mathbb{P}\left(A_{n}\right)<\infty \Longleftarrow \mathbb{P}\left(\limsup _{n \rightarrow \infty} A_{n}\right)=0 \quad ?
$$

Check it for a simple case: $A_{1} \supset A_{2} \supset \ldots$ Here, $\lim \sup A_{n}=\lim A_{n}$ and $\mathbb{P}\left(\lim \sup A_{n}\right)=$ $\lim \mathbb{P}\left(A_{n}\right)$. Is it true that

$$
\sum_{n=1}^{\infty} \mathbb{P}\left(A_{n}\right)<\infty \Longleftarrow \lim \mathbb{P}\left(A_{n}\right)=0 \quad ?
$$

Evidently, not!

The case of independent A_{n} is more interesting and more complicated.

(6b11)

[^6]Continuing the process shown on (6b11) endlessly we get for the independent sum the same expectation as for the monotone sum (6b10); both are $1+\frac{1}{2}+\frac{1}{3}+\cdots=+\infty$. However, it is far from being evident, whether the function shown on (6b11) is finite almost everywhere, like (6b10), or not.

The following result, well-known as "the second Borel-Cantelli lemma" (or "the second part of Borel-Cantelli lemma") answers the question: the tower (6b11) is infinite almost everywhere!

6b12 Theorem. For any independent events A_{1}, A_{2}, \ldots

$$
\sum_{n=1}^{\infty} \mathbb{P}\left(A_{n}\right)=\infty \quad \Longrightarrow \quad \mathbb{P}\left(\limsup _{n \rightarrow \infty} A_{n}\right)=1
$$

Proof. Introduce indicators $X_{n}=\mathbf{1}_{A_{n}}$, then $A_{n}=\left\{X_{n}=1\right\}$ and $\lim \sup A_{n}=\left\{\sum X_{n}=\right.$ $\infty\}$. We have ${ }^{85}$

$$
\begin{aligned}
& \mathbb{E} \exp \left(-\left(X_{1}+\cdots+X_{n}\right)\right)=\mathbb{E}\left(e^{-X_{1}} \cdot \ldots \cdot e^{-X_{n}}\right)= \\
& =\left(\mathbb{E} e^{-X_{1}}\right) \cdot \ldots \cdot\left(\mathbb{E} e^{-X_{n}}\right)=\prod_{k=1}^{n}\left(1-\left(1-\frac{1}{e}\right) \mathbb{P}\left(A_{n}\right)\right),
\end{aligned}
$$

since $\mathbb{E} e^{-X_{k}}=e^{0} \cdot \mathbb{P}\left(X_{k}=0\right)+e^{-1} \cdot \mathbb{P}\left(X_{k}=1\right)=1 \cdot\left(1-\mathbb{P}\left(A_{k}\right)\right)+\frac{1}{e} \cdot \mathbb{P}\left(A_{k}\right)$. Thus,

$$
\mathbb{E} \exp \left(-\left(X_{1}+\cdots+X_{n}\right)\right) \rightarrow 0 \quad \text { for } n \rightarrow \infty
$$

since $\sum_{n=1}^{\infty}\left(1-\frac{1}{e}\right) \mathbb{P}\left(A_{n}\right)=\infty$ (recall 6a6). Markov inequality gives for every $M \in(0, \infty)$

$$
\mathbb{P}\left(\exp \left(-\left(X_{1}+\cdots+X_{n}\right)\right) \geq e^{-M}\right) \leq \frac{\mathbb{E} \exp \left(-\left(X_{1}+\cdots+X_{n}\right)\right)}{e^{-M}}
$$

It follows that ${ }^{86}$

$$
\mathbb{P}\left(\sum_{k=1}^{\infty} X_{k} \leq M\right) \leq e^{M} \mathbb{E} \exp \left(-\left(X_{1}+\cdots+X_{n}\right)\right)
$$

The limit for $n \rightarrow \infty$ gives

$$
\mathbb{P}\left(\sum_{k=1}^{\infty} X_{k} \leq M\right)=0
$$

Another limit, for $M \rightarrow \infty$, gives

$$
\mathbb{P}\left(\sum X_{n}<\infty\right)=0
$$

[^7]So, for independent events the problem is solved:

$$
\begin{align*}
& \sum_{n=1}^{\infty} \mathbb{P}\left(A_{n}\right)<\infty \quad \Longrightarrow \mathbb{P}\left(\limsup _{n \rightarrow \infty} A_{n}\right)=0 \\
& \sum_{n=1}^{\infty} \mathbb{P}\left(A_{n}\right)=\infty \quad \Longrightarrow \mathbb{P}\left(\limsup _{n \rightarrow \infty} A_{n}\right)=1 \tag{6b13}
\end{align*}
$$

Note that intermediate values (between 0 and 1) are excluded.
A corollary: for any sequence X_{1}, X_{2}, \ldots of i.i.d. ${ }^{87}$ random variables,

$$
\begin{align*}
& \mathbb{E}\left|X_{1}\right|<\infty \quad \Longrightarrow \frac{X_{n}}{n} \xrightarrow[n \rightarrow \infty]{ } 0 \quad \text { almost surely } \\
& \mathbb{E}\left|X_{1}\right|=\infty \quad \Longrightarrow \quad \limsup _{n \rightarrow \infty} \frac{\left|X_{n}\right|}{n}=\infty \quad \text { almost surely } \tag{6b14}
\end{align*}
$$

An explanation. First, for any random variable X,

$$
\mathbb{E}|X|<\infty \Longleftrightarrow \sum_{n=1}^{\infty} \mathbb{P}(|X|>n)<\infty
$$

Moreover, $\mathbb{E}|X|-1 \leq \sum \mathbb{P}(|X|>n) \leq \mathbb{E}|X|$ according to a "sandwich" argument:

Now, Borel-Cantelli lemma gives ${ }^{88}$

$$
\left(\mathbb{E}\left|X_{1}\right|=\infty\right) \quad \Longleftrightarrow \quad\left(\left|X_{n}\right|>n \text { infinitely often }\right)
$$

6b15 Exercise. Complete the explanation, prove (6b14).
Hint. $\mathbb{E}\left|X_{1}\right|<\infty \Longleftrightarrow \mathbb{E}\left|c X_{1}\right|<\infty$ for any $c \in(0, \infty)$.
The normal distribution is especially important. Let X_{1}, X_{2}, \ldots be i.i.d. $\mathrm{N}(0,1)$ random variables. Then $\mathbb{E}\left|X_{1}\right|<\infty$, therefore $X_{n} / n \rightarrow 0$ almost surely. ${ }^{89}$ Moreover, the density $f_{X}(x)=$ const $\cdot \exp \left(-x^{2} / 2\right)$ tends to 0 (for $x \rightarrow \infty$) exponentially fast, which ensures that $\int x^{k} f_{X}(x) d x<\infty$ for each k. Thus, for instance, $\mathbb{E}\left|X_{1}\right|^{10}<\infty$. Applying (6b14) to the sequence $X_{1}^{10}, X_{2}^{10}, \ldots$ we get $X_{n}^{10} / n \rightarrow 0$, that is, $X_{n} / \sqrt[10]{n} \rightarrow 0$ almost sure. It is much more than $X_{n} / n \rightarrow 0$. Still more, consider $\mathbb{E} \exp \left(c X_{1}^{2}\right)$; it is finite for $c<1 / 2$ but infinite for $c \geq 1 / 2$ (check it). Therefore, $\exp \left(X_{n}^{2} / 2\right)>n$ infinitely often, that is, $\left|X_{n}\right|>\sqrt{2 \ln n}$

[^8]infinitely often, and $\lim \sup _{n \rightarrow \infty}\left(\left|X_{n}\right| / \sqrt{2 \ln n}\right) \geq 1$. On the other hand, taking c a bit less than $1 / 2$ we get, say, $\left|X_{n}\right| \leq \sqrt{2.02 \ln n}$ eventually, thus, $\lim _{\sup _{n \rightarrow \infty}}\left(\left|X_{n}\right| / \sqrt{2 \ln n}\right) \leq 1.01$. It means that
\[

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{\left|X_{n}\right|}{\sqrt{2 \ln n}}=1 \quad \text { almost sure } \tag{6b16}
\end{equation*}
$$

\]

for independent random variables $X_{1}, X_{2} \ldots$ having the normal distribution with the mean 0 and the variance 1. In fact, $\lim \sup X_{n} / \sqrt{2 \ln n}=1$ and $\liminf X_{n} / \sqrt{2 \ln n}=-1$ a.s.

6c Modes of convergence

After all, does $X_{n} / \sqrt{2 \ln n}$ converge to 0 , or not? It depends...
6c1 Exercise. For every random variable $X: \Omega \rightarrow \mathbb{R}$,

$$
\mathbb{E}|X|=0 \Longleftrightarrow \mathbb{P}(X=0)=1
$$

Prove it. Hint: $\mathbb{P}(X \neq 0)=\lim _{\varepsilon \rightarrow 0} \mathbb{P}(|X| \geq \varepsilon)$; also, $\mathbb{P}(|X| \geq \varepsilon) \leq \mathbb{E}|X| / \varepsilon$.
$6 \mathbf{c} 2$ Exercise. Let $X_{1}, X_{2}, \ldots: \Omega \rightarrow \mathbb{R}$ be random variables. Then
(a) if Ω is finite then

$$
\mathbb{P}\left(X_{n} \rightarrow 0\right)=1 \quad \Longrightarrow \mathbb{E}\left|X_{n}\right| \rightarrow 0 ;
$$

(b) in general, it does not hold.

Prove it. Hint: (a) $\max _{\omega}\left|X_{n}(\omega)\right| \rightarrow 0$;
(b)

What happens if Ω is countable? What if Ω has both a discrete part and a continuous part?
6c3 Exercise. Let $X_{1}, X_{2}, \ldots: \Omega \rightarrow \mathbb{R}$ be random variables. Then
(a) if Ω is finite or countable then

$$
\mathbb{E}\left|X_{n}\right| \rightarrow 0 \Longrightarrow \mathbb{P}\left(X_{n} \rightarrow 0\right)=1
$$

(b) in general, it does not hold.

Prove it. Hint: (a) $|X(\omega)| \leq \mathbb{E}|X| / \mathbb{P}(\{\omega\})$;
(b)

What happens if Ω has both a discrete part and a continuous part?
For a sequence of numbers $x_{1}, x_{2}, \ldots \in \mathbb{R}$ the condition " $x_{n} \rightarrow 0$ " is unambiguous. In contrast, for a sequence of random variables we have several nonequivalent interpretations of " $X_{n} \rightarrow 0$ ", that is, several modes of convergence.

6c4 Definition. Let $X, X_{1}, X_{2}, \ldots: \Omega \rightarrow \mathbb{R}$ be random variables.
(a) $X_{n} \rightarrow X$ almost surely, if ${ }^{90}$

$$
\mathbb{P}\left(\left\{\omega \in \Omega: X_{n}(\omega)-X(\omega) \xrightarrow[n \rightarrow \infty]{ } 0\right\}\right)=1 ;
$$

(b) $X_{n} \rightarrow X$ in square mean, if $\mathbb{E}|X|^{2}<\infty$ and

$$
\mathbb{E}\left|X_{n}-X\right|^{2} \xrightarrow[n \rightarrow \infty]{\longrightarrow} 0
$$

(c) $X_{n} \rightarrow X$ in absolute mean, if $\mathbb{E}|X|<\infty$ and

$$
\mathbb{E}\left|X_{n}-X\right| \underset{n \rightarrow \infty}{\longrightarrow} 0
$$

(d) $X_{n} \rightarrow X$ in probability, ${ }^{91}$ if for every $\varepsilon>0$

$$
\mathbb{P}\left(\left|X_{n}-X\right|>\varepsilon\right) \underset{n \rightarrow \infty}{\longrightarrow} 0
$$

6c5 Exercise. Let X_{n} be indicators, $X_{n}=\mathbf{1}_{A_{n}}$, and $X=0$. Show that each one of (b), (c), (d) is equivalent to $\mathbb{P}\left(A_{n}\right) \rightarrow 0$, while (a) is not. What happens for independent A_{n} ?

6c6 Exercise. Let $c_{n} \rightarrow \infty, X_{n}=c_{n} \mathbf{1}_{A_{n}}$, and $X=0$. Show that
(b) $\Longleftrightarrow c_{n}^{2} \mathbb{P}\left(A_{n}\right) \rightarrow 0$,
(c) $\Longleftrightarrow c_{n} \mathbb{P}\left(A_{n}\right) \rightarrow 0$,
(d) $\Longleftrightarrow \mathbb{P}\left(A_{n}\right) \rightarrow 0 \quad$ (irrespective of $\left.c_{n}\right)$,
and
(a) $\Longleftrightarrow \mathbb{P}\left(\lim \sup A_{n}\right)=0 \quad$ (irrespective of c_{n}).

Show by examples that there are no two equivalent conditions among (a), (b), (c), (d).
6c7 Exercise. $(\mathrm{b}) \Longrightarrow(\mathrm{c}) \Longrightarrow(\mathrm{d})$ for any X, X_{1}, X_{2}, \ldots
Prove it. Hint: $\mathbb{E}\left|X_{n}-X\right|^{2}-\left(\mathbb{E}\left|X_{n}-X\right|\right)^{2}=\operatorname{Var}\left(\left|X_{n}-X\right|\right) \geq 0 ;$ also, $\mathbb{P}\left(\left|X_{n}-X\right| \geq\right.$ $\varepsilon) \leq \mathbb{E}\left|X_{n}-X\right| / \varepsilon$.

6c8 Lemma. (a) \Longrightarrow (d) for any X, X_{1}, X_{2}, \ldots
Proof. Almost surely $X_{n}-X \rightarrow 0$, therefore, $\left|X_{n}-X\right| \leq \varepsilon$ eventually. Introduce events

$$
A_{n}=\left\{\left|X_{n}-X\right| \leq \varepsilon,\left|X_{n+1}-X\right| \leq \varepsilon, \ldots\right\},
$$

then $A_{1} \subset A_{2} \subset \ldots$ and $\mathbb{P}\left(\lim A_{n}\right)=1$. It follows that $\lim \mathbb{P}\left(A_{n}\right)=1$. However, A_{n} is incompatible with $\left|X_{n}-X\right|>\varepsilon$; thus, $\mathbb{P}\left(\left|X_{n}-X\right|>\varepsilon\right) \leq 1-\mathbb{P}\left(A_{n}\right) \rightarrow 0$.

[^9]So,

All the 4 modes (a)-(d) are modes of convergence of random variables, not distributions. Say, for the "coin tossing" sequence X_{1}, X_{2}, \ldots distribution functions F_{n} of X_{n} are all the same, $F_{1}=F_{2}=\cdots=F$, thus, $F_{n} \xrightarrow[n \rightarrow \infty]{ } F$ trivially. However, X_{n} does not converge. ${ }^{92}$ Do not confuse convergence of distributions and convergence of random variables!

6c9 Definition. (a) A sequence $\left(F_{1}, F_{2}, \ldots\right)$ of distribution functions converges weakly to a distribution function F, if $F_{n}(x) \underset{n \rightarrow \infty}{\longrightarrow} F(x)$ for every x such that F is continuous at x.
(b) A sequence X_{1}, X_{2}, \ldots of random variables converges in distribution to a random variable X, if $F_{X_{n}} \xrightarrow[n \rightarrow \infty]{ } F_{X}$ weakly. ${ }^{93}$

Item (b), "convergence in distribution", is rather illogical; you see, convergence of distributions should not be ascribed to random variables. Say, for the "coin tossing" sequence X_{1}, X_{2}, \ldots we may say that $X_{n} \rightarrow X_{1}$ in distribution, as well as $X_{n} \rightarrow X_{2}$ in distribution! Still, the terminology is widely used. Moreover, people say " $X_{n} \rightarrow F$ in distribution", having in mind " $F_{X_{n}} \rightarrow F$ weakly". For instance, a claim of the form " $X_{n} \rightarrow \mathrm{~N}(0,1)$ in distribution" appears often in limit theorems.

The simplest case of Definition [6c9 is the degenerate case: each F_{n} is concentrated at a point a_{n}, that is, $F_{n}(x)=\left\{\begin{array}{ll}1 & \text { for } x \geq a_{n}, \\ 0 & \text { for } x<a_{n} .\end{array}\right.$ Accordingly, $X_{n}=a_{n}$ almost sure. Here, X_{n} converges in distribution, if and only if a_{n} converges to a number $a \in(-\infty,+\infty)$, and then $F_{n} \rightarrow F$ weakly, where $F(x)=\left\{\begin{array}{ll}1 & \text { for } x \geq a, \\ 0 & \text { for } x<a .\end{array}\right.$ Accordingly, $X_{n} \rightarrow X$ in distribution, where $X=a$ almost sure. Note that $\mathbb{P}\left(X_{n}=a\right)$ need not converge to $\mathbb{P}(X=a)$; this is why the convergence $F_{n} \rightarrow F$ is called weak.

Clearly, $X_{n} \rightarrow X$ in distribution if and only if $X_{n}^{*} \rightarrow X^{*}$ in distribution. The latter appears to be equivalent to

$$
X_{n}^{*}(p) \underset{n \rightarrow \infty}{\longrightarrow} X^{*}(p)
$$

for every $p \in(0,1)$ such that X^{*} is continuous at p. (Do not think that $X_{n}^{*}(p \pm) \rightarrow X^{*}(p \pm)$.)
6c10 Lemma. (a) If $X_{n} \rightarrow X$ in probability then $X_{n} \rightarrow X$ in distribution.
(b) If $X_{n} \rightarrow 0$ in distribution then $X_{n} \rightarrow 0$ in probability.
(I give no proof.)
6c11 Exercise. (a) If $X_{n} \rightarrow X$ in absolute mean then $\mathbb{E} X_{n} \rightarrow \mathbb{E} X$.
(b) The converse is generally wrong.

Prove it. Hint: (a) $-\left|X_{n}-X\right| \leq X_{n}-X \leq\left|X_{n}-X\right|$; take the expectation. (b) It may happen that $\mathbb{E}\left(X_{1}-X\right)=0$ but $\mathbb{E}\left|X_{n}-X\right| \neq 0$; try $X_{1}=X_{2}=\ldots$

[^10]Here are two famous theorems of measure theory (formulated here for probability measures, in probabilistic language). (For $\Omega=(0,1)$ we may think in terms of mes $_{2} \ldots$.
$6 \mathbf{c} 12$ Theorem (Monotone Convergence Theorem). Let $X, X_{1}, X_{2}, \ldots: \Omega \rightarrow \mathbb{R}$ be random variables such that

$$
\mathbb{P}\left(X_{n} \uparrow X\right)=1 \quad \text { and } \quad \mathbb{E}\left|X_{1}\right|<\infty
$$

Then ${ }^{94}$

$$
\lim _{n \rightarrow \infty} \mathbb{E} X_{n}=\mathbb{E} X \in(-\infty,+\infty]
$$

$6 \mathbf{c 1 3}$ Theorem (Dominated Convergence Theorem). Let $Y, X, X_{1}, X_{2}, \ldots: \Omega \rightarrow \mathbb{R}$ be random variables such that

$$
\mathbb{P}\left(X_{n} \rightarrow X\right)=1, \quad \mathbb{P}\left(\left|X_{n}\right| \leq Y\right)=1, \quad \text { and } \quad \mathbb{E}|Y|<\infty
$$

Then ${ }^{95}$

$$
\lim _{n \rightarrow \infty} \mathbb{E} X_{n}=\mathbb{E} X
$$

For $\Omega=(0,1)$ these facts may be deduced from 5c13. Think also about the bounded case, especially, indicators...

6c14 Exercise. If Y is non-integrable then it may happen that $\mathbb{P}(X=0)=1$ but $\mathbb{E} X_{n} \rightarrow$ ∞.

Give an example. Hint: recall 6c6
6c15 Exercise. If $\mathbb{E}|X|<\infty$ then there exist bounded random variables X_{1}, X_{2}, \ldots such that $\mathbb{E}\left|X_{n}-X\right| \rightarrow 0$. Prove it.

Recall also the moments as the derivatives of the MGF...

6d Laws of large numbers

6d1 Theorem (Weak law of large numbers). Let $X_{1}, X_{2}, \ldots: \Omega \rightarrow \mathbb{R}$ be independent, identically distributed random variables, $\mathbb{E}\left|X_{1}\right|<\infty, \mu=\mathbb{E} X_{1}$. Then

$$
\frac{X_{1}+\cdots+X_{n}}{n} \underset{n \rightarrow \infty}{ } \mu \quad \text { in absolute mean. }
$$

Note that convergence in absolute mean implies convergence in probability (and in distribution). The square-integrable case, $\mathbb{E}\left|X_{1}\right|^{2}<\infty$, is easy:

$$
\begin{equation*}
\operatorname{Var}\left(\frac{X_{1}+\cdots+X_{n}}{n}\right)=\frac{\operatorname{Var}\left(X_{1}\right)}{n} \rightarrow 0 \tag{6d2}
\end{equation*}
$$

[^11]which gives convergence in square mean, the more so, in absolute mean. The general case follows via approximation: ${ }^{96}$
\[

$$
\begin{gather*}
X_{k}=Y_{k}+Z_{k}, \quad \mathbb{E}\left|Y_{k}\right|^{2}<\infty, \quad \mathbb{E}\left|Z_{k}\right| \leq \varepsilon ; \\
\mathbb{E}\left|\frac{X_{1}+\cdots+X_{n}}{n}-\mu\right| \leq \underbrace{\mathbb{E}\left|\frac{Y_{1}+\cdots+Y_{n}}{n}-\mu\right|}_{\rightarrow|\mathbb{E} Y-\mu| \leq \varepsilon}+\underbrace{\mathbb{E}\left|\frac{Z_{1}+\cdots+Z_{n}}{n}\right|}_{\leq \varepsilon} \tag{6d3}
\end{gather*}
$$
\]

$\mathbf{6 d 4}$ Theorem (Strong law of large numbers). Let $X_{1}, X_{2}, \ldots: \Omega \rightarrow \mathbb{R}$ be independent, identically distributed random variables, $\mathbb{E}\left|X_{1}\right|<\infty, \mu=\mathbb{E} X_{1}$. Then

$$
\frac{X_{1}+\cdots+X_{n}}{n} \underset{n \rightarrow \infty}{ } \mu \quad \text { almost surely, and in absolute mean. }
$$

Several proofs are well-known; no one is simple enough for being reproduced here. The most natural proof (for my opinion) is given by theory of martingales. It combines a clever observation that

$$
\mathbb{E}\left(X_{1} \mid S_{n}, S_{n+1}, \ldots\right)=\frac{1}{n} S_{n}
$$

(here $S_{n}=X_{1}+\cdots+X_{n}$) and a deep theorem:
For every integrable random variable X and every random variables Y_{1}, Y_{2}, \ldots (quite arbitrary, not at all independent), random variables $\mathbb{E}\left(X \mid Y_{n}, Y_{n+1}, \ldots\right)$ converge almost surely, and in absolute mean.

It remains to note that the limit is just μ by the weak law.
(Normal numbers and singular measures may be mentioned here...)
Here is a sketch of a proof assuming that the moment generating function (4f4) of X_{1} is finite in a neighborhood of 0 . (The case of bounded X_{1} is thus covered.) By 4f7,

$$
\left.\frac{d}{d t}\right|_{t=0} \operatorname{MGF}_{X_{1}}(t)=\mu
$$

therefore for every $\varepsilon>0$

$$
\operatorname{MGF}_{X_{1}}(t)<e^{(\mu+\varepsilon) t}
$$

provided that $t>0$ is small enough. We apply Markov inequality ${ }^{97}$ to $e^{t\left(X_{1}+\cdots+X_{n}\right)}$:

$$
\begin{aligned}
& \mathbb{P}\left(\frac{X_{1}+\cdots+X_{n}}{n} \geq \mu+\varepsilon\right)=\mathbb{P}\left(e^{t\left(X_{1}+\cdots+X_{n}\right)} \geq e^{\operatorname{tn}(\mu+\varepsilon)}\right) \leq \\
& \leq \frac{\mathbb{E} e^{t\left(X_{1}+\cdots+X_{n}\right)}}{e^{\operatorname{tn}(\mu+\varepsilon)}}=\left(\frac{\mathbb{E} e^{t X_{1}}}{e^{t(\mu+\varepsilon)}}\right)^{n}=q^{n}
\end{aligned}
$$

where $q=\frac{\operatorname{MGF}_{X_{1}}(t)}{e^{t(\mu+\varepsilon)}}<1$. By the first Borel-Cantelli lemma 6b9, $\frac{X_{1}+\cdots+X_{n}}{n}<\mu+\varepsilon$ for large n, almost surely. It holds for all $\varepsilon>0$, thus

$$
\limsup _{n \rightarrow \infty} \frac{X_{1}+\cdots+X_{n}}{n} \leq \mu \quad \text { a.s. }
$$

Similarly, $\operatorname{MGF}_{X_{1}}(t)<e^{(\mu-\varepsilon) t}$ for some $t<0$, which leads to $\lim \inf \cdots \geq \mu$.
${ }^{96}$ Consider $Y_{k}=\left\{\begin{array}{ll}X_{k} & \text { if }\left|X_{k}\right| \leq M, \\ 0 & \text { otherwise, }\end{array}\right.$ where M is large enough.
${ }^{97}$ It was also used in the second proof of 6 b 9

6e Central limit theorem

Here is probably the most famous theorem of the whole probability theory.
6 e 1 Theorem (Central Limit Theorem). Let $X_{1}, X_{2}, \ldots: \Omega \rightarrow \mathbb{R}$ be independent, identically distributed random variables, $\mathbb{E} X_{1}=\mu$, $\operatorname{Var} X_{1}=\sigma^{2} \in(0, \infty)$. Then

$$
\frac{X_{1}+\cdots+X_{n}-n \mu}{\sigma \sqrt{n}} \underset{n \rightarrow \infty}{ } \mathrm{~N}(0,1) \quad \text { in distribution. }
$$

Here $\mathrm{N}(0,1)$ is the standard normal distribution. In other words,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathbb{P}\left(\frac{X_{1}+\cdots+X_{n}-n \mu}{\sigma \sqrt{n}} \leq z\right)=\Phi(z)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{z} e^{-u^{2} / 2} d u \tag{6e2}
\end{equation*}
$$

for all $z \in \mathbb{R}$. One says that $X_{1}+\cdots+X_{n}$ is asymptotically normal (for $n \rightarrow \infty$).
We cannot hope for convergence in probability, since S_{m} and S_{n} are nearly independent for $n \gg m \gg 1$.

Several proofs (of the central limit theorem) are well-known; no one is simple. I give a sketch of one proof in the form of several lemmas.

Recall the Poisson distribution $\mathrm{P}(\lambda)$,

$$
\begin{gather*}
X \sim \mathrm{P}(\lambda) \tag{6e3}\\
\mathbb{E} X=\lambda, \quad \mathbb{P}(X=k)=\frac{\lambda^{k}}{k!} e^{-\lambda} \text { for } k=0,1,2, \ldots ; \\
\sigma_{X}=\sqrt{\lambda} ; \quad \lambda \in[0, \infty) .
\end{gather*}
$$

6e4 Lemma. $\mathrm{P}(\lambda)$ is asymptotically normal for $\lambda \rightarrow \infty$. That is, $\lim _{\lambda \rightarrow \infty} \mathbb{P}\left(\frac{X_{\lambda}-\lambda}{\sqrt{\lambda}} \leq z\right)=$ $\Phi(z)$, where $X_{\lambda} \sim \mathrm{P}(\lambda)$.

Hint. Use the Stirling formula

$$
k!\sim \sqrt{2 \pi k} k^{k} e^{-k} \quad \text { for } k \rightarrow \infty
$$

6 e 5 Lemma. Let $N_{\lambda} \sim \mathrm{P}(\lambda)$ be a random variable independent of X_{1}, X_{2}, \ldots Introduce

$$
S_{n}=X_{1}+\cdots+X_{n}, \quad S_{N_{\lambda}}=X_{1}+\cdots+X_{N_{\lambda}} .
$$

Then

$$
\mathbb{E}\left|\frac{S_{N_{n}}-N_{n} \mu}{\sigma \sqrt{n}}-\frac{S_{n}-n \mu}{\sigma \sqrt{n}}\right|^{2} \underset{n \rightarrow \infty}{\longrightarrow} 0
$$

Hint. On one hand, $N_{n} / n \rightarrow 1$ in absolute mean (by the weak law of large numbers). On the other hand,

$$
\mathbb{E}\left|\frac{S_{m}-m \mu}{\sigma \sqrt{n}}-\frac{S_{n}-n \mu}{\sigma \sqrt{n}}\right|^{2} \leq\left|\frac{m}{n}-1\right|
$$

and $\mathbb{E}(\ldots)=\mathbb{E}\left(\mathbb{E}\left(\ldots \mid N_{n}\right)\right)$.

6e6 Corollary. The following two conditions are equivalent.

$$
\begin{gathered}
\frac{S_{n}-n \mu}{\sigma \sqrt{n}} \rightarrow \mathrm{~N}(0,1) \quad \text { in distribution; } \\
\frac{S_{N_{n}}-N_{n} \mu}{\sigma \sqrt{n}} \rightarrow \mathrm{~N}(0,1) \quad \text { in distribution. }
\end{gathered}
$$

Hint. If two random variables are close in square mean (or in absolute mean, or even in probability) then their distributions are close.

6e7 Lemma. The central limit theorem holds when X_{1} takes on a finite number of values only.

Hint. Let X_{1} take on just two values x_{1} and x_{2}. We have $S_{N_{n}}=x_{1} N_{n}^{\prime}+x_{2} N_{n}^{\prime \prime}$ where N_{n}^{\prime} is the number of $k \in\left\{1, \ldots, N_{n}\right\}$ such that $X_{k}=x_{1}$; similarly, $N_{n}^{\prime \prime}$ and x_{2}. Due to remarkable properties of Poisson distribution, random variables N_{n}^{\prime} and $N_{n}^{\prime \prime}$ are independent and have Poisson distributions, $N_{n}^{\prime} \sim \mathrm{P}\left(n \mathbb{P}\left(X_{1}=x_{1}\right)\right)$ and $N_{n}^{\prime \prime} \sim \mathrm{P}\left(n \mathbb{P}\left(X_{1}=x_{2}\right)\right)$. So, $S_{N_{n}}$ is the sum of two independent random variables, each being approximately normal by 6 e 4

Finally, the general case (of the central limit theorem) follows from 6e7via approximation: (6e8)

$$
\begin{aligned}
& X_{k}=Y_{k}+Z_{k}, \quad Y_{k} \text { takes on a finite number of values, } \mathbb{E}\left|Z_{k}\right|^{2} \leq \varepsilon \sigma^{2}, \quad \mathbb{E} Z_{k}=0 ; \\
& \frac{X_{1}+\cdots+X_{n}-n \mu}{\sigma \sqrt{n}}=\underbrace{\frac{Y_{1}+\cdots+Y_{n}-n \mu}{\sigma \sqrt{n}}}_{\rightarrow \mathrm{N}(0,1)}+\underbrace{\frac{Z_{1}+\cdots+Z_{n}}{\sigma \sqrt{n}}}_{\mathbb{E}|\ldots|^{2} \leq \varepsilon}
\end{aligned}
$$

[^0]: ${ }^{64}$ We often prefer to idealize an unknown or irrelevant (high) resolution. Say, we prefer $\frac{d}{d x} \sin x=\cos x$ to $\frac{\sin (x+0.001)-\sin x}{0.001}=0.999999833333341 \ldots \cdot \cos x-0.000499999958 \ldots \cdot \sin x$. Similarly, we often prefer to move to infinity an unknown or irrelevant length of a (long) finite sequence.
 ${ }^{65}$ However, a number of general theorems are applicable to both cases.
 ${ }^{66}$ Non-random, of course.
 ${ }^{67}$ It is not the limit of frequency, just the limit of X_{n} itself.
 ${ }^{68}$ If you believe that its probability tends to 0 , read Sect. 10 once again!
 ${ }^{69}$ An event is a subset of our probability space Ω; strictly speaking, we should write $A=\{\omega \in \Omega$: $\left.\exists n \forall m>n X_{m}(\omega)=+1\right\}$, but probabilists usually omit ω.

[^1]: ${ }^{70}$ Quite informally we could write $\mathbb{P}\left(A_{1}\right)=(1 / 2)^{\infty}=0, \mathbb{P}\left(A_{2}\right)=(1 / 2)^{\infty-1}=0$, and so on.
 ${ }^{71}$ It is a preliminary definition, applicable only for monotone sequences. A general definition will be given later (after (6b5)).
 ${ }^{72}$ Of course, now X_{n} takes on two values 0 and 1 (rather than ± 1).
 ${ }^{73}$ Well, A is negligible since it is countable (and Lebesgue measure is nonatomic). Further we'll meet uncountable negligible sets, too.

[^2]: ${ }^{74}$ Though groundless empirically, it is still well-founded mathematically. It is based on measure theory. Thus, it cannot lead to a contradiction (provided, of course, that measure theory is consistent).
 ${ }^{75} \exp (a)$ is the same as e^{a}.

[^3]: ${ }^{76}$ Here $\#\{m: \ldots\}$ stands for the number of such m.

[^4]: ${ }^{77}$ Recall that the whole circle contains $2 \pi(\approx 6.28)$ radians.
 ${ }^{78}$ There are some nuances concerning boundary points; I just ignore them.

[^5]: ${ }^{79}$ Indicators are functions, so, it is meant that $\mathbf{1}_{B \cap C}(\omega)=\min \left(\mathbf{1}_{B}(\omega), \mathbf{1}_{C}(\omega)\right)$ for each $\omega \in \Omega$.
 ${ }^{80}$ Not just independent!
 ${ }^{81}$ Do you see, where the first part of the proof is used below?
 ${ }^{82}$ You see, tails $\sum_{m=n}^{\infty} a_{n}$ tend to $0($ when $n \rightarrow \infty)$ for every convergent series $\sum_{n=1}^{\infty} a_{n}$. Think, what happens for a divergent series.

[^6]: ${ }^{83}$ In fact, $\mathbb{E} \sum X_{n}=\sum \mathbb{P}\left(A_{n}\right)$ by the monotone convergence theorem, but we do not need it.
 ${ }^{84}$ Recall it: $\mathbb{P}(X \geq M) \leq \frac{1}{M} \mathbb{E} X$ for $X: \Omega \rightarrow[0, \infty), M \in(0, \infty)$. Sketch of a proof: $M \cdot \mathbf{1}_{X \geq M} \leq X$; thus $M \cdot \mathbb{P}(X \geq M) \leq \mathbb{E} X$.

[^7]: ${ }^{85}$ Did you note, where the independence is used?
 ${ }^{86}$ You see, $\sum_{1}^{\infty} X_{k} \geq \sum_{1}^{n} X_{k}$.

[^8]: ${ }^{87}$ i.i.d. $=$ independent, identically distributed.
 ${ }^{88}$ You see, $\mathbb{P}\left(\left|X_{n}\right|>n\right)=\mathbb{P}\left(\left|X_{1}\right|>n\right)$.
 ${ }^{89}$ Do you think that, say, $X_{n} / \ln \ln n$ also tends to 0 , just because $\ln \ln n \rightarrow \infty$? Wait a little...

[^9]: ${ }^{90}$ It can be shown that the set $\left\{\omega \in \Omega: X_{n}(\omega)-X(\omega) \xrightarrow[n \rightarrow \infty]{ } 0\right\}$ is measurable.
 ${ }^{91}$ Analysts say "in measure".

[^10]: ${ }^{92}$ To any limit, in any mode.
 ${ }^{93}$ Of course, $F_{X}(x)=\mathbb{P}(X \leq x)$, and $F_{X_{n}}(x)=\mathbb{P}\left(X_{n} \leq x\right)$.

[^11]: ${ }^{94}$ Existence of the (finite or infinite) limit is evident due to monotonicity.
 ${ }^{95}$ Note that $|X| \leq|Y|$, thus X must be integrable.

