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6 Infinite random sequences

6a Introductory remarks; almost certainty

There are two main reasons for entering continuous probability:

• infinitely high resolution;

• endless coin tossing.

Of course, both are theoretical idealizations.64 Infinite resolution was discussed in Sect. 1c.
Endless coin tossing was discussed in 1f4 and 2b5–2b7. Except for these digressions, Sections
1–5 are directed towards infinitely high resolution rather than endless coin tossing.65 Now
we turn to the latter (and its generalizations).

Almost certainty was introduced in Sect. 1c; recall the terminology:

A is negligible,

A occurs almost never,

almost surely, A does not occur







when P (A) = 0 ;

A is almost certain,

A occurs almost always,

almost surely, A occurs







when P (A) = 1 .

Discrete probability gives us only trivial examples of almost certain events. Continuous
probability gives better examples: let X have a continuous distribution, and x be a number,66

then X 6= x almost surely. Much deeper examples arise from (infinite) sequences of events
or random variables, as we’ll see soon.

Let a coin be tossed endlessly, giving independent identically distributed random variables
X1, X2, . . . each taking on two equiprobable values, say, +1 and −1 (or 0 and 1, if you like).
What about limn→∞ Xn ?67

Probably you believe that the limit does not exist. Why? Since there is a subsequence of
(+1), and another sequence of (−1). However, why they exist? What if Xn cease to change
after some n? It seems unreasonable, but we need a proof. Consider an event68 69

A = { ∃n ∀m > n Xm = +1 } ;

we want to prove that P(A) = 0. Introduce events

A1 = {X1 = +1, X2 = +1, X3 = +1, . . . } ,

A2 = { X2 = +1, X3 = +1, . . . } ,

A3 = { X3 = +1, . . . } ,

64We often prefer to idealize an unknown or irrelevant (high) resolution. Say, we prefer d

dx
sinx = cosx to

sin(x+0.001)−sinx

0.001 = 0.999 999 833 333 341 . . . · cosx − 0.000 499 999 958 . . . · sin x. Similarly, we often prefer to
move to infinity an unknown or irrelevant length of a (long) finite sequence.

65However, a number of general theorems are applicable to both cases.
66Non-random, of course.
67It is not the limit of frequency, just the limit of Xn itself.
68If you believe that its probability tends to 0, read Sect. 1c once again!
69An event is a subset of our probability space Ω; strictly speaking, we should write A = {ω ∈ Ω :

∃n ∀m > n Xm(ω) = +1 }, but probabilists usually omit ω.
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and so on; An = { ∀m ≥ n Xm = +1 }. We have P(A1) = 0 by the following argument:

P(A1) ≤ P
(
X1 = +1, . . . , Xn = +1

)
=

(
1

2

)n

=
1

2n

for every n = 1, 2, . . . , therefore P(A1) = 0. The same argument70 shows that P(A2) = 0,
and similarly P(An) = 0 for all n.

We have an increasing sequence of events, A1 ⊂ A2 ⊂ . . . (think, why), and A is their
union. We may say that A = limn→∞ An, according to the definition given after 2d9:71

(6a1) lim
n→∞

An =

{

A1 ∪ A2 ∪ . . . if A1 ⊂ A2 ⊂ . . . ,

A1 ∩ A2 ∩ . . . if A1 ⊃ A2 ⊃ . . .

Recall that probability depends continuously on an event, in the following sense:

(6a2) P
(

lim
n→∞

An

)
= lim

n→∞
P(An)

for every monotone sequence of events (see 2d9). So,

P(A) = P
(

lim
n→∞

An

)
= lim

n→∞
P(An) = lim

n→∞
0 = 0 .

Almost surely, there is no limit limn→∞ Xn for the “coin tossing” sequence Xn.
We may treat Xn as binary digits72 of a random point ω of [0, 1] (recall 2b5),

ω =
(
0.X1X2 . . .

)

2 .
b b b b b b b b b

0.00000... 0.00100... 0.01000... 0.01100... 0.10000... 0.10100... 0.11000... 0.11100... 0.11111...

That is, we may take Ω = [0, 1] (with Lebesgue measure) as our probability space. Events
An become subsets of [0, 1]:

A1 = {1} , A2 = {1
2
, 1} , A3 = {1

4
, 1

2
, 3

4
, 1} , . . .

(think, why). Their limit is the set of all binary-rational points of [0, 1],

A = lim
n→∞

An =
{

k
2n : n = 0, 1, 2, . . . , k = 0, 1, . . . , 2n

}
.

We have
P(A) = 0 ; P

(
[0, 1] \ A

)
= 1 .

Both A and [0, 1] \ A are dense in [0, 1], but A is negligible, while [0, 1] \ A is not.73

70Quite informally we could write P(A1) =
(
1/2

)
∞ = 0, P(A2) =

(
1/2

)
∞−1 = 0, and so on.

71It is a preliminary definition, applicable only for monotone sequences. A general definition will be given
later (after (6b5)).

72Of course, now Xn takes on two values 0 and 1 (rather than ±1).
73Well, A is negligible since it is countable (and Lebesgue measure is nonatomic). Further we’ll meet

uncountable negligible sets, too.



Tel Aviv University, 2006 Probability theory 57

Is there an empirical test for the statement that ω /∈ A almost surely? No. Any physical
random choice of ω, being of a finite resolution, does not allow to decide, whether ω ∈ A
or not. Similarly, any physical coin tossing process, being of finite length, is not enough
for determining limn→∞ Xn. In this sense, “convergence of random sequences” is a formal
mathematical theory with no empirical basis.

Then, why do we learn the elegant but groundless74 theory? For a simple reason: it helps
us to understand long finite sequences.

6a3 Exercise. Let X1, X2, · · · : Ω → R be independent identically distributed random
variables. Can it happen that Xn → +∞ ?

Hint: consider the median Me = X∗(1/2); we have P
(
Xn > Me

)
≤ 1/2. It follows that

the event A = {∃n ∀m > n Xm > Me} is of probability 0.

6a4 Exercise. Let X1, X2, · · · : Ω → R be independent identically distributed random
variables having exponential distribution

P(Xn ≤ x) = 1 − e−x for x > 0 .

What is the probability that Xn > 2−n for all n ?
Hint.75

P
(
X1 > 2−1, X2 > 2−2, . . .

)
= P

(
X1 > 2−1

)
· P

(
X2 > 2−2

)
· . . . =

= exp
(
−1

2

)
· exp

(
−1

4

)
· . . . = exp

(
−

(
1
2

+ 1
4

+ 1
8

+ . . .
))

= e−1 ≈ 0.37 .

6a5 Exercise. For the same Xn as before, what is the probability that Xn > 1
n

for all n ?
Hint.

exp
(
−

(
1 + 1

2
+ 1

3
+ 1

4
+ . . .

))
= e−∞ = 0 .

You see, the event ∃n Xn ≤ 2−n has a non-degenerate probability 1 − 1
e
≈ 0.63; in

contrast, the event ∃n Xn ≤ 1
n

occurs almost surely. In order to distinguish between the two
cases, we need distinguish between convergent and divergent series. Recall some relevant
arguments:

· · · ≪ 1

2n
≪ · · · ≪ 1

n3
≪ 1

n2
︸ ︷︷ ︸

convergence

≪ 1

n
≪ 1√

n
≪ 1

3
√

n
≪ · · · ≪ 1

log n
≪ . . .

︸ ︷︷ ︸

divergence

∑ 1

1.01n
< ∞ ;

∑ 1

n1.01
< ∞ ;

∑ 1

n
= ∞ ;

∑ 1

n log2 n
< ∞ ;

∑ 1

n log n
= ∞ ;

∑

an < ∞ ⇐⇒
∑

2na2n < ∞ for an ↓ 0 ;
∑

f(an) < ∞ ⇐⇒
∑

an < ∞ whenever f(0) = 0, f ′(0) > 0, and an → 0 + .

74Though groundless empirically, it is still well-founded mathematically. It is based on measure theory.
Thus, it cannot lead to a contradiction (provided, of course, that measure theory is consistent).

75exp(a) is the same as ea.
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The case f(a) = − ln(1 − a) = ln 1
1−a

is especially important: for any an ∈ [0, 1)

∏

(1 − an) > 0 ⇐⇒
∑

ln(1 − an) > −∞ ⇐⇒

⇐⇒
∑

log
1

1 − an
< ∞ ⇐⇒

∑

an < ∞ .
(6a6)

6b Borel-Cantelli lemma

Sequences that do not converge are quite usual in probability theory. Having no limit, such
a sequence has its upper limit (lim sup) and lower limit (lim inf). Given a1, a2, · · · ∈ R, we
define

lim inf
n→∞

an = a∗ = sup
n

inf
m≥n

am = lim
n→∞

inf(an, an+1, . . . ) ;

lim sup
n→∞

an = a∗ = inf
n

sup
m≥n

am = lim
n→∞

sup(an, an+1, . . . ) .
(6b1)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

b

b

b

b

b

b

b

b

b

b

b

b b
b

b

sup an

lim sup an

lim inf an

inf an

In general,

(6b2) −∞ ≤ inf
n

an ≤ lim inf
n→∞

an ≤ lim sup
n→∞

an ≤ sup
n

an ≤ +∞ .

If lim inf an = lim sup an then lim an exists and is equal to both. Otherwise lim an does not
exist.

Similarly, given events A1, A2, · · · ⊂ Ω, we define

lim inf
n→∞

An = A∗ =

∞⋃

n=1

∞⋂

m=n

Am = lim
n→∞

∞⋂

m=n

Am ;

lim sup
n→∞

An = A∗ =

∞⋂

n=1

∞⋃

m=n

Am = lim
n→∞

∞⋃

m=n

Am .

(6b3)

In other words,76

ω ∈ lim inf
n→∞

An ⇐⇒ ∃n ∀m ≥ n ω ∈ Am ⇐⇒
⇐⇒ #{m : ω /∈ Am} < ∞ ⇐⇒ ω ∈ An eventually ;

ω ∈ lim sup
n→∞

An ⇐⇒ ∀n ∃m ≥ n ω ∈ Am ⇐⇒

⇐⇒ #{m : ω ∈ Am} = ∞ ⇐⇒ ω ∈ An infinitely often .

(6b4)

76Here #{m : . . .} stands for the number of such m.
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In general,

(6b5) ∅ ⊂
∞⋂

n=1

An ⊂ lim inf
n→∞

An ⊂ lim sup
n→∞

An ⊂
∞⋃

n=1

An ⊂ Ω .

Now we are in position to generalize (6a1) for non-monotone sequences of events. By defini-
tion, if lim inf An = lim sup An then lim An exists and is equal to both. Otherwise lim An does
not exist. If lim An exists then P(lim An) = lim P(An) by the sandwich argument (compare
it with (6a2)).

A geometric example. Consider geometric figures of the following form:

A(r, R, ϕ) =
Rr

ϕ

Let ϕn = n − 1 (which means n − 1 radians77), then vertices of An = A(r, R, ϕn) are a
non-periodic sequence dense in the R-circle:

19

18

17

16

15

14

13
12

11

10
9

8

7

6

5

4

3

2

1

0

lim inf

lim sup

A point of the small disk belongs to An for all n. A point of the annulus (between the two
circles) belongs to An infinitely often, but not eventually (recall (6b4)). A point outside
of the large disk belongs to no one of An. Thus,78 ∩An = lim inf An = (the r-disk), and
lim sup An = ∪An = (the R-disk). There is no lim An. If you want all the six sets in (6b5)
to differ, try An = A(rn, Rn, ϕn) with rn ↑ r, Rn ↓ R, r < R.

6b6 Exercise. Consider “coin tossing” X1, X2, · · · : Ω → {0, 1} and let An = {Xn = 1} =
{Xn 6= 0}. Show that

∞⋂

n=1

An =

{ ∞∑

n=1

(1 − Xn) = 0

}

;

∞⋃

n=1

An =

{ ∞∑

n=1

Xn > 0

}

;

lim inf
n→∞

An =

{ ∞∑

n=1

(1 − Xn) < ∞
}

=
{
Xn → 1

}
;

lim sup
n→∞

An =

{ ∞∑

n=1

Xn = ∞
}

=
{
Xn 6→ 0

}
.

Does limn→∞ An exist? What about probability of the difference
(
lim sup An

)
\
(
lim inf An

)
?

77Recall that the whole circle contains 2π (≈ 6.28) radians.
78There are some nuances concerning boundary points; I just ignore them.
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Probably you know elementary relations for two indicators,79

A = B ∩ C ⇐⇒ 1A = min
(
1B, 1C

)
,

A = B ∪ C ⇐⇒ 1A = max
(
1B, 1C

)
.

(6b7)

Now we have similar relations for infinite sequences of indicators:

A =

∞⋂

n=1

An ⇐⇒ 1A = inf
n

1An
;

A =

∞⋃

n=1

An ⇐⇒ 1A = sup
n

1An
;

A = lim inf
n→∞

An ⇐⇒ 1A = lim inf
n→∞

1An
;

A = lim sup
n→∞

An ⇐⇒ 1A = lim sup
n→∞

1An
.

(6b8)

The following result, traditionally called “the first Borel-Cantelli lemma” (or “the first
part of Borel-Cantelli lemma”) is in fact an important theorem.

6b9 Theorem. For any80 events A1, A2, . . .

∞∑

n=1

P(An) < ∞ =⇒ P

(

lim sup
n→∞

An

)

= 0 .

Proof. First,

P

( ∞⋃

m=n

Am

)

≤
∞∑

m=n

P(Am) ,

which is the limit (for k → ∞) of

P
(
Am ∪ Am+1 ∪ · · · ∪ Am+k

)
≤ P(Am) + P(Am+1) + · · ·+ P(Am+k) .

Second,81 82

P
(
lim sup

n→∞
An

)
= P

(

lim
n→∞

∞⋃

m=n

Am

)

=

= lim
n→∞

P

( ∞⋃

m=n

Am

)

≤ lim
n→∞

∞∑

m=n

P(Am) =

= lim
n→∞

( ∞∑

m=1

P(Am) −
n−1∑

m=1

P(Am)

)

=

=
∞∑

m=1

P(Am) − lim
n→∞

n−1∑

m=1

P(Am) = 0 .

79Indicators are functions, so, it is meant that 1B∩C(ω) = min
(
1B(ω), 1C(ω)

)
for each ω ∈ Ω.

80Not just independent!
81Do you see, where the first part of the proof is used below?
82You see, tails

∑∞

m=n
an tend to 0 (when n → ∞) for every convergent series

∑∞

n=1 an. Think, what
happens for a divergent series.
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Another proof. Introduce indicators Xn = 1An
, then An = {Xn = 1} and lim sup An =

{∑ Xn = ∞}. We have83

E (X1 + · · ·+ Xn) = E X1 + · · ·+ E Xn = P(A1) + · · ·+ P(An) .

Markov inequality84 gives

P
(
X1 + · · · + Xn ≥ M

)
≤ P(A1) + · · ·+ P(An)

M

for every M ∈ (0,∞). The limit for n → ∞ gives

P

( ∑

Xn ≥ M
)

≤ 1

M

∑

P(An) .

Another limit, for M → ∞, gives

P

( ∑

Xn = ∞
)

= 0 .

What about the converse,

∞∑

n=1

P(An) < ∞ ⇐= P

(

lim sup
n→∞

An

)

= 0 ?

Check it for a simple case: A1 ⊃ A2 ⊃ . . . Here, lim sup An = lim An and P(lim sup An) =
lim P(An). Is it true that

∞∑

n=1

P(An) < ∞ ⇐= lim P(An) = 0 ?

Evidently, not!

b bbb

0 11
2

1
3

A3
︷ ︸︸ ︷

A2
︷ ︸︸ ︷

A1
︷ ︸︸ ︷

b bbb

b

b

b

0 11
2

1
3

0

1

2

3

∑

Xn < ∞ almost sure,

but E

∑

Xn = +∞ .
(6b10)

The case of independent An is more interesting and more complicated.

(6b11)
0 1

0

1

2

3

1
1
1
1
1
..
.

1
1
1
1
0
..
.

1
1
1
0
1
..
.

1
1
1
0
0
..
.

1
1
0
1
1
..
.

1
1
0
1
0
..
.

1
1
0
0
1
..
.

1
1
0
0
0
..
.

1
0
1
1
1
..
.

1
0
1
1
0
..
.

1
0
1
0
1
..
.

1
0
1
0
0
..
.

1
0
0
1
1
..
.

1
0
0
1
0
..
.

1
0
0
0
1
..
.

1
0
0
0
0
..
.

A1

A2

A3

A4

A5

83In fact, E
∑

Xn =
∑

P(An) by the monotone convergence theorem, but we do not need it.
84Recall it: P(X ≥ M) ≤ 1

M
E X for X : Ω → [0,∞), M ∈ (0,∞). Sketch of a proof: M ·1X≥M ≤ X ; thus

M · P(X ≥ M) ≤ E X .
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Continuing the process shown on (6b11) endlessly we get for the independent sum the same
expectation as for the monotone sum (6b10); both are 1 + 1

2
+ 1

3
+ · · · = +∞. However, it

is far from being evident, whether the function shown on (6b11) is finite almost everywhere,
like (6b10), or not.

The following result, well-known as “the second Borel-Cantelli lemma” (or “the second
part of Borel-Cantelli lemma”) answers the question: the tower (6b11) is infinite almost
everywhere!

6b12 Theorem. For any independent events A1, A2, . . .

∞∑

n=1

P(An) = ∞ =⇒ P

(

lim sup
n→∞

An

)

= 1 .

Proof. Introduce indicators Xn = 1An
, then An = {Xn = 1} and lim sup An = {∑ Xn =

∞}. We have85

E exp
(
−(X1 + · · ·+ Xn)

)
= E

(
e−X1 · . . . · e−Xn

)
=

=
(
E e−X1

)
· . . . ·

(
E e−Xn

)
=

n∏

k=1

(

1 −
(
1 − 1

e

)
P(An)

)

,

since E e−Xk = e0 · P(Xk = 0) + e−1 · P(Xk = 1) = 1 · (1 − P(Ak)) + 1
e
· P(Ak). Thus,

E exp
(
−(X1 + · · ·+ Xn)

)
→ 0 for n → ∞ ,

since
∑∞

n=1

(
1 − 1

e

)
P(An) = ∞ (recall 6a6). Markov inequality gives for every M ∈ (0,∞)

P

(

exp
(
−(X1 + · · ·+ Xn)

)
≥ e−M

)

≤ E exp
(
−(X1 + · · · + Xn)

)

e−M
.

It follows that86

P

( ∞∑

k=1

Xk ≤ M

)

≤ eM
E exp

(
−(X1 + · · ·+ Xn)

)
.

The limit for n → ∞ gives

P

( ∞∑

k=1

Xk ≤ M

)

= 0 .

Another limit, for M → ∞, gives

P

(∑

Xn < ∞
)

= 0 .

85Did you note, where the independence is used?
86You see,

∑∞

1 Xk ≥ ∑n

1 Xk.



Tel Aviv University, 2006 Probability theory 63

So, for independent events the problem is solved:

∞∑

n=1

P(An) < ∞ =⇒ P
(
lim sup

n→∞
An

)
= 0 ,

∞∑

n=1

P(An) = ∞ =⇒ P
(
lim sup

n→∞
An

)
= 1 .

(6b13)

Note that intermediate values (between 0 and 1) are excluded.
A corollary: for any sequence X1, X2, . . . of i.i.d.87 random variables,

E |X1| < ∞ =⇒ Xn

n
−−−→
n→∞

0 almost surely ;

E |X1| = ∞ =⇒ lim sup
n→∞

|Xn|
n

= ∞ almost surely .
(6b14)

An explanation. First, for any random variable X,

E |X| < ∞ ⇐⇒
∞∑

n=1

P
(
|X| > n

)
< ∞ .

Moreover, E |X| − 1 ≤ ∑
P(|X| > n) ≤ E |X| according to a “sandwich” argument:

0 1
x

Now, Borel-Cantelli lemma gives88

(
E |X1| = ∞

)
⇐⇒

(
|Xn| > n infinitely often ) .

6b15 Exercise. Complete the explanation, prove (6b14).
Hint. E |X1| < ∞ ⇐⇒ E |cX1| < ∞ for any c ∈ (0,∞).

The normal distribution is especially important. Let X1, X2, . . . be i.i.d. N(0, 1) random
variables. Then E |X1| < ∞, therefore Xn/n → 0 almost surely.89 Moreover, the density
fX(x) = const · exp(−x2/2) tends to 0 (for x → ∞) exponentially fast, which ensures that
∫

xkfX(x) dx < ∞ for each k. Thus, for instance, E |X1|10 < ∞. Applying (6b14) to the
sequence X10

1 , X10
2 , . . . we get X10

n /n → 0, that is, Xn/ 10
√

n → 0 almost sure. It is much
more than Xn/n → 0. Still more, consider E exp(cX2

1 ); it is finite for c < 1/2 but infinite
for c ≥ 1/2 (check it). Therefore, exp(X2

n/2) > n infinitely often, that is, |Xn| >
√

2 lnn

87i.i.d. = independent, identically distributed.
88You see, P

(
|Xn| > n

)
= P

(
|X1| > n

)
.

89Do you think that, say, Xn/ ln lnn also tends to 0, just because ln lnn → ∞ ? Wait a little. . .
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infinitely often, and lim supn→∞(|Xn|/
√

2 lnn) ≥ 1. On the other hand, taking c a bit less
than 1/2 we get, say, |Xn| ≤

√
2.02 lnn eventually, thus, lim supn→∞(|Xn|/

√
2 ln n) ≤ 1.01.

It means that

(6b16) lim sup
n→∞

|Xn|√
2 lnn

= 1 almost sure

for independent random variables X1, X2 . . . having the normal distribution with the mean
0 and the variance 1. In fact, lim sup Xn/

√
2 lnn = 1 and lim inf Xn/

√
2 lnn = −1 a.s.

6c Modes of convergence

After all, does Xn/
√

2 lnn converge to 0, or not? It depends. . .

6c1 Exercise. For every random variable X : Ω → R,

E |X| = 0 ⇐⇒ P
(
X = 0

)
= 1 .

Prove it. Hint: P
(
X 6= 0

)
= limε→0 P

(
|X| ≥ ε

)
; also, P

(
|X| ≥ ε

)
≤ E |X|/ε.

6c2 Exercise. Let X1, X2, . . . : Ω → R be random variables. Then
(a) if Ω is finite then

P
(
Xn → 0

)
= 1 =⇒ E |Xn| → 0 ;

(b) in general, it does not hold.

Prove it. Hint: (a) max
ω

|Xn(ω)| → 0; (b)

ω

x

b b

b

1/n 1

n
Xn

What happens if Ω is countable? What if Ω has both a discrete part and a continuous part?

6c3 Exercise. Let X1, X2, . . . : Ω → R be random variables. Then
(a) if Ω is finite or countable then

E |Xn| → 0 =⇒ P
(
Xn → 0

)
= 1 ;

(b) in general, it does not hold.
Prove it. Hint: (a) |X(ω)| ≤ E |X|/P

(
{ω}

)
;

(b)
b b

0 1

X1 X2

b b

0 1

X3 X4 X5

b b

0 1

X6X7X8X9

. . .

What happens if Ω has both a discrete part and a continuous part?

For a sequence of numbers x1, x2, . . . ∈ R the condition “xn → 0” is unambiguous. In
contrast, for a sequence of random variables we have several nonequivalent interpretations
of “Xn → 0”, that is, several modes of convergence.
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6c4 Definition. Let X, X1, X2, . . . : Ω → R be random variables.
(a) Xn → X almost surely, if90

P
(
{ω ∈ Ω : Xn(ω) − X(ω) −−−→

n→∞
0}

)
= 1 ;

(b) Xn → X in square mean, if E |X|2 < ∞ and

E |Xn − X|2 −−−→
n→∞

0 ;

(c) Xn → X in absolute mean, if E |X| < ∞ and

E |Xn − X| −−−→
n→∞

0 ;

(d) Xn → X in probability,91 if for every ε > 0

P
(
|Xn − X| > ε

)
−−−→
n→∞

0 .

6c5 Exercise. Let Xn be indicators, Xn = 1An
, and X = 0. Show that each one of (b), (c),

(d) is equivalent to P(An) → 0, while (a) is not. What happens for independent An ?

6c6 Exercise. Let cn → ∞, Xn = cn1An
, and X = 0. Show that

(b) ⇐⇒ c2
nP(An) → 0,

(c) ⇐⇒ cnP(An) → 0,

(d) ⇐⇒ P(An) → 0 (irrespective of cn),

and

(a) ⇐⇒ P(lim sup An) = 0 (irrespective of cn).

Show by examples that there are no two equivalent conditions among (a), (b), (c), (d).

6c7 Exercise. (b) =⇒ (c) =⇒ (d) for any X, X1, X2, . . .
Prove it. Hint: E |Xn − X|2 − (E |Xn − X|)2 = Var(|Xn − X|) ≥ 0; also, P

(
|Xn − X| ≥

ε
)
≤ E |Xn − X|/ε.

6c8 Lemma. (a) =⇒ (d) for any X, X1, X2, . . .

Proof. Almost surely Xn − X → 0, therefore, |Xn − X| ≤ ε eventually. Introduce events

An = {|Xn − X| ≤ ε, |Xn+1 − X| ≤ ε, . . . } ,

then A1 ⊂ A2 ⊂ . . . and P(lim An) = 1. It follows that lim P(An) = 1. However, An is
incompatible with |Xn − X| > ε; thus, P(|Xn − X| > ε) ≤ 1 − P(An) → 0.

90It can be shown that the set {ω ∈ Ω : Xn(ω) − X(ω) −−−−→
n→∞

0} is measurable.
91Analysts say “in measure”.
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So,

(b) (c) (d)

(a)

All the 4 modes (a)–(d) are modes of convergence of random variables, not distributions.
Say, for the “coin tossing” sequence X1, X2, . . . distribution functions Fn of Xn are all the
same, F1 = F2 = · · · = F , thus, Fn −−−→

n→∞
F trivially. However, Xn does not converge.92 Do

not confuse convergence of distributions and convergence of random variables!

6c9 Definition. (a) A sequence (F1, F2, . . . ) of distribution functions converges weakly to a
distribution function F , if Fn(x) −−−→

n→∞
F (x) for every x such that F is continuous at x.

(b) A sequence X1, X2, . . . of random variables converges in distribution to a random
variable X, if FXn

−−−→
n→∞

FX weakly.93

Item (b), “convergence in distribution”, is rather illogical; you see, convergence of dis-
tributions should not be ascribed to random variables. Say, for the “coin tossing” sequence
X1, X2, . . . we may say that Xn → X1 in distribution, as well as Xn → X2 in distribution!
Still, the terminology is widely used. Moreover, people say “Xn → F in distribution”, having
in mind “FXn

→ F weakly”. For instance, a claim of the form “Xn → N(0, 1) in distribution”
appears often in limit theorems.

The simplest case of Definition 6c9 is the degenerate case: each Fn is concentrated at

a point an, that is, Fn(x) =

{

1 for x ≥ an,

0 for x < an.
Accordingly, Xn = an almost sure. Here, Xn

converges in distribution, if and only if an converges to a number a ∈ (−∞, +∞), and then

Fn → F weakly, where F (x) =

{

1 for x ≥ a,

0 for x < a.
Accordingly, Xn → X in distribution, where

X = a almost sure. Note that P(Xn = a) need not converge to P(X = a); this is why the
convergence Fn → F is called weak.

Clearly, Xn → X in distribution if and only if X∗
n → X∗ in distribution. The latter

appears to be equivalent to
X∗

n(p) −−−→
n→∞

X∗(p)

for every p ∈ (0, 1) such that X∗ is continuous at p. (Do not think that X∗
n(p±) → X∗(p±).)

6c10 Lemma. (a) If Xn → X in probability then Xn → X in distribution.
(b) If Xn → 0 in distribution then Xn → 0 in probability.

(I give no proof.)

6c11 Exercise. (a) If Xn → X in absolute mean then E Xn → E X.
(b) The converse is generally wrong.

Prove it. Hint: (a) −|Xn − X| ≤ Xn − X ≤ |Xn − X|; take the expectation. (b) It may
happen that E (X1 − X) = 0 but E |Xn − X| 6= 0; try X1 = X2 = . . .

92To any limit, in any mode.
93Of course, FX(x) = P(X ≤ x), and FXn

(x) = P(Xn ≤ x).
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Here are two famous theorems of measure theory (formulated here for probability mea-
sures, in probabilistic language). (For Ω = (0, 1) we may think in terms of mes2. . . )

6c12 Theorem (Monotone Convergence Theorem). Let X, X1, X2, . . . : Ω → R be random
variables such that

P
(
Xn ↑ X

)
= 1 and E |X1| < ∞ .

Then94

lim
n→∞

E Xn = E X ∈ (−∞, +∞] .

6c13 Theorem (Dominated Convergence Theorem). Let Y, X, X1, X2, . . . : Ω → R be
random variables such that

P
(
Xn → X

)
= 1 , P

(
|Xn| ≤ Y

)
= 1 , and E |Y | < ∞ .

Then95

lim
n→∞

E Xn = E X .

For Ω = (0, 1) these facts may be deduced from 5c13. Think also about the bounded
case, especially, indicators. . .

6c14 Exercise. If Y is non-integrable then it may happen that P
(
X = 0

)
= 1 but E Xn →

∞.
Give an example. Hint: recall 6c6.

6c15 Exercise. If E |X| < ∞ then there exist bounded random variables X1, X2, . . . such
that E |Xn − X| → 0. Prove it.

Recall also the moments as the derivatives of the MGF. . .

6d Laws of large numbers

6d1 Theorem (Weak law of large numbers). Let X1, X2, . . . : Ω → R be independent,
identically distributed random variables, E |X1| < ∞, µ = E X1. Then

X1 + · · · + Xn

n
−−−→
n→∞

µ in absolute mean.

Note that convergence in absolute mean implies convergence in probability (and in dis-
tribution). The square-integrable case, E |X1|2 < ∞, is easy:

(6d2) Var

(
X1 + · · · + Xn

n

)

=
Var(X1)

n
→ 0 ,

94Existence of the (finite or infinite) limit is evident due to monotonicity.
95Note that |X | ≤ |Y |, thus X must be integrable.



Tel Aviv University, 2006 Probability theory 68

which gives convergence in square mean, the more so, in absolute mean. The general case
follows via approximation:96

(6d3)

Xk = Yk + Zk , E |Yk|2 < ∞ , E |Zk| ≤ ε ;

E

∣
∣
∣
∣

X1 + · · ·+ Xn

n
− µ

∣
∣
∣
∣
≤ E

∣
∣
∣
∣

Y1 + · · ·+ Yn

n
− µ

∣
∣
∣
∣

︸ ︷︷ ︸

→|E Y −µ|≤ε

+ E

∣
∣
∣
∣

Z1 + · · · + Zn

n

∣
∣
∣
∣

︸ ︷︷ ︸

≤ε

.

6d4 Theorem (Strong law of large numbers). Let X1, X2, . . . : Ω → R be independent,
identically distributed random variables, E |X1| < ∞, µ = E X1. Then

X1 + · · ·+ Xn

n
−−−→
n→∞

µ almost surely, and in absolute mean.

Several proofs are well-known; no one is simple enough for being reproduced here. The
most natural proof (for my opinion) is given by theory of martingales. It combines a clever
observation that

E
(
X1

∣
∣ Sn, Sn+1, . . .

)
=

1

n
Sn

(here Sn = X1 + · · ·+ Xn) and a deep theorem:
For every integrable random variable X and every random variables Y1, Y2, . . . (quite

arbitrary, not at all independent), random variables E
(
X

∣
∣ Yn, Yn+1, . . .

)
converge almost

surely, and in absolute mean.
It remains to note that the limit is just µ by the weak law.
(Normal numbers and singular measures may be mentioned here. . . )

Here is a sketch of a proof assuming that the moment generating function (4f4) of X1 is
finite in a neighborhood of 0. (The case of bounded X1 is thus covered.) By 4f7,

d

dt

∣
∣
∣
∣
t=0

MGFX1(t) = µ ,

therefore for every ε > 0
MGFX1(t) < e(µ+ε)t

provided that t > 0 is small enough. We apply Markov inequality97 to et(X1+···+Xn):

P

( X1 + · · ·+ Xn

n
≥ µ + ε

)

= P
(
et(X1+···+Xn) ≥ etn(µ+ε)

)
≤

≤ E et(X1+···+Xn)

etn(µ+ε)
=

(
E etX1

et(µ+ε)

)n

= qn ,

where q =
MGFX1

(t)

et(µ+ε) < 1. By the first Borel-Cantelli lemma 6b9, X1+···+Xn

n
< µ + ε for large

n, almost surely. It holds for all ε > 0, thus

lim sup
n→∞

X1 + · · ·+ Xn

n
≤ µ a.s.

Similarly, MGFX1(t) < e(µ−ε)t for some t < 0, which leads to lim inf · · · ≥ µ.

96Consider Yk =

{

Xk if |Xk| ≤ M,

0 otherwise,
where M is large enough.

97It was also used in the second proof of 6b9.
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6e Central limit theorem

Here is probably the most famous theorem of the whole probability theory.

6e1 Theorem (Central Limit Theorem). Let X1, X2, . . . : Ω → R be independent, identi-
cally distributed random variables, E X1 = µ, Var X1 = σ2 ∈ (0,∞). Then

X1 + · · ·+ Xn − nµ

σ
√

n
−−−→
n→∞

N(0, 1) in distribution.

Here N(0, 1) is the standard normal distribution. In other words,

(6e2) lim
n→∞

P

( X1 + · · ·+ Xn − nµ

σ
√

n
≤ z

)

= Φ(z) =
1√
2π

∫ z

−∞
e−u2/2 du

for all z ∈ R. One says that X1 + · · · + Xn is asymptotically normal (for n → ∞).
We cannot hope for convergence in probability, since Sm and Sn are nearly independent

for n ≫ m ≫ 1.
Several proofs (of the central limit theorem) are well-known; no one is simple. I give a

sketch of one proof in the form of several lemmas.
Recall the Poisson distribution P(λ),

(6e3)
X ∼ P(λ) ⇐⇒ P

(
X = k

)
=

λk

k!
e−λ for k = 0, 1, 2, . . . ;

E X = λ , σX =
√

λ ; λ ∈ [0,∞) .

6e4 Lemma. P(λ) is asymptotically normal for λ → ∞. That is, limλ→∞ P
(

Xλ−λ√
λ

≤ z
)

=

Φ(z), where Xλ ∼ P(λ).

Hint. Use the Stirling formula

k! ∼
√

2πkkke−k for k → ∞ .

6e5 Lemma. Let Nλ ∼ P(λ) be a random variable independent of X1, X2, . . . Introduce

Sn = X1 + · · ·+ Xn , SNλ
= X1 + · · ·+ XNλ

.

Then

E

∣
∣
∣
∣

SNn
− Nnµ

σ
√

n
− Sn − nµ

σ
√

n

∣
∣
∣
∣

2

−−−→
n→∞

0 .

Hint. On one hand, Nn/n → 1 in absolute mean (by the weak law of large numbers). On
the other hand,

E

∣
∣
∣
∣

Sm − mµ

σ
√

n
− Sn − nµ

σ
√

n

∣
∣
∣
∣

2

≤
∣
∣
∣
∣

m

n
− 1

∣
∣
∣
∣
;

and E (. . . ) = E
(
E

(
. . .

∣
∣Nn

) )
.
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6e6 Corollary. The following two conditions are equivalent.

Sn − nµ

σ
√

n
→ N(0, 1) in distribution;

SNn
− Nnµ

σ
√

n
→ N(0, 1) in distribution.

Hint. If two random variables are close in square mean (or in absolute mean, or even in
probability) then their distributions are close.

6e7 Lemma. The central limit theorem holds when X1 takes on a finite number of values
only.

Hint. Let X1 take on just two values x1 and x2. We have SNn
= x1N

′
n+x2N

′′
n where N ′

n is
the number of k ∈ {1, . . . , Nn} such that Xk = x1; similarly, N ′′

n and x2. Due to remarkable
properties of Poisson distribution, random variables N ′

n and N ′′
n are independent and have

Poisson distributions, N ′
n ∼ P

(
nP

(
X1 = x1

))
and N ′′

n ∼ P
(
nP

(
X1 = x2

))
. So, SNn

is the
sum of two independent random variables, each being approximately normal by 6e4.

Finally, the general case (of the central limit theorem) follows from 6e7 via approximation:
(6e8)

Xk = Yk + Zk , Yk takes on a finite number of values, E |Zk|2 ≤ εσ2 , E Zk = 0 ;

X1 + · · · + Xn − nµ

σ
√

n
=

Y1 + · · ·+ Yn − nµ

σ
√

n
︸ ︷︷ ︸

→N(0,1)

+
Z1 + · · ·+ Zn

σ
√

n
︸ ︷︷ ︸

E |...|2≤ε

.
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