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1 From probabilistic problems to probability spaces

1a Two approaches

1a1 Problem. Two friends come between 6:00 and 7:00 at random. Each one waits for the
other at most 20 min. Find the probability of their meeting.

Here is a dialogue between two persons, D (prefers discrete to continuous) and C (prefers
continuous to discrete).

D: One friend comes at 6 : X, the other at 6 : Y , where X, Y ∈ {0, 1, . . . , 59}. There are
60 · 60 = 3600 possibilities. The following possibilities are successful:

X = 0, Y ∈ {0, . . . , 20}; = 21

X = 1, Y ∈ {0, . . . , 21}; = 22

. . . . . . . . .

X = 19, Y ∈ {0, . . . , 39}; = 40

X = 20, Y ∈ {0, . . . , 40}; = 41

X = 21, Y ∈ {1, . . . , 41}; = 41

. . . . . . . . .

X = 39, Y ∈ {19, . . . , 59}; = 41

X = 40, Y ∈ {20, . . . , 59}; = 40

. . . . . . . . .

X = 58, Y ∈ {38, . . . , 59}; = 22

X = 59, Y ∈ {39, . . . , 59}; = 21

In all, 2 · (21 + 22 + · · ·+ 40) + 20 · 41 = 2040. The probability:

p =
2040

3600
=

17

30
= 0.566 . . .

C: Why use minutes? Maybe, seconds? Rather, I use hours and all their parts: X, Y ∈
(0, 1). All points (x, y) of the square [0, 1) × [0, 1) are possibilities. Successes satisfy

|x − y| ≤ 1/3 .

x

y

The area is equal to

2 ·
1

3
·
2

3
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1

3
·
1

3
=

4

9
+

1

9
=

5

9
.
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The probability:

(1a2) p =
5/9

1
=

5

9
= 0.555 . . .

D: You compare infinite sets via their areas. I doubt that it is correct.
C: You replace the continuum with a finite set (of 60 points). It is surely incorrect, since

your result (17/30) depends on the parameter (60) chosen at will.
D: Well, I can take 3n points (not just 60). Then I get 9n2 possibilities; among them,

the following number of successes:

2
(
(n + 1) + · · ·+ (n + n)

)

︸ ︷︷ ︸

n(3n+1)

+n(2n + 1) = n(5n + 2) .

The discrete probability is

pn =
n(5n + 2)

9n2
=

5

9
+

2

9n
.

The continuous probability is the limit,

(1a3) p = lim
n→∞

pn =
5

9
.

C: But I got the same without limits.
D: And I got it without areas.

1b Area as a limit

Relations between the two approaches of Sect. 1a may be understood as follows. We have a
square Ω = [0, 1) × [0, 1) and its subset A ⊂ Ω, A = {(x, y) ∈ Ω : |x − y| ≤ 1/3}. For an
arbitrary n ∈ {1, 2, . . .} we consider the lattice1

1

n
Z

2 = {( k
n
, l

n
) : k, l ∈ Z} ,

the number of lattice points in A,

#
(
A ∩ 1

n
Z

2
)
,

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

the fraction

Pn(A) =
#

(
A ∩ 1

n
Z

2
)

#
(
Ω ∩ 1

n
Z2

)

and its limit
P (A) = lim

n→∞
Pn(A) ,

1
Z = {. . . ,−2,−1, 0, 1, 2, . . .}.
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if it exists.
If A is a polygon (or the union of several polygons) then the limit P (A) exists and is

equal to the area of A (as defined by elementary geometry).
In general, geometry defines the outer area of A as the infimum of areas of all polygons

containing A; the inner area of A as the supremum of areas of all polygons contained in A;
if the inner and outer areas coincide, their common value is called the (Jordan) area of A,
and A is called Jordan measurable. Otherwise, the inner area is strictly smaller than the
outer area, A is not Jordan measurable, and Jordan area of A is not defined.

Every domain with a piecewise smooth boundary is Jordan measurable.
Jordan measurable sets are an algebra of sets (as defined in 1e).
For every Jordan measurable set A, the limit P (A) exists and is equal to the area of A.
Three-dimensional Jordan measurable sets A ⊂ R

3 are introduced similarly; the volume
is used rather than the area. More generally, A ⊂ R

d for any d = 1, 2, 3, 4, . . . may be
considered.

1c Possible and impossible

Recall that discrete probability calls an event A impossible, if its probability vanishes,
P (A) = 0.

A singleton2 is Jordan measurable, and its area is 0. However, the union of all singletons
is the whole Ω. We do not want to say that a singleton is an impossible event, since one of
such events must occur. Instead we say that

A is negligible,

A occurs almost never,

almost surely, A does not occur







when P (A) = 0 ;

A is almost certain,

A occurs almost always,

almost surely, A occurs







when P (A) = 1 .

1c1 Problem. Two friends come between 6:00 and 7:00 at random. Can it happen that
they come simultaneously?

C: No. The set {(x, y) : x = y} is of zero area;3 a random point has no chance to hit it.
D: Indeed, only a mathematician can give such an answer, rigorous and irrelevant! My

answer is “yes”. Let A = {(x, y) ∈ [0, 1) × [0, 1) : x = y}, then

#
(
A ∩ 1

n
Z

2
)

= #{(0, 0), ( 1
n
, 1

n
), ( 2

n
, 2

n
), . . . , (n−1

n
, n−1

n
)} = n ;

Pn(A) =
n

n2
=

1

n
.

2That is, a set of one point.
3You see, it is a line.
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The probability is positive, therefore, the event is possible.
C: However, limn→∞ Pn(A) = 0.
D: So what?
C: You did not say, what is the probability of the event. You cannot say just “1/n”,

since there is no “n”in the formulation of the problem. The parameter n is your trick. You
must take the limit for n → ∞.

D: In real life, there is always a finite resolution. You cannot say that friends do not
come simultaneously since one friend comes 1 microsecond after the other. Therefore you
cannot say that P (A) is less than 1

1 000 000
· 1

60
· 1

60
.

C: If you apply mathematics to real life, you need some idealization. A resolution is not
given in the formulation, therefore I use continuum.

D: Therefore you say “no” while the right answer is “yes”. You may neglect the difference
between 1

1 000 000
· 1

60
· 1

60
and 0, but you may not neglect the distinction between “yes” and

“no’.
C: And you may not neglect the distinction between reality and mathematics.

Mathematical problems are formal. I may ask you questions about coins tossed,
friends coming etc., but never forget: I am a mathematician; my questions are mathematical
(unless otherwise stated); translate all these coins and friends into mathematical language,
that is, use a mathematical model, then answer my questions.

Do not be confused by two different approaches; one is an infinite sequence of finite
models, the other a single infinite model. Both are very useful; confront but do not
confuse one with the other. An example was given in Sect. 1a; the same result was reached
by C via a single infinite model (recall (1a2)), and by D via an infinite sequence of finite
models (recall (1a3)).

The present course is mostly about continuous probability. (Discrete probability
was the matter of “Introduction to probability” course.) Thus, I mean a single infinite
(continuous) model, unless otherwise stated.

Do not say that the probability of a single point tends to 0; leave it to the other approach.
Say that the probability of a single point is equal to 0; this is the typical situation
for continuous probability.

Can we observe an event of zero probability? In real life we cannot, but in
the theory we can. Why? Since points of zero size, infinite collections of coins etc. exist in
the theory but not in the real life.

How to observe an event of zero probability? It is easy. Choose at random
a point within the square.4 Ask yourself, what was the chance of this specific point to be
chosen. It was equal to zero.

D: So, the continuous probability is absurd.
C: Why?
D: The only bridge between probability theory and its real-life applications is the claim

that events of very small probability do not occur in practice. For example: if I toss a
fair coin 1000 times, I am pretty sure that I’ll not get 1000 “heads”; it is too improbable.

4Or the interval (0, 1), if you like.
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Moreover, the number of “heads” will not escape the interval [400, 600]. In contrast, you
say that even an event of zero probability occurs quite easily. Maybe your mathematics is
correct, but your philosophy is inconsistent.

C: Just a moment. You say, the sequence H1000 of 1000 “heads” is improbable. What
about the sequence, say, (HT )500 = HTHT . . . HT of 500 pairs “head, tail”?

D: The same. Still, the probability is 2−1000 ≈ 10−300; more than improbable.
C: Give me an example of a more probable sequence.
D: There is no such example. Every single sequence (of length 1000) is of probability

2−1000.
C: So, every single sequence is improbable. Now, can you toss a coin 1000 times?
D: No problem.
C: Do it, and you’ll get an improbable sequence! Continuous probability is not at all

responsible for the absurdity.
D: What is responsible?
C: Two words missing in your phrase “events of very small probability do not occur

in practice”. Rather, you should say: A single predicted event of very small
probability does not occur in practice.

D: I see. And the theoretical counterpart is, A predicted event of zero probabil-
ity does not occur.

C: I agree.

A set of zero probability may be ignored when calculating probabilities. In
particular, uniform distributions on (0, 1), [0, 1], [0, 1) and (0, 1] are all the same. Also, in
1a1 it does not matter whether we write |x − y| < 1/3 or |x − y| ≤ 1/3.

1d Uniform and non-uniform

It was implicitly assumed in Sect. 1a that all points of the square are equiprobable.5 Is
it a realistic assumption? I think, it is not. If a friend comes between 6:00 and 7:00, the
central values (around 6:30) could be more probable than peripheral values (close to 6:00
or 7:00). Also, the two friends need not be independent. Say, a rain could influence both.
The uniform distribution on the square is a simplification. During the course we’ll deal with
various distributions, generally non-uniform.

Discrete probability defined “uniform” by p(ω1) = p(ω2) for all ω1, ω2 ∈ Ω; all points are
equiprobable. Equivalently, p(ω) = 1/n for all ω ∈ Ω; here n = #(Ω).

Now, in the continuous case, the equality p(ω1) = p(ω2) turns into 0 = 0 and becomes
void. It does not express uniformity. (After all, p(ω1) = 2p(ω2) is also true.) Here is a
correct formulation of uniformity:

P (A) = P (B) whenever sets A, B ⊂ Ω are of equal area.

Equivalent formulations will appear during the course. For now I emphasize the following. In
the continuous case, probabilities of sets are relevant; probabilities of points

5That is, of equal probability.
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are irrelevant. This is why the following section is difficult for a beginner. You’d like a
function of a point; however, probability is rather a function of a set. Sorry. . .

1e Probability space, the definition

1e1 Definition. A probability space (Ω,F , P ) consists of:

Ω 6= ∅

F ⊂ 2Ω

∅, Ω ∈ F

A ∈ F =⇒ Ω \ A ∈ F

A, B ∈ F =⇒ A ∩ B, A ∪ B ∈ F







F is a field

(algebra)

A1, A2, · · · ∈ F =⇒ (A1 ∪ A2 ∪ . . . ) ∈ F







F is a σ-field

(σ-algebra)

P : F → [0, 1]

P (Ω) = 1

P (A ⊎ B) = P (A) + P (B)







P is a finitely ad-

ditive probability

P (A1 ⊎ A2 ⊎ . . . ) = P (A1) + P (A2) + . . .







P is a proba-

bility measure







(Ω,F , P ) is a

probability space

Ω — sample space,

F — σ-field of events,

P — probability measure.

1f Probability space, first examples

1f1 Example. A single toss of a fair coin is described by the following probability space:

Ω = {0, 1} ;

F = 2Ω =
{
∅, {0}, {1}, Ω

}
,

P : ∅ 7→ 0 ,

{0} 7→ 1/2 ,

{1} 7→ 1/2 ,

Ω 7→ 1 .

When Ω is finite or countable, all subsets of Ω may be treated as events; that is, we may
take F = 2Ω and define the probability of any event A ⊂ Ω as the sum of probabilities of its
points,

(1f2) P (A) =
∑

ω∈A

p(ω)

(a finite sum or the sum of a series). That is, we start with a function p : Ω → [0, 1] satisfying
∑

ω∈Ω p(ω) = 1 and construct P : F → [0, 1] by (1f2). It is always a probability measure,
which is elementary in the finite case; in the countable case, some calculus is needed for the
proof.
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1f3 Example. An experiment with 10 equiprobable outcomes 0, 1, . . . , 9 is repeated until 0
encounters.

Here Ω consists of all finite sequences of digits 1, . . . , 9 (including the empty sequence),
and

ω ∈ Ω p(ω)

empty 0.1 0.1

1 0.01
. . . . . .

}

0.09

p(ω) = 10−(1+length(ω)) . 9 0.01

11 0.001
. . . . . .

}

0.081
99 0.001

111 0.0001
. . . . . . . . .

Note that 0.1+0.09+0.081+ · · · = 1
10

(
1+ 9

10
+( 9

10
)2 + . . .

)
= 1

10
· 1

1− 9

10

= 1; the corresponding

probability measure P is defined by (1f2).
Here is an example of an event: A1 = “the first outcome is 1”; A1 is an infinite subset of

Ω;

ω ∈ A1 p(ω)

1 0.01 0.01

11 0.001
. . . . . .

}

0.009
19 0.001

111 0.0001
. . . . . .

}

0.0081
199 0.0001

. . . . . . . . .

thus, P (A1) = 0.01 + 0.009 + 0.0081 + · · · = 1
100

(
1 + 9

10
+ ( 9

10
)2 + . . .

)
= 1

10
, as it should be.

Instead of sequences of digits we may use numbers:

ω ∈ Ω p(ω)

0 0.1

0.1 0.01
. . . . . .
0.9 0.01 bb b b b b b b b b bb b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b

0.11 0.001
. . . . . .
0.99 0.001

0.111 0.0001
. . . . . .

You see a very special discrete probability distribution on [0, 1).
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1f4 Example. An experiment with 10 equiprobable outcomes 0, 1, . . . , 9 is repeated end-
lessly.

Here Ω consists of all infinite sequences of digits 0, . . . , 9. Each sequence is of zero
probability; we cannot use p(ω) for constructing P (A).

Instead of sequences we may use numbers;6 say,

(3, 1, 4, 1, 5, 9, 2, 6, 5, . . .) 7→ 0.314159265 . . .

What is the corresponding probability distribution on [0, 1)?
The event A0 = “the first outcome is 0” is of probability 1/10, thus P

(
[0, 0.1)

)
= 0.1.

Similarly, P
(
[0.1, 0.2)

)
= 0.1, . . . , P

(
[0.9, 1)

)
= 0.1. It does not mean yet that the dis-

tribution is uniform. (After all, these 10 equalities hold also for the previous example.)
However, the event A00 = “the first two outcomes are 00” is of probability 1/100, thus
P

(
[0, 0.01)

)
= 0.01. Similarly, P

(
[0.01, 0.02)

)
= 0.01, . . . , P

(
[0.99, 1)

)
= 0.01. And so on;

say,
P

(
[0.314 159, 0.314 16)

)
= 0.000 001 .

It follows (by adding) that

(1f5) P
(
[a, b)

)
= b − a

whenever 0 ≤ a < b ≤ 1 and a, b are of the form k/2n. Such numbers are dense; it follows
that7 (1f5) holds for all a, b such that 0 ≤ a < b ≤ 1.

So, the probability of any interval is equal to its length. Does it mean that the distribution
is uniform? It is natural to define the uniform distribution by (1f5). However, what about
events more complicated than intervals? Is every P (A) uniquely determined by (1f5)?

Now the σ-field F becomes relevant. If you take F = 2Ω, Ω = [0, 1), then of course F
is a σ-field, however, P (·) is not uniquely determined by (1f5). The proof is far beyond our
course, but the intuitive reason is simple: a very complicated set A cannot be reached from
intervals by taking complements, unions and intersections.8 For such A we have no idea
what is P (A).

Do we need bizarre sets? It depends on our goal. Such problems as 1a1 do not
need complicated sets; Jordan measurable sets are enough. However, properties of infinite
sequences lead to more complicated sets. For example, the Strong Law of Large Numbers9

states (in particular) that the event

(1f6)

{

(x1, x2, . . . ) ∈ Ω : lim
n→∞

x1 + · · ·+ xn

n
= 4.5

}

is of probability 1 (under conditions of 1f4). The corresponding subset of [0, 1),

(1f7)

{

(0.x1x2 . . . )10 : lim
n→∞

x1 + · · ·+ xn

n
= 4.5

}

,

6A tail of digits 9 (say, 0.24999 . . . ) makes some troubles; however, such a case is of zero probability and
may be ignored.

7Try to deduce it now, or wait for next sections.
8The union (or intersection) of a sequence of sets is meant.
9We’ll return to SLLN later.
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is dense in [0, 1), and its complement is also dense. (Thus, it cannot be Jordan measurable.)
A simpler example is the set of rational numbers (the corresponding event is periodicity of
a sequence).

How to measure bizarre sets? We start with an algebra A of sets that can be
measured easily. In R

1 it may be the algebra generated by intervals. In R
2 we may do the

same (after introducing two-dimensional intervals). Examples: A = (−∞,−5] ∪ [−2, 1.5) ∪
{7} (one-dim); A = [0, 4] × (0, 2) ∪ [3, 6) × (1, 3] ∪ [1, 2) × {2.5} ∪ {5} × {0.5} (two-dim).

b

−5 −2 1.5 7 b

0 1 2 3 4 5 6
0

1

2

3

Alternatively, we may consider the algebra generated by polygons. Or, say, polygons and
disks. Or, all domains with a piecewise smooth boundary.

Having such an algebra A, we define

Aσ = {A1 ∪ A2 ∪ · · · : A1, A2, · · · ∈ A} ,

Aδ = {A1 ∩ A2 ∩ · · · : A1, A2, · · · ∈ A} .
(1f8)

(In fact, all open sets belong to Aσ, and all closed sets belong to Aδ.) Equivalently, an
Aσ-set is the limit of an increasing sequence, A = lim Ak, of sets Ak ∈ A (think, why). For
Aδ, the sequence is decreasing; anyway, we have A = lim Ak for a monotone sequence of sets
Ak ∈ A, and we define the measure of A to be the limit of measures of Ak. It is crucial that
the limit does not depend on the choice of Ak (for given A) (which is proven by measure
theory).

Thus, all open sets and all closed sets have their measures. Such sets can be somewhat
bizarre. Say, there exists an open set of measure < 0.01 dense in the whole plane R

2 (think,
why). However, the set (1f7) is neither Aσ nor Aδ. Rather, it is of the type Aδσδ,

A =
⋂

ε

⋃

m

⋂

n>m

{

(0.x1x2 . . . )10 :
∣
∣
∣
x1 + · · ·+ xn

n
− 4.5

∣
∣
∣ < ε

}

︸ ︷︷ ︸

Aε,n∈A
︸ ︷︷ ︸

∈Aδ
︸ ︷︷ ︸

∈Aδσ
︸ ︷︷ ︸

∈Aδσδ

and its probability is defined accordingly,

P
(
A

)
= lim

ε→0
lim

m→∞
lim

n→∞
P

(
Aε,m+1 ∩ · · · ∩ Aε,n

)
.

Well, we should not deepen into measure theory. If you want to know more, try additional
literature. Basically, the question ‘how to measure sets’ is answered as follows.
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• Discrete case
A set gets its measure from its points.

• Continuous case

• A Jordan measurable set gets its measure from its lattice points via a limiting
procedure. Or alternatively — from polygons.

• A Borel measurable set gets its measure from simpler sets (say, an Aδσδ-set from
Aδσ-sets, these from Aδ-sets, these from A-sets).

• A Lebesgue measurable set gets its measure from Borel measurable sets.

• Otherwise, if a set is not Lebesgue measurable, its measure remains undefined.

What is a Borel set? Informally, a Borel measurable set (or ‘a Borel set’) is any set
that can be constructed from a countable number of simple sets (say, intervals) using the set
operations.

Formally, the Borel σ-field is defined as the smallest σ-field containing intervals. A Borel
set is any set that belongs to the Borel σ-field.

The word ‘intervals’ may be interpreted here as ‘open intervals’, ‘closed intervals’, etc.,
without changing the Borel σ-field. Moreover, the word ‘intervals’ may be replaced with
‘A-sets’; here A is any one of the algebras listed before; they all lead to the same Borel
σ-field.

What is the Lebesgue measure? Informally, it is the natural extension of length
(area, volume,. . . ) from Jordan measurable sets to all Borel sets.

Formally, the one-dimensional Lebesgue measure, denote it ‘mes’, is a set function,

B ∋ A 7→ mes(A) ∈ [0, +∞]

(here B is the Borel σ-field) such that

A = (a, b) =⇒ mes(A) = b − a for −∞ < a < b < +∞ ,

mes(A1 ⊎ A2 ⊎ . . . ) = mes(A1) + mes(A2) + . . . for disjoint A1, A2, · · · ∈ B .

(Existence and uniqueness of Lebesgue measure is proved by measure theory.) The same
holds for dimension 2,

A = (a, b) × (c, d) =⇒ mes2(A) = (d − c)(b − a) ,

and any dimension d = 1, 2, 3, . . .
What is a Lebesgue measurable set? It is any set A ⊂ R such that B1 ⊂ A ⊂ B2

and mes(B2 \ B1) = 0 for some Borel sets B1, B2 (‘sandwich’). Lebesgue measurable sets
are a σ-field larger than the Borel σ-field. Naturally, one defines mes(A) = mes(B1) (or
mes(B2), which is the same), thus extending the Lebesgue measure. The same holds in any
dimension d = 1, 2, 3, . . .

Note that all subsets of (say) a straight segment on R
2 are Jordan measurable and

(therefore) Lebesgue measurable (think, why), but not Borel measurable, in general. Note
also that the notion of a Borel set depends only on the topology on R (or R

d), while notions
of Jordan measurable set and Lebesgue measurable set depend also on the measure.

Here is a summary of what will be used in our course.
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1f9. For each dimension d ∈ {1, 2, 3, . . .}, the class Bd of all Borel subsets of R
d is a σ-field.

1f10. In R, every interval10 is a Borel set. In R
2, every polygon is a Borel set. More generally,

every domain with a piecewise smooth boundary is a Borel set. Still more generally, all open
sets and all closed sets in R

d are Borel sets. Also, every finite or countable subset of R
d is a

Borel set.

1f11. If two probability measures on B1 coincide on all intervals then they coincide on the
whole B1. If two probability measures on B2 coincide on all polygons then they coincide on
the whole B2.

1f12. Every Borel set B ∈ Bd has its d-dimensional Lebesgue measure mesd(B) ∈ [0, +∞].
If d = 1 and B is an interval then mes(B) is equal to the length of the interval B.11 If d = 2
and a Borel set B is Jordan measurable then mes2(B) is equal to the area of B.

1f13. Let Ω ∈ Bd, mesd(Ω) ∈ (0,∞). Define F as the class of all Borel subsets of Ω; define
P : F → [0, 1] by

(1f14) P (A) =
mesd(A)

mesd(Ω)
for all A ∈ F ;

then (Ω,F , P ) is a probability space.

The latter gives us a lot of examples of continuous probability spaces.

10Be it (a, b), [a, b), (−∞, a] etc.
11Of course, mes(B) is the same as mes1(B).


