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In a slightly non-quasistatic process, the entropy increases.

6a Introduction

All quasistatic processes are reversible. In contrast, everyday life is full of ir-
reversible processes. For quasistatic processes, ‘adiabatic’ means ‘isentropic’
(constant entropy), while an irreversible process can be adiabatic (perfect
thermal insulation) but not isentropic.

Reversible processes are investigated by equilibrium statistical mechanics;
irreversible processes — by nonequilibrium statistical mechanics.

In order to avoid the limiting procedure n→∞ we define the equilibrium

state at a given inverse temperature β as the probability measure ν = e−βh·µ∫
e−βh dµ

(the canonical ensemble), where (Ω, µ) is the given measure space (the phase
space), not necessarily a power of another (one-particle) space; and h is the
Hamiltonian.

The temperature is well-defined only for equilibrium states. Then, what
is the meaning of the famous heat equation ( ∂

∂t
u = ∂2

∂x2
u, etc)? It is about the

so-called local equilibrium, — approximate equilibrium within ‘cells’ that are
macroscopically small (in space and time) but microscopically large. (When
needed, matter and radiation are treated via separate cells.) The local re-
laxation time is much shorter than global.

Thus, in most cases it is enough to understand near-equilibrium states.
We’ll consider an adiabatic process driven by a Hamiltonian of the form

(6a1) ht = h+ εϕ(t)g , t ∈ [0, 1] ,
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where h, g : Ω→ R, ϕ : [0, 1]→ R, ϕ(0) = 0 = ϕ(1). Denote by u0 the initial
energy and u1 the final energy. It appears that

(6a2) u1 − u0 = ε2βQ(ϕ) + o(ε2) as ε→ 0 ,

where Q is a nonnegative quadratic form (generally non-zero). Thus, the
energy only increases, provided that β > 0. The differential entropy is con-
stant, since relaxation is not stipulated in this theory. In practice, the state
returns to equilibrium by relaxation, and the increase of energy leads to an
increase of entropy.

In the case β < 0 (negative temperature) the energy decreases. Especially,
in a laser, thermal energy turns into mechanical energy. However, it still leads
to increase of entropy.

In order to get (6a2) we need substantially richer structure on the phase
space than the measure space structure used before.

6b Symplectic manifold: dimension two

A Hamiltonian h : Ω→ R generates dynamics via a vector field. The vector
ẋ at a point x ∈ Ω results from the differential dh(x) via a linear operator.
In contrast to the gradient vector, ẋ is tangent to a level surface of h, since
the dynamics preserves energy.

An observable f : Ω → R changes dynamically: ḟ(x) = ∇ẋf(x); this
is a bilinear function of f and h denoted by {f, h} and called the Poisson
bracket1 of f and h. So,

(6b1) ḟ(x) = ∇ẋf(x) = {f, h}(x) ; ḟ = {f, h} .

Clearly, {const, h} = 0. The energy conservation gives {h, h} = 0.

6b2 Example. A one-dimensional particle of mass m: Ω = R2; h(q, p) =
1

2m
p2 + U(q) (kinetic and potential energy). The usual motion equations

q̇ =
1

m
p , ṗ = −U ′(q)

result from Poisson brackets

{q, p} = 1 .

More formally, {Q,P} = 1 where Q(q, p) = q and P (q, p) = p. Indeed,
h = 1

2m
P 2 + U(Q). Near a point (q, p) in the linear approximation U ≈

1Denoted also [f, h] or (f, h), sometimes also [h, f ] or (h, f).
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U ′(q)Q+ const and 1
2m
P 2 ≈ p

m
P + const. Thus,

Q̇(q, p) =
{
Q,

1

2m
P 2
}

(q, p) =
{
Q,

p

m
P
}

(q, p) =
p

m
{Q,P}(q, p) =

1

m
p ;

Ṗ (q, p) = {P,U(Q)}(q, p) = {P,U ′(q)Q}(q, p) = U ′(q){P,Q}(q, p) = −U ′(q) .

A symplectic manifold is usually defined via differential forms, but can
be defined equivalently via Poisson brackets.

6b3 Definition. A two-dimensional symplectic manifold consists of a two-
dimensional smooth manifold Ω and a bilinear map {·, ·} : C∞(Ω)×C∞(Ω)→
C∞(Ω) such that

(a) for every x ∈ Ω, {g, h}(x) is a bilinear form of dg(x) and dh(x);
(b) {h, h} = 0 for all h;
(c) for every x ∈ Ω there exist q, p ∈ C∞(Ω) such that {q, p} = 1 in a

neighborhood of x.1

Till the end of Sect. 6b, Ω is assumed to be a two-dimensional symplectic
manifold.

6b4 Exercise. Show that {g, f} = −{f, g}.

We note that C∞(Ω) is not only a linear space but also a commutative
algebra.

6b5 Exercise. {fg, h} = f{g, h}+ g{f, h}; prove it.

6b6 Exercise. {ϕ(f), h} = ϕ′(f){f, h} for any smooth ϕ : R → R. Prove
it.

6b7 Example. A one-dimensional particle: Ω = R2,

{g, h}(q, p) =
∂g(q, p)

∂q

∂h(q, p)

∂p
− ∂g(q, p)

∂p

∂h(q, p)

∂q
,

which leads to the well-known equations of motions,

q̇ =
∂h

∂p
, ṗ = −∂h

∂q
.

6b8 Example. Classical spin:2 Ω = S2 ⊂ R3;

{g, h}(x) = det
(
x, grad g(x), gradh(x)

)
;

here x ∈ S2 is treated as a vector normal to the sphere, while grad g(x) and
gradh(x) are treated as vectors tangent to the sphere.

1In every point of the neighborhood, not just at x.
2Not the same as the discrete classical spin used before.



Tel Aviv University, 2010 Large deviations, entropy and statistical physics 60

6b9 Exercise. For the classical spin check the condition {q, p} = 1 for q, p
defined by

q(
√

1− z2 cosϕ,
√

1− z2 sinϕ, z) = ϕ ,

p(
√

1− z2 cosϕ,
√

1− z2 sinϕ, z) = z

whenever −1 < z < 1 and −π < ϕ < π.

In this case, if the Hamiltonian is z then the dynamics is rotation.
Dynamics generated by a Hamiltonian h is a one-parameter group (Tt)t∈R

of diffeomorphisms Tt : Ω→ Ω;

Ts+t = TsTt for all s, t ∈ R ; ∀x T0x = x .

For every x ∈ Ω the path (xt)t∈R, xt = Ttx, satisfies the differential equation

d

dt
xt = ẋt ;

it is well-known that a solution exists, is unique, and

(6b10) (x, t) 7→ Ttx is a C∞-map Ω× R→ Ω .

By (6b1),

(6b11)
d

dt
f(xt) = ∇ẋtf(xt) = {f, h}(xt) .

Note that

(6b12) ∀t, x h(Ttx) = h(x) .

6b13 Lemma. Let x ∈ Ω, h ∈ C∞(Ω), dh(x) 6= 0. Then there exists
g ∈ C∞(Ω) such that {g, h} = 1 in some neighborhood of x.

Proof (sketch). We use local coordinates q, p as in 6b3(c), assume ∂h
∂p

(x) 6= 0

(otherwise use p,−q instead of q, p), and q(x) = 0, p(x) = 0. We define g by

g
(
Tt(0, p)

)
= t

for t and p small enough. Then {g, h}
(
Tt(0, p)

)
= d

dt
g
(
Tt(0, p)

)
= 1.

Every h leads to a linear operator f 7→ {f, h} on C∞(Ω); by 6b5, this
operator is a differentiation. The product f 7→ {{f, g}, h} of two differenti-
ations is not a differentiation, but the commutator

f 7→ {{f, g}, h} − {{f, h}, g}
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of two differentiations is a differentiation.1 Surprisingly, it is f 7→ {f, {g, h}},
which is well-known as the Jacobi identity,

(6b14) {{f, g}, h}+ {{g, h}, f}+ {{h, f}, g} = 0 .

6b15 Exercise. Prove the Jacobi identity.

6b16 Lemma. {f, g}(Tt(·)) = {f(Tt(·)), g(Tt(·))}.

Proof (sketch). Using again local coordinates q, p as in 6b13(c) we see that
the equality holds on a neighborhood of x for all t small enough, and for all
f, g. If it holds for s and t then it holds for s+ t.

6b17 Exercise. Prove that

d

dt
f(Tt(·)) = {f(Tt(·)), h} .

Let q1, p1 be local coordinates around x, satisfying {q1, p1} = 1, and the
same for q2, p2. Then the Jacobian∣∣∣∣∣ ∂q2∂q1

∂q2
∂p1

∂p2
∂q1

∂p2
∂p1

∣∣∣∣∣ = 1

by 6b7, and so, integration in dq1dp1 gives the same result as integration
in dq2dp2. We see that Ω carries a special measure, the so-called Liouville
measure.

6b18 Lemma. Diffeomorphisms Tt preserve the Liouville measure.

Proof (sketch). Similar to the proof of 6b16.

6c Symplectic manifold: dimension 2n

A 2n-dimensional symplectic manifold is defined similarly to 6b3, but (c)
stipulates q1, . . . , qn and p1, . . . , pn such that {qk, pk} = 1 for all k, and
{qk, pl} = 0, {qk, ql} = 0, {pk, pl} = 0 whenever k 6= l.

Formulas 6b4, 6b5, 6b6 and (6b14) still hold.
Lemma 6b13 generalizes as follows: q1, . . . , qn and p1, . . . , pn as above can

be chosen such that p1 = h.
Lemma 6b16 still holds.
The Liouville measure is dq1dp1 . . . dqndpn.
Lemma 6b18 still holds.

1Let A(fg) = fAg+gAf and the same for B, then (AB−BA)(fg) = A(fBg+gBf)−
B(fAg + gAf) = · · · = f(AB −BA)g + g(AB −BA)f .
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6d The theorem formulated

In order to avoid some technicalities we restrict ourselves to compact sym-
plectic manifolds. (For example, S2 fits, as well as S2 × S2; also a torus.)

Given h, g ∈ C∞(Ω) and a C∞-smooth ϕ : [0, 1] → R, ϕ(0) = 0 = ϕ(1),
we consider the time-dependent Hamiltonian (6a1) and the corresponding
nonstationary dynamics: St : Ω→ Ω for t ∈ [0, 1] such that for every x ∈ Ω

(6d1)
d

dt
f(Stx) = {f, ht}(Stx) = {f, h}(Stx) + εϕ(t){f, g}(Stx)

for all t and all f ∈ C∞(Ω); and S0x = x. Once again, it is well-known that
such St exist, are unique, and (x, t) 7→ Stx is a C∞-map Ω× R → Ω (recall
(6b10)).

Given β ∈ R we consider the probability measure ν on Ω whose density
w.r.t. the Liouville measure is const · e−βh.
6d2 Theorem.∫

Ω

h
(
S1(·)

)
dν −

∫
Ω

h dν = ε2βQ(ϕ) + o(ε2) as ε→ 0

where Q is a nonnegative quadratic form.1

6e Some integral relations

Still, Ω is a compact symplectic manifold. Also, µ is the Liouville measure.

6e1 Exercise. For all f, g ∈ C∞(Ω),∫
{f, g} dµ = 0 .

Prove it.

6e2 Exercise. For all f, g, h ∈ C∞(Ω),∫
{f, g}h dµ =

∫
{g, h}f dµ =

∫
{h, f}g dµ .

Prove it.

6e3 Exercise. For all f, ρ, h, h1, h2 ∈ C∞(Ω),∫
{f, h}ρ dµ =

∫
f{h, ρ} dµ ,∫

{{f, h2}, h1}ρ dµ =

∫
f{h2, {h1, ρ}} dµ .

Prove it.
1Q depends on β.
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6f Some perturbation theory

The maps St of Sect. 6d are close to Tt (for small ε). Thus it helps to
introduce

Rt = T−1
t St , Rt : Ω→ Ω ;

St = TtRt , that is, ∀x Stx = Tt(Rtx) ;

note that Tt are a group, but St and Rt are not.

6f1 Exercise. For all f ∈ C∞(Ω) and x ∈ Ω,

d

dt
f(Stx) = {f, h}(Stx) +

d

ds

∣∣∣
s=t
f(TtRsx) .

Prove it.

Comparing it with (6d1) we get

d

ds

∣∣∣
s=t
f(TtRsx) = εϕ(t){f, g}(TtRtx) = εϕ(t){f(Tt(·)), g(Tt(·))}(Rtx)

for all f ; replacing f(Tt(·)) with f we get

d

ds

∣∣∣
s=t
f(Rsx) = εϕ(t){f, g(Tt(·))}(Rtx) ,

that is,
d

dt
f(Rtx) = εϕ(t){f, gt}(Rtx) ,

where
gt = g(Tt(·)) ;

this is the differential equation for Rt, with a small parameter ε. It can be
solved iteratively:

f(Rtx) = f(x) + ε

∫ t

0

ϕ(s){f, gs}(Rsx) ds ,

thus,1

f(Rtx) = f(x) +O(ε) ;

{f, gt}(Rtx) = {f, gt}(x) +O(ε) ;

f(Rtx) = f(x) + ε

∫ t

0

ϕ(s){f, gs}(x) ds+O(ε2) ;

{f, gt}(Rtx) = {f, gt}(x) + ε

∫ t

0

ϕ(s){{f, gt}, gs}(x) ds+O(ε2) ;

1These O(εk) are uniform in x ∈ Ω and t ∈ [0, 1].
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iterations may be continued, but we exit here:

f(R1x) = f(x)+ε

∫
0<t<1

ϕ(t){f, gt}(x) dt+ε2

∫∫
0<s<t<1

ϕ(s)ϕ(t){{f, gt}, gs}(x) dsdt+O(ε3) .

In terms of f1 = f(T1(·)) we get f(S1x) = f(T1R1x) = f1(R1x), thus

f(S1x) = f1(x)+ε

∫
0<t<1

ϕ(t){f1, gt}(x) dt+ε2

∫∫
0<s<t<1

ϕ(s)ϕ(t){{f1, gt}, gs}(x) dsdt+O(ε3) .

Using 6e2, 6e3 we get for every ρ ∈ C∞(Ω),1∫
f(S1(·))ρ dµ−

∫
f1ρ dµ =

= ε

∫
0<t<1

dtϕ(t)

∫
f1{gt, ρ} dµ+ε2

∫∫
0<s<t<1

dsdtϕ(s)ϕ(t)

∫
f1{gt, {gs, ρ}} dµ+O(ε3) .

6g Proving the theorem

We take f = h (the Hamiltonian that generates Tt); then f1 = h by (6b12).
We also take ρ = const · e−βh such that ν = ρ · µ.

6g1 Exercise. For every f ∈ C∞(Ω),

{f, ρ} = −βρ{f, h} .

Prove it.

In particular, {h, ρ} = 0.
Using 6e2,

∫
f1{gt, ρ} dµ =

∫
{gt, ρ}h dµ =

∫
{ρ, h}gt dµ = 0. Thus, the

first-order term disappears; the energy change is∫
h(S1(·)) dν −

∫
h dν =

∫
h(S1(·))ρ dµ−

∫
hρ dµ =

= ε2

∫∫
0<s<t<1

dsdtϕ(s)ϕ(t)

∫
h{gt, {gs, ρ}} dµ+O(ε3) .

By 6e2, ∫
h{gt, {gs, ρ}} dµ =

∫
{gs, ρ}{h, gt} dµ .

1No problem with the order of integration, since the integrand is continuous on a
compactum.
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By 6g1,
{gs, ρ} = −βρ{gs, h} .

Thus, ∫
h{gt, {gs, ρ}} dµ = β

∫
{gs, h}{gt, h}ρ dµ .

By 6b17,

g′t =
d

dt
gt = {gt, h} .

Thus, ∫
h{gt, {gs, ρ}} dµ = β

∫
g′sg
′
t dν ,

and the energy change is, up to O(ε3),1

ε2

∫∫
0<s<t<1

dsdtϕ(s)ϕ(t)β

∫
g′sg
′
t dν =

ε2

2
β

∫
dν

∫∫
0<s,t<1

dsdtϕ(s)ϕ(t)g′sg
′
t =

=
ε2

2
β

∫
dν

(∫ 1

0

ϕ(s)g′s ds

)(∫ 1

0

ϕ(t)g′t dt

)
=

=
ε2

2
β

∫
dν

(∫ 1

0

ϕ(t)g′t dt

)2

= ε2βQ(ϕ) ,

where

Q(ϕ) =
1

2

∫
dν

(∫ 1

0

ϕ(t)g′t dt

)2

≥ 0 .

6h Fluctuation-dissipation relation

The quadratic form Q was introduced in relation to the perturbed Hamilto-
nian (6a1), but appeared to be also related to the unperturbed Hamiltonian
h (and its dynamics Tt):

Q(ϕ) =
1

2

∫
dν

(∫ 1

0

ϕ′(t)g(Tt(·)) dt

)2

=
1

2
EG2 ,

where G is a random variable defined on the probability space (Ω, ν) by

G(x) =

∫ 1

0

ϕ′(t)g(Tt(x)) dt .

1As before, no problem with the order of integration, since the integrand is continuous
on a compactum.
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That is, G is an integral linear combination of the values g(Tt(x)) of the
observable g at various times t ∈ [0, 1], where the initial state x is chosen at
random from the canonical ensemble ν = const · e−βh · µ.

6h1 Exercise. Prove that EG = 0.

Thus,

Q(ϕ) =
1

2
VarG .

Clearly, the quadratic form Q is not identically 0, unless g is constant on
almost every trajectory.

The relation between the energy dissipation and the variance of an observ-
able is well-known as fluctuation-dissipation relation (FDR) or fluctuation-
dissipation theorem.

Its importance comes first from its great generality: very few as-
sumptions are necessary for its derivation. Moreover, it exhibits
a beautiful link between equilibrium and nonequilibrium statisti-
cal mechanics. Finally, it provides us with simple expressions for
microscopic quantities in terms of macroscopic observables.1

In many cases the values g(Tt(x)) at macroscopically different times t are

nearly independent random variables,2 thus VarG ≈ const ·
∫ 1

0
ϕ′2(t) dt and

Q(ϕ) ≈ const ·
∫ 1

0

ϕ′2(t) dt

provided that ϕ′ is not too large. This is a very simple picture of dissipation:
it is local in time; at time t the energy dissipates at the rate const · ϕ′2(t).

Sometimes it happens that3 VarG ≈ const ·
∫ 1

0
ϕ′′2(t) dt, and then the

dissipation rate is const · ϕ′′2(t).
The FDR generalizes easily to

ht = h+ εϕ1(t)g1 + · · ·+ εϕk(t)gk

and further, to
ht = h+ εϕ(t) ,

this time ϕ(t) ∈ C∞(Ω) for each t.

1R. Balescu, “Equilibrium and nonequilibrium statistical mechanics”, 1975, Sect. 21.3
“The fluctuation-dissipation theorem”.

2That is, (gt)t is nearly proportional to the white noise.
3That is, (gt)t is nearly proportional to the derivative of the white noise.
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6i Hints to exercises

6b4: consider {f + g, f + g} − {f − g, f − g}.
6b5: d(fg) = . . .

6b9: for ϕ = 0 we have x = (
√

1− z2, 0, z), grad q(x) = (0, 1/
√

1− z2, 0)
and grad p(x) = (−z

√
1− z2, 0, 1− z2).

6b15: calculating in local coordinates (q, p) such that {q, p} = 1 and
h(q, p) = p we have {g, h} = g1 (it means, ∂

∂q
g), {f, g} = f1g2 − f2g1 by 6b7,

{{f, g}, h} = f11g2 + f1g21 − f21g1 − f2g11, . . .

6b17: (6b11), (6b12) and 6b16.

6e1: d
dt

∫
(Ttf) dµ = 0 by 6b18.

6e2:
∫
{fg, h} dµ = 0; use 6b5.

6f1: d
dt
f(TtRtx) = ∂

∂s
|s=tf(TsRtx) + ∂

∂s
|s=tf(TtRsx).

6g1: 6b6.

6h1:
∫
g(Tt(·)) dν does not depend on t.
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