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Three approaches to entropy are compared: thermodynamic (macro physics),
statphysical (micro physics) and informational (mathematics).

3a A framework

Now we are in position to return to the notions introduced tentatively in
Sect. 1 and treat them in the framework of ideal physical systems in general.

Let Ω and µ be as in Sect. 1a.1 Given measurable functions f, g : Ω→ R,
we consider the linear space L of all linear combinations h = αf +βg (α, β ∈
R), and the subset of all h that satisfy (1a1) or (1a2).

3a1 Exercise. (a) If µ(Ω) <∞ then this subset is a linear subspace;
(b) if µ(Ω) =∞ then this subset is a cone without 0.

Prove it.

The same holds for any finite-dimensional linear space L. We assume that
the cone has non-empty interior, and denote its interior by K. If µ(Ω) <∞
then K = L; otherwise K is a cone without 0, and L = K − K. We also
assume that L does not contain constant functions (except for 0, of course).

We introduce Λ : L→ (−∞,∞] by

Λ(f) = ln

∫
ef dµ

and note that (−K) ⊂ Int{Λ < ∞}; by 2g2 (generalized to n dimensions),
Λ is infinitely differentiable on (−K).

1That is, µ is a finite or σ-finite positive measure on Ω.
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If h ∈ K and g ∈ L then h ± εg ∈ K for ε small enough (think, why).
Theorem 1b4 gives as [g|h], provided that h 6= 0 (and therefore h 6= const).
Moreover, Sect. 2j tells us that

[g|h](a) =
d

dε

∣∣∣
ε=0

Λ(λh+ εg)

whenever

a =
d

dε

∣∣∣
ε=0

Λ(λh+ εh) ;

here

λ ∈ (−∞,+∞) if µ(Ω) <∞;

λ ∈ (−∞, 0) if µ(Ω) =∞.

In a more physical style, we let β = −λ and u = a:

[g|h](u) =
d

dε

∣∣∣
ε=0

Λ(−βh+ εg)

whenever

u =
d

dε

∣∣∣
ε=0

Λ(−βh+ εh) ;

here and henceforth

β ∈ (−∞,+∞) if µ(Ω) <∞;

β ∈ (0,∞) if µ(Ω) =∞.

On the other hand,

d

dε

∣∣∣
ε=0

Λ(−βh+ εg) = 〈g, grad Λ(−βh)〉 ;

here grad Λ(−βh) is treated as a linear functional on L, that is, a vector of
the dual space L∗,

grad Λ(−βh) ∈ L∗ .
Thus,

[g|h](u) = 〈g, grad Λ(−βh)〉
whenever

u = 〈h, grad Λ(−βh)〉 .
We see that xh,u = grad Λ(−βh) is the equilibrium macrostate of the sys-
tem. Indeed, conditionally, given h(n) ≈ u, we have1 g(n) ≈ 〈g, xh,u〉 (recall
Sect. 1c).

1For large n, with high probability, as before. . .
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Similarly to Sect. 2j we introduce the set

T = {grad Λ(f) : f ∈ (−K)} ⊂ L∗ .

Using a basis (f1, . . . , fd) of the linear space L we may treat L and L∗ as
Rd.

3a2 Example. Let (Ω, µ) be (R2, γ2) as in Sect. 1c, and L consist of linear
functions f(ω) = 〈f, ω〉 on R2. Then K = L = R2;

Λ(f) = ln

∫
e〈f,ω〉 γ2(dω) = ln e‖f‖

2/2 =
1

2
‖f‖2 ;

grad Λ(f) = f (here L∗ = R2 = L); T = R2; xh,u = −βh for u = −β‖h‖2. It
conforms to the formula Sf,a = af/‖f‖2 of Sect. 1c.

3a3 Example. (Spin 1/2.) Let (Ω, µ) be {−1, 1} with the counting measure,
and L consist of functions ω 7→ fω, f ∈ R. Then K = L = R;

Λ(f) = ln

∫
efω µ(dω) = ln(e−f + ef ) ;

grad Λ(f) = Λ′(f) =
ef − e−f

ef + e−f
= tanh f ;

T = (−1, 1) ;

u = 〈h, grad Λ(−βh)〉 = −h tanh βh .

For small β we have tanh βh ≈ βh, thus, u ≈ −βh2 and xh,u ≈ −βh =
u/h, the same as in Example 3a2 for (R1, γ1). This is why the latter can
approximate spin systems at high temperatures (as was promised in Sect. 1c).

As was noted in Sect. 1a, given two systems described by (Ω1, µ1) and
(Ω2, µ2), the combined system is described by the product space (Ω1×Ω2, µ1×
µ2), and if they do not interact then L = L1 ⊕ L2, that is, every h ∈ L is of
the form f ⊕ g : (ω1, ω2) 7→ f(ω1) + g(ω2). We have

Λ(h) = ln

∫
eh dµ = ln

∫∫
ef(ω1)+g(ω2) µ1(dω1)µ2(dω2) =

= ln

((∫
ef(ω1) µ1(dω1)

)(∫
eg(ω2) µ2(dω2)

))
= Λ1(f) + Λ2(g) ;

in this sense, Λ = Λ1⊕Λ2. Therefore grad Λ = grad Λ1⊕grad Λ2 ∈ L∗1⊕L∗2 =
L∗.

Sometimes a physical system does not seem to be combined, but can be
treated as combined; see the next example.
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3a4 Example. (Ideal gas.1) Let Ω = V ×R3 where V ⊂ R3 (“container”) is
a domain, µ is the Lebesgue measure (six-dimensional, restricted to Ω). The
Hamiltonian is

h(q, p) =
1

2m
‖p‖2 + U(q) for q ∈ V , p ∈ R3 ;

here m is the mass of the particle, q its coordinate, p its momentum,2 1
2m
‖p‖2

its kinetic energy, and U(q) its potential energy. We may treat q and p as sep-
arate systems,3 and further, we may split the three-dimensional momentum
into three one-dimensional momenta.

3a5 Example. (One-dimensional momentum.) Let Ω = R, µ the Lebesgue
measure, h(p) = 1

2m
p2 (the Hamiltonian, not to be changed), and L = {λh :

λ ∈ R}. We have L = R, K = (0,∞),

Λ(λh) = ln

∫
eλh dµ = ln

∫
exp(λp2/2m) dp = ln

√
2πm

−λ
= const−1

2
ln(−λ)

for λ < 0 (and +∞ otherwise). Thus, grad Λ(λh) = − 1
2λ

, that is,

xh,u = grad Λ(−βh) =
1

2β
for β ∈ (0,∞) ;

T = (0,∞) ;

u = 〈h, grad Λ(−βh)〉 =
1

2β
.

We define a quasistatic process as a pair of functions,

[0, tmax] 3 t 7→ ht ∈ K \ {0} ,

[0, tmax] 3 t 7→ βt ∈

{
(−∞,+∞) if µ(Ω) <∞,
(0,+∞) if µ(Ω) <∞;

both functions are assumed to be piecewise smooth. Usually we assume
tmax = 1.

Given a quasistatic process, we define

xt = grad Λ(−βtht) ∈ L∗

(the equilibrium macrostate), and

ut = 〈ht, xt〉
1Monatomic, classical (Maxwell-Boltzmann).
2In fact, p = mẋ, but we do not need it.
3Not in dynamics, of course, but in equilibrium statistical physics.
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(the energy1). We split the energy received by the system,

u1 − u0 =

∫ 1

0

(
〈h′t, xt〉+ 〈ht, x′t〉

)
dt

into the mechanical part (work) defined by∫ 1

0

〈h′t, xt〉 dt

and the thermal part (heat) defined by∫ 1

0

〈ht, x′t〉 dt .

A quasistatic process is called adiabatic, if

〈ht, x′t〉 = 0 for all t ,

and isothermal, if
βt = β0 for all t .

3b Thermodynamic entropy as adiabatic invariant

Given an initial state x0 ∈ L∗, can we arrive at an arbitrary x1 ∈ L∗ by an
adiabatic process? Or maybe such x1 must belong to some surface?

It is easy to guess that the relation xt = grad Λ(−βtht) leads to βtht =
−(grad Λ)−1(xt) and so, for every adiabatic process,

〈(grad Λ)−1(xt), x
′
t〉 = 0 .

Thus, a function S : L∗ → R such that gradS(x) is collinear with (grad Λ)−1(x)
for all x, must be an adiabatic invariant, which means, S(xt) = const for ev-
ery adiabatic process.

However, existence of such S is not at all automatic. For example, there
is no non-constant S : R3 → R such that gradS(x, y, z) is collinear with
(z, x, y).2

On the other hand, such S exists in the special case of (R2, γ2)n, recall
Sect. 1g.

1Internal energy.
2The example is taken from Wikipedia, “Integrability conditions for differential sys-

tems”.
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3b1 Theorem. There exists a nonconstant continuous function S : T → R
such that S(xt) = S(x0) for all t and every adiabatic quasistatic process.

A stronger theorem 3c1 will be proved in Sect. 3d. In Sect. 3c one of such
functions S will be singled out and called the thermodynamic entropy.

3b2 Exercise. Find at least one such S (not using 3b1) for each one of 3a2,
3a3 and 3a5.

3c Thermodynamic entropy as rate function

Recall the Fenchel-Legendre transform Λ∗ : L∗ → (−∞,∞] introduced in
Sect. 2g:

Λ∗(x) = sup
f∈L

(〈f, x〉 − Λ(f)) for x ∈ L∗ ;

Λ∗(grad Λ(f)) = 〈f, grad Λ(f)〉 − Λ(f) for f ∈ (−K) .

3c1 Theorem. Λ∗(xt) = Λ∗(x0) for all t and every adiabatic quasistatic
process.

The thermodynamic entropy1 is the function S : T → R defined by

S(x) = −Λ∗(x) .

It is an adiabatic invariant, which is a macroscopic property. And on the
other hand, nS(x) is roughly the logarithm of the number of microstates
corresponding to the macrostate x, in the sense of (3c3) below.

3c2 Exercise. Let f ∈ (−K) and x = grad Λ(f), then

µn{|f (n) − 〈f, x〉| ≤ εn} = exp
(
−nΛ∗(x) + o(n)

)
for every sequence (εn)n such that εn → 0 and nεn → +∞.

Prove it.

Taking h ∈ K, f = −βh and u = 〈h, x〉 we get

(3c3) µn{|h(n) − u| ≤ εn} = exp
(
nS(x) + o(n)

)
and

S(x) = βu+ Λ(−βh) .

1In physics, kBS(x) is the entropy per particle, and nkBS(x) is the entropy of the
n-particle system.
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3c4 Exercise. Calculate S(·) for each one of 3a2, 3a3 and 3a5.
Answers: 3a2: S(x) = −1

2
‖x‖2; 3a3: S(x) = −1−x

2
ln 1−x

2
− 1+x

2
ln 1+x

2
;

3a5: S(x) = 1
2

ln(4πemx).

3c5 Exercise. (a) If µ(Ω) = 1 then S(·) ≤ 0;
(b) If µ is a counting measure then S(·) ≥ 0.

Prove it.

3d Proving the theorem

The function Λ is infinitely differentiable on (−K), thus, grad Λ : (−K)→ L∗

also is infinitely differentiable.

3d1 Exercise.
d2

dε2

∣∣∣
ε=0

Λ(f + εg) > 0 for all f ∈ (−K), g ∈ L \ {0}.
Prove it.

Thus, the Jacobian of grad Λ does not vanish on (−K). It follows that
the set T = (grad Λ)(−K) is open.

3d2 Exercise. Prove that grad Λ : (−K)→ L∗ is one-to-one.

Thus, grad Λ : (−K)→ T is bijective, and the inverse function (grad Λ)−1 :
T → (−K) is infinitely differentiable on the open set T .

3d3 Exercise. For every f ∈ (−K) and x ∈ T ,

〈f, x〉 ≤ Λ(f) + Λ∗(x) ,

and the equality holds if and only if x = grad Λ(f).
Prove it.

3d4 Exercise. If f ∈ (−K) and x = grad Λ(f) then f = grad Λ∗(x).
Prove it.

(The same holds for Int{Λ < ∞} instead of (−K), but we do not need
it.)

Proof of Theorem 3c1. We have xt = grad Λ(−βtht), therefore−βtht = grad Λ∗(xt),
and

d

dt
Λ∗(xt) = 〈grad Λ∗(xt), x

′
t〉 = 〈−βtht, x′t〉 = −βt〈ht, x′t〉 = 0

since the process is adiabatic.

3d5 Remark. For every quasistatic process, for all t,

d

dt
S(xt) = βt〈ht, x′t〉 .
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3e Informational entropy

Given a finite probability space (Ω, P ) one may ask, how many points in Ωn

are needed in order to form a set of probability close to 1.

3e1 Theorem. Let (Ω, P ) be a finite probability space, and

H(P ) = −
∑
ω∈Ω

p(ω) ln p(ω) ,

where p(ω) = P ({ω}). Then
(a) there exist An ⊂ Ωn such that P n(An)→ 1 and 1

n
ln |An| → H(P );1

(b) if An ⊂ Ωn satisfy P n(An)→ 1 then lim infn
1
n

ln |An| ≥ H(P ).

Consider the random variable f : Ω → R defined by f(ω) = − ln p(ω).
Clearly, E f = H(P ).

3e2 Exercise. There exist Bn ⊂ Ωn such that P n(Bn)→ 1 and infBn f
(n) →

H, supBn
f (n) → H(P ).

Prove it.

3e3 Exercise. Prove that lim supn
1
n

ln |Bn| ≤ H(P ).

3e4 Exercise. If An ⊂ Ωn satisfy P n(An)→ 1 then lim infn
1
n

ln |An∩Bn| ≥
H(P ).

Prove it.

Theorem 3e1 follows immediately.
By definition, the entropy of P is H(P ).
If P is the uniform distribution on Ω then H(P ) = ln |Ω|. Also, H(P1 ×

P2) = H(P1) +H(P2).
More generally, if µ is a (finite or σ-finite) measure on Ω and ν a probabil-

ity measure on Ω absolutely continuous w.r.t. µ, then the differential entropy
is defined by

Hµ(ν) = −
∫

Ω

(
ln

dν

dµ

)
dν = −

∫
Ω

(dν

dµ
ln

dν

dµ

)
dµ .

Similarly to 3e1,
(a) there exist measurableAn ⊂ Ωn such that νn(An)→ 1 and 1

n
lnµ(An)→

Hν(µ);
(b) if measurable An ⊂ Ωn satisfy νn(An)→ 1 then lim infn

1
n

lnµ(An) ≥
Hν(µ).

3e5 Exercise. Prove that Hµ1×µ2(ν1 × ν2) = Hµ1(ν1) +Hµ2(ν2).

1Here |An| is the number of points in An.
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3f Relation between the two

Assume for now that µ is the counting measure on Ω (which is the case for
spin systems). Then the microcanonical ensemble (recall Sect. 2l) may be
defined as the uniform distribution on the set {|h(n)−u| ≤ εn} of exp(nS(x)+
o(n)) points (see (3c3)); thus, its informational entropy is nS(x) + o(n), and
the informational entropy per particle in the limit n → ∞ is S(x), just the
thermodynamic entropy.

In general µ is not the counting measure. However, according to quantum
mechanics, the physically relevant measure µ of a domain in the phase space Ω
is, in some sense, roughly the number of “phase cells” in this domain.1 Thus,
counting measures are more relevant than it may seem, and the differential
entropy is “more informational” than it may seem. Having this in mind we
return to general measures µ. Still, the differential entropy (w.r.t. µn) per
particle is S(x) for the microcanonical ensemble.

The canonical ensemble is the measure νn, where ν is the tilted measure

ν = e−βh−Λ(−βh) · µ =
e−βh · µ∫
e−βh dµ

for given h ∈ K, β and x = grad Λ(−βh). Note that x = ν|L in the sense
that ∫

g dν = 〈g, x〉 for all g ∈ L .

What can be said about the differential entropy Hµ(ν)?
The canonical ensemble νn is equivalent to the microcanonical ensemble,

as explained in Sect. 2l. That is, any macroscopic observable g(n) concentrates
around the same value 〈g, x〉 in both ensembles. Does it mean thatHµn(νn) =
nS(x)? No, since the informational entropy of the microcanonical ensemble
is the average of a constant function, while Hµn(νn) =

∫
ng(n) dνn for g =

ln dµ
dν

= βh+ Λ(−βh).
Take εn → 0 such that εn

√
n→ +∞ and consider An = {|h(n)−u| ≤ εn},

where u = 〈h, x〉. Then νn(An)→ 1 (think, why) and µn(An) = exp(nS(x)+
o(n)) by (3c3). Therefore S(x) ≥ Hµ(ν). This is intriguing: are they equal?

Fortunately, it is easy to calculate Hµ(ν):

Hµ(ν) =

∫
(βh+ Λ(−βh)) dν = β〈h, x〉+ Λ(−βh) = S(x) ;

the two ensembles have the same entropy,

Hµ(ν) = S(x) .

1Provided that the domain is much larger than a phase cell; otherwise classical me-
chanics is not a useful approximation.
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3g Hints to exercises

3c2: recall 2f.

3c4: recall 2h6, and (for 3a3) the hint to 2d6.

3c5: use (3c3).

3d1: recall (2e3) and (2e1).

3d2: Λ is strictly convex on every straight line.

3d3: use the definition of Λ∗ (and of T ).

3d4: Hint: use 3d3.

3e3: |Bn| ≤ expn supBn
f (n).

3e4: |An ∩Bn| ≥ P n(An ∩Bn) expn infAn∩Bn f
(n).
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