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Theorem 1b4 is proved via the large deviations theory; a formula for
ϕ = [g|f ] is given in terms of Gibbs measures.

2a Who needs ridiculously small probabilities?

2a1 Example. A fair coin is tossed 200 times. The probability of 10 “heads”
is

2−200

(
200

10

)
≈ 1.4 · 10−44 .

We are pretty sure that this event will not occur in practice. Then, does it
matter, is it 10−44, or 10−40, or 10−50?

For coin tossing it does not matter, but for statistical physics it does!

2a2 Example. Consider a system of 200 spins1 ω1, . . . , ω200 = ±1 with a
one-particle Hamiltonian h(ω1) = ω1 and a given energy per particle

h(200)(ω1, . . . , ω200) = −0.9 ∈ (−1, 1) .

(Quite feasible.) Now, only 10 out of the 200 spins are +1, others are −1.

1So-called spin- 12 particles.



Tel Aviv University, 2010 Large deviations, entropy and statistical physics 11

You may ask: so what? We still do not need 10−44. Right; but see the
next example.

2a3 Example. Consider a system of n spins,1 each taking on three values
−1, 0,+1, described by Ωn = {−1, 0, 1}n (with the counting measure) and
the one-particle Hamiltonian h(ω1) = ω1. Introduce another macroscopic
observable f (n) where f(ω1) = ω2

1. We want to know the conditional dis-
tribution (according to 1b1) of f (n) given h(n) ≈ −0.9. This question is
physically meaningful for quite large n (much more than 200, in fact, such as
1023). Probabilistically, we want to know the conditional distribution, given
the condition of exponentially small probability (much smaller than 10−44).
Such conditional probabilities are ratios of ridiculously small unconditional
probabilities. . . 2

2b Is the normal approximation helpful?

Consider for now Ωn = {−1,+1}n with the uniform distribution (the count-
ing measure normalized by dividing by 2n). The random variable (ω1 + · · ·+
ωn)/
√
n is approximately normal standard (γ1),

P
(ω1 + · · ·+ ωn√

n
= x

)
≈ 2√

n

1√
2π

e−x
2/2 for x =

−n√
n
,
−n+ 2√

n
, . . . ,

n√
n
.

Taking for example n = 200 and x = −200+20√
200

≈ −12.7 we get

P
(ω1 + · · ·+ ω200

200
= −0.9

)
≈ 3.7 · 10−37

instead of 1.4 · 10−44. Quite bad!
Replacing −0.9 with −0.6 we get the normal approximation 1.3 · 10−17

(x ≈ −8.5) to the probability 1.3 · 10−18. For −0.3: approximation 7.0 · 10−6

(x ≈ −4.2) to 6.3 · 10−6. And for −0.15: approximation 0.00595 (x ≈ −2.1)
to 0.00596.

In fact, the normal approximation has a small relative error when3 x4 �
n. For the event (ω1 + · · ·+ωn)/n = a we have x = a

√
n, thus, x4 � n when

a4 � 1/n. Rather good for coin tossing, but far not enough for statistical
physics.

1So-called spin-1 particles.
2See 2j1 for the answer.
3Due to symmetry; for asymmetric distributions, x6 � n is required.
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2c A non-normal approximation

For binomial probabilities, the normal approximation results from the Stirling
formula

n! ∼
√

2πnnne−n as n→∞ .

In fact, straightforward application of Stirling formula leads to

(2c1) P
(ω1 + · · ·+ ωn

n
= a
)
≈

≈ 1√
1− a2

2√
n

1√
2π

exp
(
− n

2

(
(1− a) ln(1− a) + (1 + a) ln(1 + a)

))
for a = −n

n
, −n+2

n
, . . . , n

n
(check it); the relative error is small when (1− |a|)n

is large. For example,

P
(ω1 + · · ·+ ω200

200
= −0.9

)
≈ 1.409 · 10−44

instead of 1.397 · 10−44; quite good.
For small a we have

(1− a) ln(1− a) + (1 + a) ln(1 + a) = a2 +O(a4)

(check it), which gives the normal approximation if na4 � 1 (check it). For
larger a the non-normal approximation (2c1) works.

2d Large deviations: upper bound

Let Ω and µ be as in Sect. 1a,1 and f : Ω → R a measurable function. For
every λ ∈ [0,∞) and a ∈ R,∫

eλf dµ ≥ eλaµ{f ≥ a}

(think, why); of course, {f ≥ a} means {ω : f(ω) ≥ a}. Thus,

µ{f ≥ a} ≤ inf
λ≥0

∫
eλf dµ

eλa
.

Similarly,

µ{f ≤ a} ≤ inf
λ≤0

∫
eλf dµ

eλa
.

1That is, µ is a finite or σ-finite positive measure on Ω.
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We apply it to f (n), taking into account that∫
eλnf

(n)

dµn =
(∫

eλf dµ
)n
,

and get

µn{f (n) ≥ a} ≤
(

inf
λ≥0

∫
eλf dµ

eλa

)n
, µn{f (n) ≤ a} ≤

(
inf
λ≤0

∫
eλf dµ

eλa

)n
.

2d1 Exercise. The function Λ : R→ (−∞,+∞] defined by

Λ(λ) = ln

∫
eλf dµ

is convex and lower semicontinuous.
Prove it.

2d2 Exercise. (a) The set {Λ <∞} = {λ : Λ(λ) <∞} is an interval.
(b) Every interval can appear this way: (a, b), [a, b], [a, b), (a, b], (−∞, b),

(−∞, b], (a,∞), [a,∞), (−∞,∞), {a} and ∅.
(c) The restriction of Λ to {Λ <∞} is continuous.
(d) The restriction of Λ to {Λ <∞} is strictly convex, unless f = const.

Prove it.

2d3 Exercise. If Λ(λ− ε) <∞ and Λ(λ+ ε) <∞ then

eΛ(λ±ε) =
∞∑
n=0

(±ε)n

n!

∫
fne−λf dµ .

Prove it.

Thus, Λ is infinitely differentiable on Int{Λ < ∞} (the interior of the
interval), and

(2d4)
dn

dλn
eΛ(λ) =

∫
fneλf dµ for λ ∈ Int{Λ <∞} .

In terms of Λ we have

µn{f (n) ≥ a} ≤ expn inf
λ≥0

(
Λ(λ)−aλ

)
, µn{f (n) ≤ a} ≤ expn inf

λ≤0

(
Λ(λ)−aλ

)
.

If a = Λ′(λ) for some λ ∈ Int{Λ < ∞} then infλ1∈R(Λ(λ1) − aλ1) = Λ(λ) −
aλ = Λ(λ)− λΛ′(λ) (think, why); thus,
(2d5)
µn{f (n) ≥ Λ′(λ)} ≤ expn

(
Λ(λ)− λΛ′(λ)

)
for λ ∈ [0,∞) ∩ Int{Λ <∞} ,

µn{f (n) ≤ Λ′(λ)} ≤ expn
(
Λ(λ)− λΛ′(λ)

)
for λ ∈ (−∞, 0] ∩ Int{Λ <∞} .
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2d6 Exercise. Consider again Ω = {−1, 1} with the counting measure, and
f(ω1) = ω1. Calculate Λ and simplify the inequalities, getting

µn{f (n) ≥ a} ≤ 2n exp
(
− n

2

(
(1− a) ln(1− a) + (1 + a) ln(1 + a)

))
for a ∈ [0, 1) ,

µn{f (n) ≤ a} ≤ 2n exp
(
− n

2

(
(1− a) ln(1− a) + (1 + a) ln(1 + a)

))
for a ∈ (−1, 0] .

Does it hold for a = ±1?

Compare it with (2c1).

2e Better bound via tilting

Let Ω, µ, f and Λ be as in Sect. 2d, Int{Λ <∞} 6= ∅, and f 6= const.1

Given λ ∈ Int{Λ <∞}, we introduce a measure well-known in the large
deviations theory as tilted measure, in mathematics and physics as Gibbs
measure, and in statistical physics as canonical ensemble:

ν = exp
(
λf − Λ(λ)

)
· µ .

2e1 Exercise. Check that∫
dν = 1 ,

∫
f dν = Λ′(λ) ,

∫
f 2 dν = Λ′′(λ) + Λ′2(λ) ,

ln

∫
eαf dν = Λ(λ+ α)− Λ(λ) for α ∈ R .

2e2 Exercise. If µ = γ1 (that is, N(0, 1)) and f(x) = x, then
(a) Λ(λ) = λ2/2;
(b) ν is γ1 shifted by λ (that is, N(λ, 1));
(c)
∫∞

0
eλx γ1(dx) = eλ

2/2γ1
(
[−λ,∞)

)
for λ ∈ R;

(d)
∫∞

0
e−λx γ1(dx) ≤ min

(
1
2
, 1√

2π λ

)
for λ > 0.

Prove it.

W.r.t. the probability measure ν the function f may be thought of as
a random variable with E f = Λ′(λ) and Var f = Λ′′(λ) > 0 (just because
f 6= const). We note this fact also for subsequent use:

(2e3) Λ′′(λ) > 0 for all λ ∈ Int{Λ <∞} provided that f 6= const .

2e4 Exercise. Check that

νn = expn
(
λf (n) − Λ(λ)

)
· µn .

1As before, it means ess inf f 6= ess sup f .
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W.r.t. the probability measure νn the function nf (n) may be thought of
as the sum of n independent copies of the random variable f ;

E f (n) = Λ′(λ) , Var f (n) =
Λ′′(λ)

n
.

2e5 Exercise. For every ε > 0 there exists δ > 0 such that for all n,

νn{|f (n) − Λ′(λ)| > ε} ≤ e−δn .

Prove it.

By the central limit theorem,

νn
{
a ≤ f (n) − Λ′(λ)√

Λ′′(λ)/n
≤ b
}
→ γ1

(
[a, b]

)
as n→∞

whenever −∞ ≤ a < b ≤ ∞. In terms of µn,∫
1lJn(f (n))en(λf (n)−Λ(λ)) dµn → γ1

(
[a, b]

)
,

where Jn = [Λ′(λ) + a
√

Λ′′(λ)/n,Λ′(λ) + b
√

Λ′′(λ)/n]. Also,

(2e6)

µn{f (n) ∈ Jn} =

∫
1lJn(f (n)) dµn =

∫
1lJn(f (n)) expn(Λ(λ)− λf (n)) dνn =

= enΛ(λ)E e−λnf
(n)

1lJn(f (n)) = expn(Λ(λ)−λΛ′(λ))E e−λn(f (n)−Λ′(λ))1lJn(f (n)) .

In particular,

µn
{
f (n) ≥ Λ′(λ)

}
= expn

(
Λ(λ)− λΛ′(λ)

)
E e−λn(f (n)−Λ′(λ))1l[0.∞)(f

(n) − Λ′(λ)) ,

µn
{
f (n) ≤ Λ′(λ)

}
= expn

(
Λ(λ)− λΛ′(λ)

)
E e−λn(f (n)−Λ′(λ))1l(−∞,0](f

(n) − Λ′(λ)) .

We reduce the expectation to probabilities:

e−λnx1l[0,∞)(x) =

∫ ∞
0

1l[0,y](x)λne−λny dy

(check it), therefore

E e−λn(f (n)−Λ′(λ))1l[0,∞)(f
(n)−Λ′(λ)) =

∫ ∞
0

νn{0 ≤ f (n)−Λ′(λ) ≤ y}λne−λny dy
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(check it). It follows that∣∣∣∣E e−λn(f (n)−Λ′(λ))1l[0.∞)(f
(n) − Λ′(λ))−

∫ ∞
0

e−λn
√

Λ′′(λ)/nx γ1(dx)

∣∣∣∣ ≤ εn ,

where

εn = sup
x≥0

∣∣∣∣νn{0 ≤ f (n) − Λ′(λ) ≤
√

Λ′′(λ)

n
x
}
− γ1([0, x])

∣∣∣∣ .
Using 2e2(d), for λ > 0,

µn{f (n) ≥ Λ′(λ)} ≤ expn
(
Λ(λ)−λΛ′(λ)

)
·
(
εn+min

(1

2
,

1√
2πλ

√
nΛ′′(λ)

))
.

The central limit theorem ensures1 that εn → 0, which gives

µn{f (n) ≥ Λ′(λ)} = expn
(
Λ(λ)− λΛ′(λ)

)
· o(1) as n→∞

for λ ∈ (0,∞) ∩ Int{Λ <∞}; and similarly,

µn{f (n) ≤ Λ′(λ)} = expn
(
Λ(λ)− λΛ′(λ)

)
· o(1) as n→∞

for λ ∈ (−∞, 0) ∩ Int{Λ <∞}.
However, a stronger result,

εn ≤
C√
n

is ensured by the Berry-Esseen theorem,2 provided that∫
|f |3 dν <∞ ,

which is not a problem here, since
(∫
|f |3 dν

)
1/3 ≤

(∫
f 4 dν

)
1/4 < ∞. The

constant C depends on the distribution (thus, on λ) and does not depend on
n. We get the following.

2e7 Theorem. 3 For every λ ∈ Int{Λ <∞} \ {0} there exists C <∞ such
that for all n,

µn
{
f (n) ≥ Λ′(λ)

}
≤ C√

n
expn

(
Λ(λ)− λΛ′(λ)

)
1In combination with a monotonicity argument.
2See W. Feller, An introduction to probability theory and its applications, vol. II, Sect.

XVI.5.
3See A.Dembo and O.Zeitouni, Large deviations techniques and applications, Theorem

3.7.4 (Bahadur and Rao).
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if λ > 0, and

µn
{
f (n) ≤ Λ′(λ)

}
≤ C√

n
expn

(
Λ(λ)− λΛ′(λ)

)
if λ < 0.

Compare it (again) with (2c1) (using 2d6).

2f Large deviations: lower bound

Let Ω, µ, f and Λ be as in Sect. 2e.
Consider intervals Jn = [Λ′(λ) + a

√
Λ′′(λ)/n,Λ′(λ) + b

√
Λ′′(λ)/n] (of

length O(1/n), unlike Sect. 2e) for a given λ ∈ Int{Λ <∞}. We have∣∣∣νn{f (n) ∈ Jn} − γ1
([ a√

n
,
b√
n

])∣∣∣ ≤ εn ≤
C√
n

and γ1
(
[ a√

n
, b√

n
]
)
∼ 1√

2π
b−a√
n

(think, why). Thus, for large n,

νn{f (n) ∈ Jn} ≥
c√
n

provided that b−a√
2π
− C > c > 0. By (2e6),

µn{f (n) ∈ Jn} = expn(Λ(λ)− λΛ′(λ))E e−λn(f (n)−Λ′(λ))1lJn(f (n)) .

In particular, for λ ≥ 0,

µn{0 ≤ f (n) − Λ′(λ) ≤ b
√

Λ′′(λ)/n} ≥

≥ en(Λ(λ)−λΛ′(λ)) · e−λnb
√

Λ′′(λ)/nνn{f (n) ∈ Jn} ≥

≥ en(Λ(λ)−λΛ′(λ)) · e−λb
√

Λ′′(λ) · c√
n

provided that b√
2π
− C > c > 0. Having C (dependent on the distribution,

thus, on λ) we take b > C
√

2π and get the following (the case λ ≤ 0 being
similar).

2f1 Theorem. 1 For every λ ∈ Int{Λ < ∞} there exist C < ∞ and c > 0
such that for all n large enough,

µn
{

Λ′(λ) ≤ f (n) ≤ Λ′(λ) +
C

n

}
≥ c√

n
expn

(
Λ(λ)− λΛ′(λ)

)
if λ ≥ 0 ,

µn
{

Λ′(λ)− C

n
≤ f (n) ≤ Λ′(λ)

}
≥ c√

n
expn

(
Λ(λ)− λΛ′(λ)

)
if λ ≤ 0 .

Compare it (once again) with (2c1) (using 2d6).

1See again the Bahadur-Rao theorem (footnote 3 on page 16).



Tel Aviv University, 2010 Large deviations, entropy and statistical physics 18

2g Higher dimension: upper bound

In most cases it is enough to know that a measure is exp(−nI + o(n)) for
some known I. Of course, 1√

n
= exp o(n), and nα = exp o(n) for every α,

and even e±
√
n = exp o(n).

Dimension 2 is treated here; other finite dimensions can be treated simi-
larly.

Let Ω and µ be as before, and f : Ω → R2 a measurable function. We
introduce Λ : R2 → (−∞,∞] by

Λ(λ) = ln

∫
e〈λ,f〉 dµ

where 〈·, ·〉 is the scalar product in R2.

2g1 Exercise. 1 Prove that Λ is convex and lower semicontinuous, and the
set {Λ <∞} ⊂ R2 is convex.

2g2 Exercise. Λ is infinitely differentiable on Int{Λ <∞}, and

∂k+l

∂λk1∂λ
l
2

eΛ(λ) =

∫
fk1 f

l
2e〈λ,f〉 dµ

for λ = (λ1, λ2) ∈ Int{Λ <∞}; here f(ω) = (f1(ω), f2(ω)).
Prove it.

We assume that {Λ <∞} 6= ∅.
We introduce the so-called Fenchel-Legendre transform Λ∗ : R2 → (−∞,∞]

of Λ by
Λ∗(a) = sup

λ∈R2

(
〈λ, a〉 − Λ(λ)

)
.

Being a supremum of linear functions, Λ∗ is convex and lower semicontinuous.
Functions f (n) : Ωn → R2 are defined as before; and still,∫

expn〈λ, f (n)〉 dµn =

(∫
exp〈λ, f〉 dµ

)n
= expnΛ(λ) .

2g3 Exercise. Prove that µn{f (n) ∈ B} ≤ expn
(
Λ(λ) − infx∈B〈λ, x〉

)
for

every n, Borel set B ⊂ R2, and λ ∈ R2.

Denote Bδ(a) = {x ∈ R2 : ‖x− a‖ < δ}.
1Unlike 2d2(c), the restriction of Λ to {Λ < ∞} need not be continuous. A sketch of

a counterexample: it may happen that Λ(cosϕ, sinϕ) =
∑

n exp cn(cos(ϕ − αn) − 1); try
cn = n3, αn = 1/n.
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2g4 Exercise. Prove that for every λ ∈ R2, δ > 0 and a ∈ R2,

µn{f (n) ∈ Bδ(a)} ≤ expn
(
Λ(λ)− 〈λ, a〉+ δ‖λ‖

)
.

2g5 Exercise. For every a ∈ R2 and C < Λ∗(a) there exists δ > 0 such that
for all n,

µn{f (n) ∈ Bδ(a)} ≤ e−nC .

2g6 Exercise. For every compact set K ⊂ R2,

µn{f (n) ∈ K} ≤ exp
(
− nmin

K
Λ∗ + o(n)

)
.

Prove it.

2h Higher dimension: lower bound

Let Ω, µ, f and Λ be as in Sect. 2g, and Int{Λ <∞} 6= ∅.
Given λ ∈ Int{Λ <∞}, we introduce the tilted measure

ν = exp
(
〈λ, f〉 − Λ(λ)

)
· µ .

2h1 Exercise. Check that∫
dν = 1 ,

∫
f dν = grad Λ(λ)

and
νn = expn

(
〈λ, f (n)〉 − Λ(λ)

)
· µn .

As before, E f (n) = grad Λ(λ).

2h2 Exercise. Prove that for every δ > 0,

νn{‖f (n) − grad Λ(λ)‖ < δ} → 1 as n→∞ .

2h3 Exercise. Prove that

µn{f (n) ∈ B} ≥ expn
(
Λ(λ)− sup

x∈B
〈λ, x〉

)
νn{f (n) ∈ B}

for every n, Borel set B ⊂ R2, and λ ∈ R2.

2h4 Exercise. Prove that for every λ ∈ Int{Λ <∞} and δ > 0,

µn{‖f (n)−grad Λ(λ)‖ < δ} ≥ (1−o(1)) expn
(
Λ(λ)−〈λ, grad Λ(λ)〉−δ‖λ‖

)
.
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2h5 Exercise. Let G ⊂ R2 be an open set. Prove that1

µn{f (n) ∈ G} ≥ exp
(
n sup(Λ(λ)− 〈λ, grad Λ(λ)〉)− o(n)

)
where the supremum is taken over all λ ∈ Int{Λ <∞} such that grad Λ(λ) ∈
G.

2h6 Exercise. Prove that

Λ∗
(
grad Λ(λ)

)
= 〈λ, grad Λ(λ)〉 − Λ(λ)

for every λ ∈ Int{Λ <∞}.

We define a set T ⊂ R2 by2

T =
{

grad Λ(λ) : λ ∈ Int{Λ <∞}
}
.

2h7 Exercise. Let G ⊂ R2 be an open set. Prove that

µn{f (n) ∈ G} ≥ exp
(
− n inf

G∩T
Λ∗ − o(n)

)
.

The same holds in Rn for all n = 1, 2, 3, . . .

2i Using conditions (1a1), (1a2)

We return to dimension one. Let Ω, µ, f and Λ be as in Sect. 2d, and
f 6= const.

Assuming (1a1) or (1a2) we’ll prove the so-called weak3 large deviations
principle (LDP) with the rate function Λ∗. It means the upper bound

µn{f (n) ∈ K} ≤ exp
(
− nmin

K
Λ∗ + o(n)

)
for compact K ⊂ R

together with the lower bound

µn{f (n) ∈ G} ≥ exp
(
− n inf

G
Λ∗ − o(n)

)
for open G ⊂ R .

To this end, by 2g6 and 2h7 (for dimension one) it suffices to show that

T = Int{Λ∗ <∞} ,
1We admit that o(n) may be infinite for a finite number of numbers n.
2“T” reminds of “tilting”.
3“Weak” since the upper bound is stated for compact sets rather than all closed sets.



Tel Aviv University, 2010 Large deviations, entropy and statistical physics 21

where T =
{

Λ′(λ) : λ ∈ Int{Λ < ∞}
}

. The convex set {Λ∗ < ∞} need
not be open, but anyway, the restriction of Λ∗ to this set is continuous (due
to convexity and lower semicontinuity); thus, infG Λ∗ = infG∩{Λ∗<∞} Λ∗ =
infG∩Int{Λ∗<∞} Λ∗ = infG∩T Λ∗.

Assume (1a1): µ(Ω) < ∞ and
∫

eλf dµ < ∞ for all λ ∈ R. Thus,
Int{Λ < ∞} = R, and Λ′ is strictly increasing (recall (2e3)), which implies
existence of limits,

−∞ ≤ Λ′(−∞) < Λ′(+∞) ≤ +∞ .

2i1 Exercise. Prove that

T =
(
Λ′(−∞),Λ′(+∞)

)
⊂ {Λ∗ <∞} ⊂ [Λ′(−∞),Λ′(+∞)] .

Thus, T = Int{Λ∗ < ∞}, and the LDP under (1a1) is verified. In addi-
tion, a relation to the bounds of f is shown below.

2i2 Exercise. Prove that

Λ(λ)

λ
→ Λ′(−∞) as λ→ −∞ , and

Λ(λ)

λ
→ Λ′(+∞) as λ→ +∞ .

2i3 Exercise. Prove that

ess inf f ≤ Λ′(−∞) < Λ′(+∞) ≤ ess sup f .

If a < ess sup f then µ{f ≥ a} > 0; we have
∫

eλf dµ ≥ eλaµ{f ≥ a} for
λ > 0, thus Λ(λ) ≥ λa + lnµ{f ≥ a} and Λ′(+∞) ≥ a, which shows that
Λ′(+∞) ≥ ess sup f . Similarly, Λ′(−∞) ≤ ess inf f . We get under (1a1)

−∞ ≤ ess inf f = Λ′(−∞) < Λ′(+∞) = ess sup f ≤ +∞ .

Assume now (1a2): µ(Ω) = ∞ and
∫

eλf dµ < ∞ for all λ ∈ (−∞, 0).
Then {Λ < ∞} = (−∞, 0), since this convex set does not contain 0. We
have

−∞ ≤ Λ′(−∞) < Λ′(0−) = +∞

(since Λ′(0−) <∞ would imply Λ(0) <∞).

2i4 Exercise. Prove that

T =
(
Λ′(−∞),+∞

)
⊂ {Λ∗ <∞} ⊂ [Λ′(−∞),+∞) .

Also ess sup f = +∞ (since
∫

e− ess sup f dµ ≤
∫

e−f dµ <∞).
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2i5 Exercise. Prove that

Λ′(−∞) ≥ ess inf f .

2i6 Exercise. Prove that

Λ′(−∞) ≤ ess inf f .

We get under (1a2)

−∞ ≤ ess inf f = Λ′(−∞) < Λ′(0−) = ess sup f = +∞ .

In both cases,

T = Int{Λ∗ <∞} = (ess inf f, ess sup f) .

2j The function ϕ, at last

Let f, g : Ω → R and ε > 0 be such that f − εg and f + εg satisfy (1a1) or
(1a2), and f 6= const (as required in Theorem 1b4). We combine them into
h : Ω → R2, h(·) =

(
f(·), g(·)

)
and consider the corresponding Λh : R2 →

(−∞,+∞] as in Sect. 2g.
Case µ(Ω) <∞: the convex set {Λh <∞} contains two lines {(λ,±ελ) :

λ ∈ R}, therefore it is the whole R2, and surely, R = {(λ, 0) : λ ∈ R} ⊂
Int{Λh <∞} ⊂ R2.

Case µ(Ω) =∞: the convex set {Λh <∞} contains two rays {(λ,±ελ) :
λ ∈ (−∞, 0)}, therefore it contains the sector {(λ1, λ2) : λ1 < 0, |λ2| ≤
ε|λ1|}, and does not contain the origin; and surely, {(λ, 0) : λ ∈ (−∞, 0)} ⊂
Int{Λh <∞}.

We have also the function Λf : R→ (−∞,+∞] corresponding to f as in
2i, and we know that

Tf =
{

Λ′f (λ) : λ ∈ Int{Λf <∞}
}

= (ess inf f, ess sup f) ,

since f satisfies (1a1) or (1a2). And clearly, Λf is the restriction of Λh to
the line R = {(λ, 0) : λ ∈ R} ⊂ R2. Of course, Int{Λf < ∞} is either R
(if µ(Ω) < ∞) or (−∞, 0) (if µ(Ω) = ∞). In both cases Int{Λf < ∞} ⊂
Int{Λh <∞} under the embedding R→ R2, λ 7→ (λ, 0).

The function Λ′f is strictly increasing by (2e3) and maps Int{Λf < ∞}
onto Tf = (ess inf f, ess sup f). For every a ∈ (ess inf f, ess sup f) there exists
one and only one λ ∈ Int{Λf <∞} such that Λ′f (λ) = a. We have

grad Λh(λ, 0) =
(
a, ϕ(a)

)



Tel Aviv University, 2010 Large deviations, entropy and statistical physics 23

for a continuous ϕ : (ess inf f, ess sup f)→ R, namely,

ϕ(a) =
d

dλ2

∣∣∣
λ2=0

Λ
(
(Λ′f )

−1(a), λ2

)
,

not only a continuous function, but also an infinitely differentiable function.
In terms of the tilted measure

ν = exp
(
λf − Λf (λ)

)
· µ

we have (by 2h1)
∫
h dν = grad Λh(λ, 0), that is,

a =

∫
f dν and ϕ(a) =

∫
g dν ;

an equivalent definition of ϕ.

2j1 Example. Continuing Example 2a3, consider Ω = {−1, 0, 1}, h(ω) = ω,
f(ω) = ω2. The function ϕ = [f |h] can be written out implicitly:

ϕ
( x2 − 1

x2 + x+ 1

)
=

x2 + 1

x2 + x+ 1
for x ∈ (0,∞) ;

the tilted measure is

ν({−1}) =
1

x2 + x+ 1
, ν({0}) =

x

x2 + x+ 1
, ν({1}) =

x2

x2 + x+ 1
.

In particular, x ≈ 0.09289 gives ϕ(−0.9) ≈ 0.9157. Thus, the conditional
distribution of f (n) given h(n) ≈ −0.9 is concentrated near 0.9157.

2k Proving the theorem

Let f , g and ϕ be as in Sect. 2j. In order to prove Theorem 1b4 we
have to prove that P

(
g(n) ∈ (c, d)

∣∣f (n) ∈ [a, b]
)
→ 1 whenever [a, b] ⊂

(ess inf f, ess sup f) and (c, d) ⊂ R satisfy ϕ
(
[a, b]

)
⊂ (c, d). We’ll prove a bit

stronger statement:

µn{f (n) ∈ [a, b] and g(n) /∈ (c, d)}
µn{f (n) ∈ (a, b)}

→ 0

(the denominator being non-zero for large n).

2k1 Exercise. If µ
n{f (n)∈[a1,b1] and g(n) /∈(c,d)}

µn{f (n)∈(a1,b1)} → 0, µ
n{f (n)∈[a2,b2] and g(n) /∈(c,d)}

µn{f (n)∈(a2,b2)} →

0 and b1 = a2 then µn{f (n)∈[a1,b2] and g(n) /∈(c,d)}
µn{f (n)∈(a1,b2)} → 0.

Prove it.
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We use h, Λh, Λf introduced in Sect. 2j.
It may happen that (Λ′f )

−1(a) < 0 < (Λ′f )
−1(b). In this case we split

the interval [a, b] in two and use 2k1. Thus, we restrict ourselves to the case
(Λ′f )

−1(a) ≥ 0. (The other case, (Λ′f )
−1(b) ≤ 0, is similar.)

We have λ ∈ [0,∞) ∩ Int{Λf < ∞} such that Λ′f (λ) = a. Denote
r = λa− Λf (λ), then Λ∗f (a) = r. By the lower bound of the LDP (Sect. 2i),

µn{f (n) ∈ (a, b)} ≥ exp
(
− n inf

(a,b)
Λ∗f − o(n)

)
≥ exp

(
−nr − o(n)

)
,

since1 inf(a,b) Λ∗f ≤ Λ∗f (a) = r. It is sufficient to prove that for some δ > 0,

µn{f (n) ∈ [a, b] and g(n) /∈ (c, d)} ≤ exp
(
−n(r + δ)

)
.

We have (c, d) 3 ϕ(a) =
∫
g dν where ν = exp

(
λf − Λf (λ)

)
· µ is the tilted

measure. Also,
∫

eαg dν < ∞ for all α small enough (positive or negative),
since (λ, 0) ∈ Int{Λh <∞}. By (2e5) (adapted a bit), for some δ > 0,

νn{g(n) /∈ (c, d)} ≤ e−δn for all n .

Thus (using 2e4),

µn{f (n) ∈ [a, b] and g(n) /∈ (c, d)} =

=

∫
1l[a,b](f

(n))
(
1− 1l(c,d)(g

(n))
)

expn
(
Λf (λ)− λf (n)

)
dνn ≤

≤ expn
(
Λf (λ)− λa

) ∫ (
1− 1l(c,d)(g

(n))
)

dνn ≤ e−rne−δn ,

which completes the proof.

2l Equivalence of ensembles

The probability measure

B 7→ P
(
B
∣∣h(n) ∈ [E,E + ∆E]

)
=
µn(B ∩ {h(n) ∈ [E,E + ∆E]})

µn{h(n) ∈ [E,E + ∆E]}
for a large n and small ∆E is well-known in statistical physics as the micro-
canonical ensemble,2 provided that h is the Hamiltonian.

1In fact, inf(a,b) Λ∗f = Λ∗f (a), since Λ∗f is increasing on [a, b].
2“. . . the basic postulate of equilibrium statistical mechanics . . . expresses the fact that

we know very little about the microscopic state of the system: we only assume that its
energy lies in a narrow interval (E,E + ∆E). . . . each of these states is equally probable
. . . This is the famous principle of equal a priori probabilities. . . . The microcanonical
ensemble is of prime theoretical importance . . . however . . . proves to be a mathematically
difficult and unflexible tool.” R. Balescu, “Equilibrium and nonequilibrium statistical
mechanics”, 1975, Sect. 4.2 “The microcanonical ensemble”.
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The tilted measure

νn = expn
(
λh(n) − Λ(λ)

)
· µn ,

where λ is chosen so that Λ′(λ) = E, is well-known in statistical physics as
the canonical ensemble,1 traditionally written as2

νn(dω1 . . . dωn) =
1

Z(β)
e−βh(ω1)−···−βh(ωn)µ(dω1) . . . µ(dωn)

where β = −λ is called the inverse temperature, and Z(β) = enΛ(λ) =∫
e−βh(ω1)−···−βh(ωn)µ(dω1) . . . µ(dωn) is called the partition function.3

Let h and g satisfy the conditions of Theorem 1b4.
For every ε > 0 there exists ∆E > 0 such that

P
(
g(n) ∈ (ϕ(E)− ε, ϕ(E) + ε)

∣∣h(n) ∈ [E,E + ∆E]
)
→ 1

as n → ∞. On the other hand, for every ε > 0 there exists δ > 0 such that
for all n,

νn{g(n) ∈ (ϕ(E)− ε, ϕ(E) + ε)} ≥ 1− e−δn .

Thus, a macroscopic observable g(n) concentrates around the same value ϕ(E)
in both ensembles, microcanonical and canonical. This phenomenon is well-
known in statistical physics as equivalence of ensembles.4

2m Hints to exercises

2d1: (a) Hölder inequality; (b) Fatou’s lemma.

2d2 (b): try Ω = R, f(x) = x, µ(dx) = p(x) dx, p(x) ∼ xαe−γx and
p(−x) ∼ xβe−δx for x→ +∞. (c): use 2d1. (d): strict Hölder inequality.

2d3: |
∑N

n=0 eλf (±εf)n

n!
| ≤ eλfeε|f | ≤ e(λ−ε)f + e(λ+ε)f ; use the dominated

convergence theorem.

2d6: Transform eλ−e−λ

eλ+e−λ
= a into eλ =

√
1+a
1−a .

1“It was introduced for the first time by J.W. Gibbs (in the classical case) around
1900.” Balescu, Sect. 4.3 “The canonical ensemble”, page 119.

2We restrict ourselves to ideal systems (recall Sect. 1a).
3“It is one of the most important quantities of equilibrium statistical mechanics.”

Balescu, Sect. 4.3, page 118.
4“This result is very important in practice. It allows us, in many cases, to use in a given

problem interchangeably one or the other ensemble, the choice being motivated by prac-
tical convenience in the calculations.” Balescu, Sect. 4.6 “Equivalence of the equilibrium
ensembles: fluctuations.”
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2e5: Use (2d5) and 2e1: νn{f (n) ≥ Λ′(λ+α)} ≤ expn
(
Λ(λ+α)−Λ(λ)−

αΛ′(λ+ α)
)

for small α > 0.

2g1: similar to 2d1.

2g2: similar to 2d4.

2g3: recall Sect. 2d.

2g6: show that lim sup 1
n

lnµn{f (n) ∈ K} ≤ −minK Λ∗; to this end, given
C < minK Λ∗, cover K by a finite number of disks Bδ(a) as in 2g5.

2i1: consider λa− Λ(λ) as λ→ ±∞.
2i5:

∫
eλf dµ ≤ e(λ+1) ess inf f

∫
e−f dµ for λ < −1.

2i6: Similarly to the case of (1a1).
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