2 Large deviations, Gibbs measures

2a Who needs ridiculously small probabilities? 10
2b Is the normal approximation helpful? 11
2c A non-normal approximation 12
2d Large deviations: upper bound 12
2e Better bound via tilting 14
2f Large deviations: lower bound 17
2g Higher dimension: upper bound 18
2h Higher dimension: lower bound 19
2 i Using conditions (1a1), (1a2) 20
2j The function φ, at last 22
2 k Proving the theorem 23
21 Equivalence of ensembles 24
2m Hints to exercises 25

Theorem $1 b_{4}$ is proved via the large deviations theory; a formula for $\varphi=[g \mid f]$ is given in terms of Gibbs measures.

2a Who needs ridiculously small probabilities?

2a1 Example. A fair coin is tossed 200 times. The probability of 10 "heads" is

$$
2^{-200}\binom{200}{10} \approx 1.4 \cdot 10^{-44}
$$

We are pretty sure that this event will not occur in practice. Then, does it matter, is it 10^{-44}, or 10^{-40}, or 10^{-50} ?

For coin tossing it does not matter, but for statistical physics it does!
2a2 Example. Consider a system of 200 spins $^{1} \omega_{1}, \ldots, \omega_{200}= \pm 1$ with a one-particle Hamiltonian $h\left(\omega_{1}\right)=\omega_{1}$ and a given energy per particle

$$
h^{(200)}\left(\omega_{1}, \ldots, \omega_{200}\right)=-0.9 \quad \in(-1,1) .
$$

(Quite feasible.) Now, only 10 out of the 200 spins are +1 , others are -1 .

[^0]You may ask: so what? We still do not need 10^{-44}. Right; but see the next example.

2a3 Example. Consider a system of n spins, ${ }^{1}$ each taking on three values $-1,0,+1$, described by $\Omega^{n}=\{-1,0,1\}^{n}$ (with the counting measure) and the one-particle Hamiltonian $h\left(\omega_{1}\right)=\omega_{1}$. Introduce another macroscopic observable $f^{(n)}$ where $f\left(\omega_{1}\right)=\omega_{1}^{2}$. We want to know the conditional distribution (according to 1 b 1) of $f^{(n)}$ given $h^{(n)} \approx-0.9$. This question is physically meaningful for quite large n (much more than 200, in fact, such as 10^{23}). Probabilistically, we want to know the conditional distribution, given the condition of exponentially small probability (much smaller than 10^{-44}). Such conditional probabilities are ratios of ridiculously small unconditional probabilities... ${ }^{2}$

2b Is the normal approximation helpful?

Consider for now $\Omega^{n}=\{-1,+1\}^{n}$ with the uniform distribution (the counting measure normalized by dividing by 2^{n}). The random variable ($\omega_{1}+\cdots+$ $\left.\omega_{n}\right) / \sqrt{n}$ is approximately normal standard $\left(\gamma^{1}\right)$,

$$
\mathbb{P}\left(\frac{\omega_{1}+\cdots+\omega_{n}}{\sqrt{n}}=x\right) \approx \frac{2}{\sqrt{n}} \frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-x^{2} / 2} \quad \text { for } x=\frac{-n}{\sqrt{n}}, \frac{-n+2}{\sqrt{n}}, \ldots, \frac{n}{\sqrt{n}} .
$$

Taking for example $n=200$ and $x=\frac{-200+20}{\sqrt{200}} \approx-12.7$ we get

$$
\mathbb{P}\left(\frac{\omega_{1}+\cdots+\omega_{200}}{200}=-0.9\right) \approx 3.7 \cdot 10^{-37}
$$

instead of $1.4 \cdot 10^{-44}$. Quite bad!
Replacing -0.9 with -0.6 we get the normal approximation $1.3 \cdot 10^{-17}$ $(x \approx-8.5)$ to the probability $1.3 \cdot 10^{-18}$. For -0.3 : approximation $7.0 \cdot 10^{-6}$ $(x \approx-4.2)$ to $6.3 \cdot 10^{-6}$. And for -0.15 : approximation $0.00595(x \approx-2.1)$ to 0.00596 .

In fact, the normal approximation has a small relative error when ${ }^{3} x^{4} \ll$ n. For the event $\left(\omega_{1}+\cdots+\omega_{n}\right) / n=a$ we have $x=a \sqrt{n}$, thus, $x^{4} \ll n$ when $a^{4} \ll 1 / n$. Rather good for coin tossing, but far not enough for statistical physics.

[^1]
2c A non-normal approximation

For binomial probabilities, the normal approximation results from the Stirling formula

$$
n!\sim \sqrt{2 \pi n} n^{n} \mathrm{e}^{-n} \quad \text { as } n \rightarrow \infty
$$

In fact, straightforward application of Stirling formula leads to

$$
\begin{align*}
& \mathbb{P}\left(\frac{\omega_{1}+\cdots+\omega_{n}}{n}=a\right) \approx \tag{2c1}\\
\approx & \frac{1}{\sqrt{1-a^{2}}} \frac{2}{\sqrt{n}} \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{n}{2}((1-a) \ln (1-a)+(1+a) \ln (1+a))\right)
\end{align*}
$$

for $a=\frac{-n}{n}, \frac{-n+2}{n}, \ldots, \frac{n}{n}$ (check it); the relative error is small when $(1-|a|) n$ is large. For example,

$$
\mathbb{P}\left(\frac{\omega_{1}+\cdots+\omega_{200}}{200}=-0.9\right) \approx 1.409 \cdot 10^{-44}
$$

instead of $1.397 \cdot 10^{-44}$; quite good.
For small a we have

$$
(1-a) \ln (1-a)+(1+a) \ln (1+a)=a^{2}+O\left(a^{4}\right)
$$

(check it), which gives the normal approximation if $n a^{4} \ll 1$ (check it). For larger a the non-normal approximation (2c1) works.

2d Large deviations: upper bound

Let Ω and μ be as in Sect. 1a, ${ }^{1}$ and $f: \Omega \rightarrow \mathbb{R}$ a measurable function. For every $\lambda \in[0, \infty)$ and $a \in \mathbb{R}$,

$$
\int \mathrm{e}^{\lambda f} \mathrm{~d} \mu \geq \mathrm{e}^{\lambda a} \mu\{f \geq a\}
$$

(think, why); of course, $\{f \geq a\}$ means $\{\omega: f(\omega) \geq a\}$. Thus,

$$
\mu\{f \geq a\} \leq \inf _{\lambda \geq 0} \frac{\int \mathrm{e}^{\lambda f} \mathrm{~d} \mu}{\mathrm{e}^{\lambda a}}
$$

Similarly,

$$
\mu\{f \leq a\} \leq \inf _{\lambda \leq 0} \frac{\int \mathrm{e}^{\lambda f} \mathrm{~d} \mu}{\mathrm{e}^{\lambda a}}
$$

[^2]We apply it to $f^{(n)}$, taking into account that

$$
\int \mathrm{e}^{\lambda n f^{(n)}} \mathrm{d} \mu^{n}=\left(\int \mathrm{e}^{\lambda f} \mathrm{~d} \mu\right)^{n},
$$

and get

$$
\mu^{n}\left\{f^{(n)} \geq a\right\} \leq\left(\inf _{\lambda \geq 0} \frac{\int \mathrm{e}^{\lambda f} \mathrm{~d} \mu}{\mathrm{e}^{\lambda a}}\right)^{n}, \quad \mu^{n}\left\{f^{(n)} \leq a\right\} \leq\left(\inf _{\lambda \leq 0} \frac{\int \mathrm{e}^{\lambda f} \mathrm{~d} \mu}{\mathrm{e}^{\lambda a}}\right)^{n}
$$

2d1 Exercise. The function $\Lambda: \mathbb{R} \rightarrow(-\infty,+\infty]$ defined by

$$
\Lambda(\lambda)=\ln \int \mathrm{e}^{\lambda f} \mathrm{~d} \mu
$$

is convex and lower semicontinuous.
Prove it.
2d2 Exercise. (a) The set $\{\Lambda<\infty\}=\{\lambda: \Lambda(\lambda)<\infty\}$ is an interval.
(b) Every interval can appear this way: $(a, b),[a, b],[a, b),(a, b],(-\infty, b)$, $(-\infty, b],(a, \infty),[a, \infty),(-\infty, \infty),\{a\}$ and \emptyset.
(c) The restriction of Λ to $\{\Lambda<\infty\}$ is continuous.
(d) The restriction of Λ to $\{\Lambda<\infty\}$ is strictly convex, unless $f=$ const.

Prove it.
2d3 Exercise. If $\Lambda(\lambda-\varepsilon)<\infty$ and $\Lambda(\lambda+\varepsilon)<\infty$ then

$$
\mathrm{e}^{\Lambda(\lambda \pm \varepsilon)}=\sum_{n=0}^{\infty} \frac{(\pm \varepsilon)^{n}}{n!} \int f^{n} \mathrm{e}^{-\lambda f} \mathrm{~d} \mu
$$

Prove it.
Thus, Λ is infinitely differentiable on $\operatorname{Int}\{\Lambda<\infty\}$ (the interior of the interval), and

$$
\begin{equation*}
\frac{\mathrm{d}^{n}}{\mathrm{~d} \lambda^{n}} \mathrm{e}^{\Lambda(\lambda)}=\int f^{n} \mathrm{e}^{\lambda f} \mathrm{~d} \mu \quad \text { for } \lambda \in \operatorname{Int}\{\Lambda<\infty\} \tag{2~d4}
\end{equation*}
$$

In terms of Λ we have
$\mu^{n}\left\{f^{(n)} \geq a\right\} \leq \exp n \inf _{\lambda \geq 0}(\Lambda(\lambda)-a \lambda), \quad \mu^{n}\left\{f^{(n)} \leq a\right\} \leq \exp n \inf _{\lambda \leq 0}(\Lambda(\lambda)-a \lambda)$.
If $a=\Lambda^{\prime}(\lambda)$ for some $\lambda \in \operatorname{Int}\{\Lambda<\infty\}$ then $\inf _{\lambda_{1} \in \mathbb{R}}\left(\Lambda\left(\lambda_{1}\right)-a \lambda_{1}\right)=\Lambda(\lambda)-$ $a \lambda=\Lambda(\lambda)-\lambda \Lambda^{\prime}(\lambda)$ (think, why); thus,

$$
\begin{array}{ll}
\mu^{n}\left\{f^{(n)} \geq \Lambda^{\prime}(\lambda)\right\} \leq \exp n\left(\Lambda(\lambda)-\lambda \Lambda^{\prime}(\lambda)\right) & \text { for } \lambda \in[0, \infty) \cap \operatorname{Int}\{\Lambda<\infty\} \tag{2d5}\\
\mu^{n}\left\{f^{(n)} \leq \Lambda^{\prime}(\lambda)\right\} \leq \exp n\left(\Lambda(\lambda)-\lambda \Lambda^{\prime}(\lambda)\right) & \text { for } \lambda \in(-\infty, 0] \cap \operatorname{Int}\{\Lambda<\infty\}
\end{array}
$$

2d6 Exercise. Consider again $\Omega=\{-1,1\}$ with the counting measure, and $f\left(\omega_{1}\right)=\omega_{1}$. Calculate Λ and simplify the inequalities, getting
$\mu^{n}\left\{f^{(n)} \geq a\right\} \leq 2^{n} \exp \left(-\frac{n}{2}((1-a) \ln (1-a)+(1+a) \ln (1+a))\right)$ for $a \in[0,1)$,
$\mu^{n}\left\{f^{(n)} \leq a\right\} \leq 2^{n} \exp \left(-\frac{n}{2}((1-a) \ln (1-a)+(1+a) \ln (1+a))\right)$ for $a \in(-1,0]$.
Does it hold for $a= \pm 1$?
Compare it with (2c1).

2e Better bound via tilting

Let Ω, μ, f and Λ be as in Sect. 2d, $\operatorname{Int}\{\Lambda<\infty\} \neq \emptyset$, and $f \neq$ const. ${ }^{1}$
Given $\lambda \in \operatorname{Int}\{\Lambda<\infty\}$, we introduce a measure well-known in the large deviations theory as tilted measure, in mathematics and physics as Gibbs measure, and in statistical physics as canonical ensemble:

$$
\nu=\exp (\lambda f-\Lambda(\lambda)) \cdot \mu
$$

2e1 Exercise. Check that

$$
\begin{aligned}
\int \mathrm{d} \nu= & 1, \quad \int f \mathrm{~d} \nu=\Lambda^{\prime}(\lambda), \quad \int f^{2} \mathrm{~d} \nu=\Lambda^{\prime \prime}(\lambda)+\Lambda^{\prime 2}(\lambda) \\
& \ln \int \mathrm{e}^{\alpha f} \mathrm{~d} \nu=\Lambda(\lambda+\alpha)-\Lambda(\lambda) \quad \text { for } \alpha \in \mathbb{R}
\end{aligned}
$$

2e2 Exercise. If $\mu=\gamma^{1}$ (that is, $N(0,1)$) and $f(x)=x$, then
(a) $\Lambda(\lambda)=\lambda^{2} / 2$;
(b) ν is γ^{1} shifted by λ (that is, $N(\lambda, 1)$);
(c) $\int_{0}^{\infty} \mathrm{e}^{\lambda x} \gamma^{1}(\mathrm{~d} x)=\mathrm{e}^{\lambda^{2} / 2} \gamma^{1}([-\lambda, \infty))$ for $\lambda \in \mathbb{R}$;
(d) $\int_{0}^{\infty} \mathrm{e}^{-\lambda x} \gamma^{1}(\mathrm{~d} x) \leq \min \left(\frac{1}{2}, \frac{1}{\sqrt{2 \pi} \lambda}\right)$ for $\lambda>0$.

Prove it.
W.r.t. the probability measure ν the function f may be thought of as a random variable with $\mathbb{E} f=\Lambda^{\prime}(\lambda)$ and $\operatorname{Var} f=\Lambda^{\prime \prime}(\lambda)>0$ (just because $f \neq$ const). We note this fact also for subsequent use:

$$
\begin{equation*}
\Lambda^{\prime \prime}(\lambda)>0 \quad \text { for all } \lambda \in \operatorname{Int}\{\Lambda<\infty\} \quad \text { provided that } f \neq \text { const. } \tag{2e3}
\end{equation*}
$$

2e4 Exercise. Check that

$$
\nu^{n}=\exp n\left(\lambda f^{(n)}-\Lambda(\lambda)\right) \cdot \mu^{n} .
$$

[^3]W.r.t. the probability measure ν^{n} the function $n f^{(n)}$ may be thought of as the sum of n independent copies of the random variable f;
$$
\mathbb{E} f^{(n)}=\Lambda^{\prime}(\lambda), \quad \operatorname{Var} f^{(n)}=\frac{\Lambda^{\prime \prime}(\lambda)}{n}
$$

2e5 Exercise. For every $\varepsilon>0$ there exists $\delta>0$ such that for all n,

$$
\nu^{n}\left\{\left|f^{(n)}-\Lambda^{\prime}(\lambda)\right|>\varepsilon\right\} \leq \mathrm{e}^{-\delta n}
$$

Prove it.
By the central limit theorem,

$$
\nu^{n}\left\{a \leq \frac{f^{(n)}-\Lambda^{\prime}(\lambda)}{\sqrt{\Lambda^{\prime \prime}(\lambda) / n}} \leq b\right\} \rightarrow \gamma^{1}([a, b]) \quad \text { as } n \rightarrow \infty
$$

whenever $-\infty \leq a<b \leq \infty$. In terms of μ^{n},

$$
\int \mathbb{1}_{J_{n}}\left(f^{(n)}\right) \mathrm{e}^{n\left(\lambda f^{(n)}-\Lambda(\lambda)\right)} \mathrm{d} \mu^{n} \rightarrow \gamma^{1}([a, b])
$$

where $J_{n}=\left[\Lambda^{\prime}(\lambda)+a \sqrt{\Lambda^{\prime \prime}(\lambda) / n}, \Lambda^{\prime}(\lambda)+b \sqrt{\Lambda^{\prime \prime}(\lambda) / n}\right]$. Also,

$$
\begin{align*}
& \mu^{n}\left\{f^{(n)} \in J_{n}\right\}=\int \mathbb{1}_{J_{n}}\left(f^{(n)}\right) \mathrm{d} \mu^{n}=\int \mathbb{1}_{J_{n}}\left(f^{(n)}\right) \exp n\left(\Lambda(\lambda)-\lambda f^{(n)}\right) \mathrm{d} \nu^{n}= \tag{2e6}\\
= & \mathrm{e}^{n \Lambda(\lambda)} \mathbb{E} \mathrm{e}^{-\lambda n f^{(n)}} \mathbb{1}_{J_{n}}\left(f^{(n)}\right)=\exp n\left(\Lambda(\lambda)-\lambda \Lambda^{\prime}(\lambda)\right) \mathbb{E} \mathrm{e}^{-\lambda n\left(f^{(n)}-\Lambda^{\prime}(\lambda)\right)} \mathbb{1}_{J_{n}}\left(f^{(n)}\right) .
\end{align*}
$$

In particular,
$\mu^{n}\left\{f^{(n)} \geq \Lambda^{\prime}(\lambda)\right\}=\exp n\left(\Lambda(\lambda)-\lambda \Lambda^{\prime}(\lambda)\right) \mathbb{E} \mathrm{e}^{-\lambda n\left(f^{(n)}-\Lambda^{\prime}(\lambda)\right)} \mathbb{1}_{[0 . \infty)}\left(f^{(n)}-\Lambda^{\prime}(\lambda)\right)$,
$\mu^{n}\left\{f^{(n)} \leq \Lambda^{\prime}(\lambda)\right\}=\exp n\left(\Lambda(\lambda)-\lambda \Lambda^{\prime}(\lambda)\right) \mathbb{E} \mathrm{e}^{-\lambda n\left(f^{(n)}-\Lambda^{\prime}(\lambda)\right)} \mathbb{1}_{(-\infty, 0]}\left(f^{(n)}-\Lambda^{\prime}(\lambda)\right)$.
We reduce the expectation to probabilities:

$$
\mathrm{e}^{-\lambda n x} \mathbb{1}_{[0, \infty)}(x)=\int_{0}^{\infty} \mathbb{1}_{[0, y]}(x) \lambda n \mathrm{e}^{-\lambda n y} \mathrm{~d} y
$$

(check it), therefore
$\mathbb{E} \mathrm{e}^{-\lambda n\left(f^{(n)}-\Lambda^{\prime}(\lambda)\right)} \mathbb{1}_{[0, \infty)}\left(f^{(n)}-\Lambda^{\prime}(\lambda)\right)=\int_{0}^{\infty} \nu_{n}\left\{0 \leq f^{(n)}-\Lambda^{\prime}(\lambda) \leq y\right\} \lambda n \mathrm{e}^{-\lambda n y} \mathrm{~d} y$
(check it). It follows that

$$
\left|\mathbb{E} \mathrm{e}^{-\lambda n\left(f^{(n)}-\Lambda^{\prime}(\lambda)\right)} \mathbb{1}_{[0 . \infty)}\left(f^{(n)}-\Lambda^{\prime}(\lambda)\right)-\int_{0}^{\infty} \mathrm{e}^{-\lambda n \sqrt{\Lambda^{\prime \prime}(\lambda) / n} x} \gamma^{1}(\mathrm{~d} x)\right| \leq \varepsilon_{n}
$$

where

$$
\varepsilon_{n}=\sup _{x \geq 0}\left|\nu^{n}\left\{0 \leq f^{(n)}-\Lambda^{\prime}(\lambda) \leq \sqrt{\frac{\Lambda^{\prime \prime}(\lambda)}{n}} x\right\}-\gamma^{1}([0, x])\right| .
$$

Using 2 e 2 (d), for $\lambda>0$,
$\mu^{n}\left\{f^{(n)} \geq \Lambda^{\prime}(\lambda)\right\} \leq \exp n\left(\Lambda(\lambda)-\lambda \Lambda^{\prime}(\lambda)\right) \cdot\left(\varepsilon_{n}+\min \left(\frac{1}{2}, \frac{1}{\sqrt{2 \pi} \lambda \sqrt{n \Lambda^{\prime \prime}(\lambda)}}\right)\right)$.
The central limit theorem ensures ${ }^{1}$ that $\varepsilon_{n} \rightarrow 0$, which gives

$$
\mu^{n}\left\{f^{(n)} \geq \Lambda^{\prime}(\lambda)\right\}=\exp n\left(\Lambda(\lambda)-\lambda \Lambda^{\prime}(\lambda)\right) \cdot o(1) \quad \text { as } n \rightarrow \infty
$$

for $\lambda \in(0, \infty) \cap \operatorname{Int}\{\Lambda<\infty\}$; and similarly,

$$
\mu^{n}\left\{f^{(n)} \leq \Lambda^{\prime}(\lambda)\right\}=\exp n\left(\Lambda(\lambda)-\lambda \Lambda^{\prime}(\lambda)\right) \cdot o(1) \quad \text { as } n \rightarrow \infty
$$

for $\lambda \in(-\infty, 0) \cap \operatorname{Int}\{\Lambda<\infty\}$.
However, a stronger result,

$$
\varepsilon_{n} \leq \frac{C}{\sqrt{n}}
$$

is ensured by the Berry-Esseen theorem, ${ }^{2}$ provided that

$$
\int|f|^{3} \mathrm{~d} \nu<\infty
$$

which is not a problem here, since $\left(\int|f|^{3} \mathrm{~d} \nu\right)^{1 / 3} \leq\left(\int f^{4} \mathrm{~d} \nu\right)^{1 / 4}<\infty$. The constant C depends on the distribution (thus, on λ) and does not depend on n. We get the following.
2e7 Theorem. ${ }^{3}$ For every $\lambda \in \operatorname{Int}\{\Lambda<\infty\} \backslash\{0\}$ there exists $C<\infty$ such that for all n,

$$
\mu^{n}\left\{f^{(n)} \geq \Lambda^{\prime}(\lambda)\right\} \leq \frac{C}{\sqrt{n}} \exp n\left(\Lambda(\lambda)-\lambda \Lambda^{\prime}(\lambda)\right)
$$

[^4]if $\lambda>0$, and
$$
\mu^{n}\left\{f^{(n)} \leq \Lambda^{\prime}(\lambda)\right\} \leq \frac{C}{\sqrt{n}} \exp n\left(\Lambda(\lambda)-\lambda \Lambda^{\prime}(\lambda)\right)
$$
if $\lambda<0$.
Compare it (again) with 2c1) (using 2d6).

$2 f$ Large deviations: lower bound

Let Ω, μ, f and Λ be as in Sect. 2 e .
Consider intervals $J_{n}=\left[\Lambda^{\prime}(\lambda)+a \sqrt{\Lambda^{\prime \prime}(\lambda)} / n, \Lambda^{\prime}(\lambda)+b \sqrt{\Lambda^{\prime \prime}(\lambda)} / n\right]$ (of length $O(1 / n)$, unlike Sect. 2e) for a given $\lambda \in \operatorname{Int}\{\Lambda<\infty\}$. We have

$$
\left|\nu^{n}\left\{f^{(n)} \in J_{n}\right\}-\gamma^{1}\left(\left[\frac{a}{\sqrt{n}}, \frac{b}{\sqrt{n}}\right]\right)\right| \leq \varepsilon_{n} \leq \frac{C}{\sqrt{n}}
$$

and $\gamma^{1}\left(\left[\frac{a}{\sqrt{n}}, \frac{b}{\sqrt{n}}\right]\right) \sim \frac{1}{\sqrt{2 \pi}} \frac{b-a}{\sqrt{n}}$ (think, why). Thus, for large n,

$$
\nu^{n}\left\{f^{(n)} \in J_{n}\right\} \geq \frac{c}{\sqrt{n}}
$$

provided that $\frac{b-a}{\sqrt{2 \pi}}-C>c>0$. By 2e6),

$$
\mu^{n}\left\{f^{(n)} \in J_{n}\right\}=\exp n\left(\Lambda(\lambda)-\lambda \Lambda^{\prime}(\lambda)\right) \mathbb{E} \mathrm{e}^{-\lambda n\left(f^{(n)}-\Lambda^{\prime}(\lambda)\right)} \mathbb{1}_{J_{n}}\left(f^{(n)}\right) .
$$

In particular, for $\lambda \geq 0$,

$$
\begin{aligned}
\mu^{n}\left\{0 \leq f^{(n)}-\Lambda^{\prime}(\lambda) \leq b \sqrt{\Lambda^{\prime \prime}(\lambda)} / n\right\} \geq & \\
& \geq \mathrm{e}^{n\left(\Lambda(\lambda)-\lambda \Lambda^{\prime}(\lambda)\right)} \cdot \mathrm{e}^{-\lambda n b \sqrt{\Lambda^{\prime \prime}(\lambda)} / n} \nu^{n}\left\{f^{(n)} \in J_{n}\right\} \geq \\
& \geq \mathrm{e}^{n\left(\Lambda(\lambda)-\lambda \Lambda^{\prime}(\lambda)\right)} \cdot \mathrm{e}^{-\lambda b \sqrt{\Lambda^{\prime \prime}(\lambda)}} \cdot \frac{c}{\sqrt{n}}
\end{aligned}
$$

provided that $\frac{b}{\sqrt{2 \pi}}-C>c>0$. Having C (dependent on the distribution, thus, on λ) we take $b>C \sqrt{2 \pi}$ and get the following (the case $\lambda \leq 0$ being similar).
2f1 Theorem. ${ }^{1}$ For every $\lambda \in \operatorname{Int}\{\Lambda<\infty\}$ there exist $C<\infty$ and $c>0$ such that for all n large enough,

$$
\begin{array}{ll}
\mu^{n}\left\{\Lambda^{\prime}(\lambda) \leq f^{(n)} \leq \Lambda^{\prime}(\lambda)+\frac{C}{n}\right\} \geq \frac{c}{\sqrt{n}} \exp n\left(\Lambda(\lambda)-\lambda \Lambda^{\prime}(\lambda)\right) & \text { if } \lambda \geq 0 \\
\mu^{n}\left\{\Lambda^{\prime}(\lambda)-\frac{C}{n} \leq f^{(n)} \leq \Lambda^{\prime}(\lambda)\right\} \geq \frac{c}{\sqrt{n}} \exp n\left(\Lambda(\lambda)-\lambda \Lambda^{\prime}(\lambda)\right) & \text { if } \lambda \leq 0
\end{array}
$$

Compare it (once again) with 2c11) (using 2d6).

[^5]
2g Higher dimension: upper bound

In most cases it is enough to know that a measure is $\exp (-n I+o(n))$ for some known I. Of course, $\frac{1}{\sqrt{n}}=\exp o(n)$, and $n^{\alpha}=\exp o(n)$ for every α, and even $\mathrm{e}^{ \pm \sqrt{n}}=\exp o(n)$.

Dimension 2 is treated here; other finite dimensions can be treated similarly.

Let Ω and μ be as before, and $f: \Omega \rightarrow \mathbb{R}^{2}$ a measurable function. We introduce $\Lambda: \mathbb{R}^{2} \rightarrow(-\infty, \infty]$ by

$$
\Lambda(\lambda)=\ln \int \mathrm{e}^{\langle\lambda, f\rangle} \mathrm{d} \mu
$$

where $\langle\cdot, \cdot\rangle$ is the scalar product in \mathbb{R}^{2}.
2g1 Exercise. ${ }^{1}$ Prove that Λ is convex and lower semicontinuous, and the set $\{\Lambda<\infty\} \subset \mathbb{R}^{2}$ is convex.
$\mathbf{2 g 2}$ Exercise. Λ is infinitely differentiable on $\operatorname{Int}\{\Lambda<\infty\}$, and

$$
\frac{\partial^{k+l}}{\partial \lambda_{1}^{k} \partial \lambda_{2}^{l}} \mathrm{e}^{\Lambda(\lambda)}=\int f_{1}^{k} f_{2}^{l} \mathrm{e}^{\lambda \lambda, f\rangle} \mathrm{d} \mu
$$

for $\lambda=\left(\lambda_{1}, \lambda_{2}\right) \in \operatorname{Int}\{\Lambda<\infty\} ;$ here $f(\omega)=\left(f_{1}(\omega), f_{2}(\omega)\right)$.
Prove it.
We assume that $\{\Lambda<\infty\} \neq \emptyset$.
We introduce the so-called Fenchel-Legendre transform $\Lambda^{*}: \mathbb{R}^{2} \rightarrow(-\infty, \infty]$ of Λ by

$$
\Lambda^{*}(a)=\sup _{\lambda \in \mathbb{R}^{2}}(\langle\lambda, a\rangle-\Lambda(\lambda)) .
$$

Being a supremum of linear functions, Λ^{*} is convex and lower semicontinuous.
Functions $f^{(n)}: \Omega^{n} \rightarrow \mathbb{R}^{2}$ are defined as before; and still,

$$
\int \exp n\left\langle\lambda, f^{(n)}\right\rangle \mathrm{d} \mu^{n}=\left(\int \exp \langle\lambda, f\rangle \mathrm{d} \mu\right)^{n}=\exp n \Lambda(\lambda)
$$

$2 g 3$ Exercise. Prove that $\mu^{n}\left\{f^{(n)} \in B\right\} \leq \exp n\left(\Lambda(\lambda)-\inf _{x \in B}\langle\lambda, x\rangle\right)$ for every n, Borel set $B \subset \mathbb{R}^{2}$, and $\lambda \in \mathbb{R}^{2}$.

Denote $B_{\delta}(a)=\left\{x \in \mathbb{R}^{2}:\|x-a\|<\delta\right\}$.

[^6]2 g 4 Exercise. Prove that for every $\lambda \in \mathbb{R}^{2}, \delta>0$ and $a \in \mathbb{R}^{2}$,

$$
\mu^{n}\left\{f^{(n)} \in B_{\delta}(a)\right\} \leq \exp n(\Lambda(\lambda)-\langle\lambda, a\rangle+\delta\|\lambda\|) .
$$

$\mathbf{2 g} 5$ Exercise. For every $a \in \mathbb{R}^{2}$ and $C<\Lambda^{*}(a)$ there exists $\delta>0$ such that for all n,

$$
\mu^{n}\left\{f^{(n)} \in B_{\delta}(a)\right\} \leq \mathrm{e}^{-n C} .
$$

2g6 Exercise. For every compact set $K \subset \mathbb{R}^{2}$,

$$
\mu^{n}\left\{f^{(n)} \in K\right\} \leq \exp \left(-n \min _{K} \Lambda^{*}+o(n)\right)
$$

Prove it.

2h Higher dimension: lower bound

Let Ω, μ, f and Λ be as in Sect. 2 g , and $\operatorname{Int}\{\Lambda<\infty\} \neq \emptyset$.
Given $\lambda \in \operatorname{Int}\{\Lambda<\infty\}$, we introduce the tilted measure

$$
\nu=\exp (\langle\lambda, f\rangle-\Lambda(\lambda)) \cdot \mu
$$

2h1 Exercise. Check that

$$
\int \mathrm{d} \nu=1, \quad \int f \mathrm{~d} \nu=\operatorname{grad} \Lambda(\lambda)
$$

and

$$
\nu^{n}=\exp n\left(\left\langle\lambda, f^{(n)}\right\rangle-\Lambda(\lambda)\right) \cdot \mu^{n} .
$$

As before, $\mathbb{E} f^{(n)}=\operatorname{grad} \Lambda(\lambda)$.
2h2 Exercise. Prove that for every $\delta>0$,

$$
\nu^{n}\left\{\left\|f^{(n)}-\operatorname{grad} \Lambda(\lambda)\right\|<\delta\right\} \rightarrow 1 \quad \text { as } n \rightarrow \infty
$$

2h3 Exercise. Prove that

$$
\mu^{n}\left\{f^{(n)} \in B\right\} \geq \exp n\left(\Lambda(\lambda)-\sup _{x \in B}\langle\lambda, x\rangle\right) \nu^{n}\left\{f^{(n)} \in B\right\}
$$

for every n, Borel set $B \subset \mathbb{R}^{2}$, and $\lambda \in \mathbb{R}^{2}$.
2h4 Exercise. Prove that for every $\lambda \in \operatorname{Int}\{\Lambda<\infty\}$ and $\delta>0$, $\mu^{n}\left\{\left\|f^{(n)}-\operatorname{grad} \Lambda(\lambda)\right\|<\delta\right\} \geq(1-o(1)) \exp n(\Lambda(\lambda)-\langle\lambda, \operatorname{grad} \Lambda(\lambda)\rangle-\delta\|\lambda\|)$.

2h5 Exercise. Let $G \subset \mathbb{R}^{2}$ be an open set. Prove that ${ }^{1}$

$$
\mu^{n}\left\{f^{(n)} \in G\right\} \geq \exp (n \sup (\Lambda(\lambda)-\langle\lambda, \operatorname{grad} \Lambda(\lambda)\rangle)-o(n))
$$

where the supremum is taken over all $\lambda \in \operatorname{Int}\{\Lambda<\infty\}$ such that $\operatorname{grad} \Lambda(\lambda) \in$ G.

2h6 Exercise. Prove that

$$
\Lambda^{*}(\operatorname{grad} \Lambda(\lambda))=\langle\lambda, \operatorname{grad} \Lambda(\lambda)\rangle-\Lambda(\lambda)
$$

for every $\lambda \in \operatorname{Int}\{\Lambda<\infty\}$.
We define a set $T \subset \mathbb{R}^{2}$ by 2

$$
T=\{\operatorname{grad} \Lambda(\lambda): \lambda \in \operatorname{Int}\{\Lambda<\infty\}\} .
$$

2h7 Exercise. Let $G \subset \mathbb{R}^{2}$ be an open set. Prove that

$$
\mu^{n}\left\{f^{(n)} \in G\right\} \geq \exp \left(-n \inf _{G \cap T} \Lambda^{*}-o(n)\right)
$$

The same holds in \mathbb{R}^{n} for all $n=1,2,3, \ldots$

2 i Using conditions (1a1), (1a2)

We return to dimension one. Let Ω, μ, f and Λ be as in Sect. 2d, and $f \neq$ const.

Assuming (1a1) or (1a2) we'll prove the so-called weak ${ }^{3}$ large deviations principle (LDP) with the rate function Λ^{*}. It means the upper bound

$$
\mu^{n}\left\{f^{(n)} \in K\right\} \leq \exp \left(-n \min _{K} \Lambda^{*}+o(n)\right) \quad \text { for compact } K \subset \mathbb{R}
$$

together with the lower bound

$$
\mu^{n}\left\{f^{(n)} \in G\right\} \geq \exp \left(-n \inf _{G} \Lambda^{*}-o(n)\right) \quad \text { for open } G \subset \mathbb{R} .
$$

To this end, by 2 g 6 and 2 h 7 (for dimension one) it suffices to show that

$$
T=\operatorname{Int}\left\{\Lambda^{*}<\infty\right\}
$$

[^7]where $T=\left\{\Lambda^{\prime}(\lambda): \lambda \in \operatorname{Int}\{\Lambda<\infty\}\right\}$. The convex set $\left\{\Lambda^{*}<\infty\right\}$ need not be open, but anyway, the restriction of Λ^{*} to this set is continuous (due to convexity and lower semicontinuity); thus, $\inf _{G} \Lambda^{*}=\inf _{G \cap\left\{\Lambda^{*}<\infty\right\}} \Lambda^{*}=$ $\inf _{G \cap \operatorname{Int}\left\{\Lambda^{*}<\infty\right\}} \Lambda^{*}=\inf _{G \cap T} \Lambda^{*}$.

Assume (1a1): $\mu(\Omega)<\infty$ and $\int \mathrm{e}^{\lambda f} \mathrm{~d} \mu<\infty$ for all $\lambda \in \mathbb{R}$. Thus, $\operatorname{Int}\{\Lambda<\infty\}=\mathbb{R}$, and Λ^{\prime} is strictly increasing (recall (2e3)), which implies existence of limits,

$$
-\infty \leq \Lambda^{\prime}(-\infty)<\Lambda^{\prime}(+\infty) \leq+\infty
$$

2i1 Exercise. Prove that

$$
T=\left(\Lambda^{\prime}(-\infty), \Lambda^{\prime}(+\infty)\right) \subset\left\{\Lambda^{*}<\infty\right\} \subset\left[\Lambda^{\prime}(-\infty), \Lambda^{\prime}(+\infty)\right]
$$

Thus, $T=\operatorname{Int}\left\{\Lambda^{*}<\infty\right\}$, and the LDP under (1a1) is verified. In addition, a relation to the bounds of f is shown below.

2 i 2 Exercise. Prove that

$$
\frac{\Lambda(\lambda)}{\lambda} \rightarrow \Lambda^{\prime}(-\infty) \text { as } \lambda \rightarrow-\infty, \quad \text { and } \quad \frac{\Lambda(\lambda)}{\lambda} \rightarrow \Lambda^{\prime}(+\infty) \text { as } \lambda \rightarrow+\infty
$$

2i3 Exercise. Prove that

$$
\operatorname{ess} \inf f \leq \Lambda^{\prime}(-\infty)<\Lambda^{\prime}(+\infty) \leq \operatorname{ess} \sup f
$$

If $a<\operatorname{ess} \sup f$ then $\mu\{f \geq a\}>0$; we have $\int \mathrm{e}^{\lambda f} \mathrm{~d} \mu \geq \mathrm{e}^{\lambda a} \mu\{f \geq a\}$ for $\lambda>0$, thus $\Lambda(\lambda) \geq \lambda a+\ln \mu\{f \geq a\}$ and $\Lambda^{\prime}(+\infty) \geq a$, which shows that $\Lambda^{\prime}(+\infty) \geq \operatorname{ess} \sup f$. Similarly, $\Lambda^{\prime}(-\infty) \leq \operatorname{ess} \inf f$. We get under (1a1)

$$
-\infty \leq \operatorname{ess} \inf f=\Lambda^{\prime}(-\infty)<\Lambda^{\prime}(+\infty)=\operatorname{ess} \sup f \leq+\infty
$$

Assume now (1a2): $\mu(\Omega)=\infty$ and $\int \mathrm{e}^{\lambda f} \mathrm{~d} \mu<\infty$ for all $\lambda \in(-\infty, 0)$. Then $\{\Lambda<\infty\}=(-\infty, 0)$, since this convex set does not contain 0 . We have

$$
-\infty \leq \Lambda^{\prime}(-\infty)<\Lambda^{\prime}(0-)=+\infty
$$

(since $\Lambda^{\prime}(0-)<\infty$ would imply $\left.\Lambda(0)<\infty\right)$.
2i4 Exercise. Prove that

$$
T=\left(\Lambda^{\prime}(-\infty),+\infty\right) \subset\left\{\Lambda^{*}<\infty\right\} \subset\left[\Lambda^{\prime}(-\infty),+\infty\right)
$$

Also ess sup $f=+\infty\left(\right.$ since $\left.\int \mathrm{e}^{-\operatorname{ess} \sup f} \mathrm{~d} \mu \leq \int \mathrm{e}^{-f} \mathrm{~d} \mu<\infty\right)$.

2i5 Exercise. Prove that

$$
\Lambda^{\prime}(-\infty) \geq \operatorname{ess} \inf f
$$

2 i 6 Exercise. Prove that

$$
\Lambda^{\prime}(-\infty) \leq \operatorname{essinf} f
$$

We get under (1a2)

$$
-\infty \leq \operatorname{ess} \inf f=\Lambda^{\prime}(-\infty)<\Lambda^{\prime}(0-)=\operatorname{ess} \sup f=+\infty
$$

In both cases,

$$
T=\operatorname{Int}\left\{\Lambda^{*}<\infty\right\}=(\operatorname{essinf} f, \operatorname{ess} \sup f)
$$

2j The function φ, at last

Let $f, g: \Omega \rightarrow \mathbb{R}$ and $\varepsilon>0$ be such that $f-\varepsilon g$ and $f+\varepsilon g$ satisfy (1a1) or (1a2), and $f \neq$ const (as required in Theorem 1b4). We combine them into $h: \Omega \rightarrow \mathbb{R}^{2}, h(\cdot)=(f(\cdot), g(\cdot))$ and consider the corresponding $\Lambda_{h}: \mathbb{R}^{2} \rightarrow$ $(-\infty,+\infty]$ as in Sect. 2 g .

Case $\mu(\Omega)<\infty$: the convex set $\left\{\Lambda_{h}<\infty\right\}$ contains two lines $\{(\lambda, \pm \varepsilon \lambda)$: $\lambda \in \mathbb{R}\}$, therefore it is the whole \mathbb{R}^{2}, and surely, $\mathbb{R}=\{(\lambda, 0): \lambda \in \mathbb{R}\} \subset$ $\operatorname{Int}\left\{\Lambda_{h}<\infty\right\} \subset \mathbb{R}^{2}$.

Case $\mu(\Omega)=\infty$: the convex set $\left\{\Lambda_{h}<\infty\right\}$ contains two rays $\{(\lambda, \pm \varepsilon \lambda)$: $\lambda \in(-\infty, 0)\}$, therefore it contains the sector $\left\{\left(\lambda_{1}, \lambda_{2}\right): \lambda_{1}<0,\left|\lambda_{2}\right| \leq\right.$ $\left.\varepsilon\left|\lambda_{1}\right|\right\}$, and does not contain the origin; and surely, $\{(\lambda, 0): \lambda \in(-\infty, 0)\} \subset$ $\operatorname{Int}\left\{\Lambda_{h}<\infty\right\}$.

We have also the function $\Lambda_{f}: \mathbb{R} \rightarrow(-\infty,+\infty]$ corresponding to f as in 2i, and we know that

$$
T_{f}=\left\{\Lambda_{f}^{\prime}(\lambda): \lambda \in \operatorname{Int}\left\{\Lambda_{f}<\infty\right\}\right\}=(\operatorname{ess} \inf f, \operatorname{ess} \sup f)
$$

since f satisfies (1a1) or (1a2). And clearly, Λ_{f} is the restriction of Λ_{h} to the line $\mathbb{R}=\{(\lambda, 0): \lambda \in \mathbb{R}\} \subset \mathbb{R}^{2}$. Of course, $\operatorname{Int}\left\{\Lambda_{f}<\infty\right\}$ is either \mathbb{R} (if $\mu(\Omega)<\infty$) or $(-\infty, 0)$ (if $\mu(\Omega)=\infty$). In both cases $\operatorname{Int}\left\{\Lambda_{f}<\infty\right\} \subset$ $\operatorname{Int}\left\{\Lambda_{h}<\infty\right\}$ under the embedding $\mathbb{R} \rightarrow \mathbb{R}^{2}, \lambda \mapsto(\lambda, 0)$.

The function Λ_{f}^{\prime} is strictly increasing by (2e3) and maps $\operatorname{Int}\left\{\Lambda_{f}<\infty\right\}$ onto $T_{f}=(\operatorname{ess} \inf f, \operatorname{ess} \sup f)$. For every $a \in(\operatorname{ess} \inf f, \operatorname{ess} \sup f)$ there exists one and only one $\lambda \in \operatorname{Int}\left\{\Lambda_{f}<\infty\right\}$ such that $\Lambda_{f}^{\prime}(\lambda)=a$. We have

$$
\operatorname{grad} \Lambda_{h}(\lambda, 0)=(a, \varphi(a))
$$

for a continuous $\varphi:(\operatorname{ess} \inf f, \operatorname{ess} \sup f) \rightarrow \mathbb{R}$, namely,

$$
\varphi(a)=\left.\frac{\mathrm{d}}{\mathrm{~d} \lambda_{2}}\right|_{\lambda_{2}=0} \Lambda\left(\left(\Lambda_{f}^{\prime}\right)^{-1}(a), \lambda_{2}\right),
$$

not only a continuous function, but also an infinitely differentiable function. In terms of the tilted measure

$$
\nu=\exp \left(\lambda f-\Lambda_{f}(\lambda)\right) \cdot \mu
$$

we have (by 2h1) $\int h \mathrm{~d} \nu=\operatorname{grad} \Lambda_{h}(\lambda, 0)$, that is,

$$
a=\int f \mathrm{~d} \nu \quad \text { and } \quad \varphi(a)=\int g \mathrm{~d} \nu
$$

an equivalent definition of φ.
$2 \mathbf{j 1}$ Example. Continuing Example 2a3, consider $\Omega=\{-1,0,1\}, h(\omega)=\omega$, $f(\omega)=\omega^{2}$. The function $\varphi=[f \mid h]$ can be written out implicitly:

$$
\varphi\left(\frac{x^{2}-1}{x^{2}+x+1}\right)=\frac{x^{2}+1}{x^{2}+x+1} \quad \text { for } x \in(0, \infty)
$$

the tilted measure is

$$
\nu(\{-1\})=\frac{1}{x^{2}+x+1}, \quad \nu(\{0\})=\frac{x}{x^{2}+x+1}, \quad \nu(\{1\})=\frac{x^{2}}{x^{2}+x+1} .
$$

In particular, $x \approx 0.09289$ gives $\varphi(-0.9) \approx 0.9157$. Thus, the conditional distribution of $f^{(n)}$ given $h^{(n)} \approx-0.9$ is concentrated near 0.9157.

2k Proving the theorem

Let f, g and φ be as in Sect. 2j. In order to prove Theorem 1b4 we have to prove that $\mathbb{P}\left(g^{(n)} \in(c, d) \mid f^{(n)} \in[a, b]\right) \rightarrow 1$ whenever $[a, b] \subset$ $($ essinf f, ess sup $f)$ and $(c, d) \subset \mathbb{R}$ satisfy $\varphi([a, b]) \subset(c, d)$. We'll prove a bit stronger statement:

$$
\frac{\mu^{n}\left\{f^{(n)} \in[a, b] \text { and } g^{(n)} \notin(c, d)\right\}}{\mu^{n}\left\{f^{(n)} \in(a, b)\right\}} \rightarrow 0
$$

(the denominator being non-zero for large n).
2k1 Exercise. If $\frac{\mu^{n}\left\{f^{(n)} \in\left[a_{1}, b_{1}\right] \text { and } g^{(n)} \notin(c, d)\right\}}{\mu^{n}\left\{f^{(n)} \in\left(a_{1}, b_{1}\right)\right\}} \rightarrow 0, \frac{\mu^{n}\left\{f^{(n)} \in\left[a_{2}, b_{2}\right] \text { and } g^{(n)} \notin(c, d)\right\}}{\mu^{n}\left\{f^{(n)} \in\left(a_{2}, b_{2}\right)\right\}} \rightarrow$ 0 and $b_{1}=a_{2}$ then $\frac{\mu^{n}\left\{f^{(n)} \in\left[a_{1}, b_{2}\right] \text { and } g^{(n)} \notin(c, d)\right\}}{\mu^{n}\left\{f^{(n)} \in\left(a_{1}, b_{2}\right)\right\}} \rightarrow 0$.

Prove it.

We use $h, \Lambda_{h}, \Lambda_{f}$ introduced in Sect. 2j.
It may happen that $\left(\Lambda_{f}^{\prime}\right)^{-1}(a)<0<\left(\Lambda_{f}^{\prime}\right)^{-1}(b)$. In this case we split the interval $[a, b]$ in two and use 2 k 1 . Thus, we restrict ourselves to the case $\left(\Lambda_{f}^{\prime}\right)^{-1}(a) \geq 0$. (The other case, $\left(\Lambda_{f}^{\prime}\right)^{-1}(b) \leq 0$, is similar.)

We have $\lambda \in[0, \infty) \cap \operatorname{Int}\left\{\Lambda_{f}<\infty\right\}$ such that $\Lambda_{f}^{\prime}(\lambda)=a$. Denote $r=\lambda a-\Lambda_{f}(\lambda)$, then $\Lambda_{f}^{*}(a)=r$. By the lower bound of the LDP (Sect. 2i),

$$
\mu^{n}\left\{f^{(n)} \in(a, b)\right\} \geq \exp \left(-n \inf _{(a, b)} \Lambda_{f}^{*}-o(n)\right) \geq \exp (-n r-o(n))
$$

since $^{1} \inf _{(a, b)} \Lambda_{f}^{*} \leq \Lambda_{f}^{*}(a)=r$. It is sufficient to prove that for some $\delta>0$,

$$
\mu^{n}\left\{f^{(n)} \in[a, b] \text { and } g^{(n)} \notin(c, d)\right\} \leq \exp (-n(r+\delta)) .
$$

We have $(c, d) \ni \varphi(a)=\int g \mathrm{~d} \nu$ where $\nu=\exp \left(\lambda f-\Lambda_{f}(\lambda)\right) \cdot \mu$ is the tilted measure. Also, $\int \mathrm{e}^{\alpha g} \mathrm{~d} \nu<\infty$ for all α small enough (positive or negative), since $(\lambda, 0) \in \operatorname{Int}\left\{\Lambda_{h}<\infty\right\}$. By (2e5) (adapted a bit), for some $\delta>0$,

$$
\nu^{n}\left\{g^{(n)} \notin(c, d)\right\} \leq \mathrm{e}^{-\delta n} \quad \text { for all } n .
$$

Thus (using 2e4),

$$
\begin{aligned}
& \mu^{n}\left\{f^{(n)} \in[a, b] \text { and } g^{(n)} \notin(c, d)\right\}= \\
& \quad=\int \mathbb{1}_{[a, b]}\left(f^{(n)}\right)\left(1-\mathbb{1}_{(c, d)}\left(g^{(n)}\right)\right) \exp n\left(\Lambda_{f}(\lambda)-\lambda f^{(n)}\right) \mathrm{d} \nu_{n} \leq \\
& \quad \leq \exp n\left(\Lambda_{f}(\lambda)-\lambda a\right) \int\left(1-\mathbb{1}_{(c, d)}\left(g^{(n)}\right)\right) \mathrm{d} \nu_{n} \leq \mathrm{e}^{-r n} \mathrm{e}^{-\delta n},
\end{aligned}
$$

which completes the proof.

21 Equivalence of ensembles

The probability measure

$$
B \mapsto \mathbb{P}\left(B \mid h^{(n)} \in[E, E+\Delta E]\right)=\frac{\mu^{n}\left(B \cap\left\{h^{(n)} \in[E, E+\Delta E]\right\}\right)}{\mu^{n}\left\{h^{(n)} \in[E, E+\Delta E]\right\}}
$$

for a large n and small ΔE is well-known in statistical physics as the microcanonical ensemble, ${ }^{2}$ provided that h is the Hamiltonian.

[^8]The tilted measure

$$
\nu^{n}=\exp n\left(\lambda h^{(n)}-\Lambda(\lambda)\right) \cdot \mu^{n}
$$

where λ is chosen so that $\Lambda^{\prime}(\lambda)=E$, is well-known in statistical physics as the canonical ensemble, ${ }^{1}$ traditionally written as ${ }^{2}$

$$
\nu^{n}\left(\mathrm{~d} \omega_{1} \ldots \mathrm{~d} \omega_{n}\right)=\frac{1}{Z(\beta)} \mathrm{e}^{-\beta h\left(\omega_{1}\right)-\cdots-\beta h\left(\omega_{n}\right)} \mu\left(\mathrm{d} \omega_{1}\right) \ldots \mu\left(\mathrm{d} \omega_{n}\right)
$$

where $\beta=-\lambda$ is called the inverse temperature, and $Z(\beta)=\mathrm{e}^{n \Lambda(\lambda)}=$ $\int \mathrm{e}^{-\beta h\left(\omega_{1}\right)-\cdots-\beta h\left(\omega_{n}\right)} \mu\left(\mathrm{d} \omega_{1}\right) \ldots \mu\left(\mathrm{d} \omega_{n}\right)$ is called the partition function. ${ }^{3}$

Let h and g satisfy the conditions of Theorem 1b4.
For every $\varepsilon>0$ there exists $\Delta E>0$ such that

$$
\mathbb{P}\left(g^{(n)} \in(\varphi(E)-\varepsilon, \varphi(E)+\varepsilon) \mid h^{(n)} \in[E, E+\Delta E]\right) \rightarrow 1
$$

as $n \rightarrow \infty$. On the other hand, for every $\varepsilon>0$ there exists $\delta>0$ such that for all n,

$$
\nu^{n}\left\{g^{(n)} \in(\varphi(E)-\varepsilon, \varphi(E)+\varepsilon)\right\} \geq 1-\mathrm{e}^{-\delta n}
$$

Thus, a macroscopic observable $g^{(n)}$ concentrates around the same value $\varphi(E)$ in both ensembles, microcanonical and canonical. This phenomenon is wellknown in statistical physics as equivalence of ensembles. ${ }^{4}$

2m Hints to exercises

2d1 (a) Hölder inequality; (b) Fatou's lemma.
2d2 (b): try $\Omega=\mathbb{R}, f(x)=x, \mu(\mathrm{~d} x)=p(x) \mathrm{d} x, p(x) \sim x^{\alpha} \mathrm{e}^{-\gamma x}$ and $p(-x) \sim x^{\beta} \mathrm{e}^{-\delta x}$ for $x \rightarrow+\infty$. (c): use 2d1. (d): strict Hölder inequality.

2d3. $\left|\sum_{n=0}^{N} \mathrm{e}^{\lambda f} \frac{(\pm \varepsilon f)^{n}}{n!}\right| \leq \mathrm{e}^{\lambda f} \mathrm{e}^{\varepsilon|f|} \leq \mathrm{e}^{(\lambda-\varepsilon) f}+\mathrm{e}^{(\lambda+\varepsilon) f}$; use the dominated convergence theorem.

2d6. Transform $\frac{\mathrm{e}^{\lambda}-\mathrm{e}^{-\lambda}}{\mathrm{e}^{\lambda}+\mathrm{e}^{-\lambda}}=a$ into $\mathrm{e}^{\lambda}=\sqrt{\frac{1+a}{1-a}}$.

[^9]2e5. Use 2d5) and 2e1. $\nu^{n}\left\{f^{(n)} \geq \Lambda^{\prime}(\lambda+\alpha)\right\} \leq \exp n(\Lambda(\lambda+\alpha)-\Lambda(\lambda)-$ $\left.\alpha \Lambda^{\prime}(\lambda+\alpha)\right)$ for small $\alpha>0$.

2g1: similar to 2d1.
2g2: similar to 2d4.
2g3: recall Sect. 2d.
2g6. show that $\lim \sup \frac{1}{n} \ln \mu^{n}\left\{f^{(n)} \in K\right\} \leq-\min _{K} \Lambda^{*}$; to this end, given $C<\min _{K} \Lambda^{*}$, cover K by a finite number of disks $B_{\delta}(a)$ as in 2g5.

2i1: consider $\lambda a-\Lambda(\lambda)$ as $\lambda \rightarrow \pm \infty$.
2i5. $\int \mathrm{e}^{\lambda f} \mathrm{~d} \mu \leq \mathrm{e}^{(\lambda+1) \operatorname{ess} \inf f} \int \mathrm{e}^{-f} \mathrm{~d} \mu$ for $\lambda<-1$.
2i6: Similarly to the case of (1a1).

Index

Berry-Esseen theorem, 16
central limit theorem, 15
ensemble
canonical, 14,25
microcanonical, 24
Fenchel-Legendre transform, 18
Gibbs measure, 14
inverse temperature, 25
large deviations principle, 20
LDP, 20
partition function, 25
random variable, 14
sum of random variables, 15
tilted measure, 14
$\{f \geq a\}, 12$
Int, 13
$\Lambda^{*}, 18$
$\Lambda_{f}, 22$
$\Lambda_{h}, 22$
ム, 13
$\Lambda^{\prime}, \Lambda^{\prime \prime}, 14$
$\nu, 14$
$\nu^{n}, 14$
$T, 20$
$T_{f}, 22$

[^0]: ${ }^{1}$ So-called spin- $\frac{1}{2}$ particles.

[^1]: ${ }^{1}$ So-called spin-1 particles.
 ${ }^{2}$ See 2 j 1 for the answer.
 ${ }^{3}$ Due to symmetry; for asymmetric distributions, $x^{6} \ll n$ is required.

[^2]: ${ }^{1}$ That is, μ is a finite or σ-finite positive measure on Ω.

[^3]: ${ }^{1}$ As before, it means ess $\inf f \neq \operatorname{ess} \sup f$.

[^4]: ${ }^{1}$ In combination with a monotonicity argument.
 ${ }^{2}$ See W. Feller, An introduction to probability theory and its applications, vol. II, Sect. XVI. 5 .
 ${ }^{3}$ See A.Dembo and O.Zeitouni, Large deviations techniques and applications, Theorem 3.7.4 (Bahadur and Rao).

[^5]: ${ }^{1}$ See again the Bahadur-Rao theorem (footnote 3 on page 16).

[^6]: ${ }^{1}$ Unlike 2d2(c), the restriction of Λ to $\{\Lambda<\infty\}$ need not be continuous. A sketch of a counterexample: it may happen that $\Lambda(\cos \varphi, \sin \varphi)=\sum_{n} \exp c_{n}\left(\cos \left(\varphi-\alpha_{n}\right)-1\right)$; try $c_{n}=n^{3}, \alpha_{n}=1 / n$.

[^7]: ${ }^{1}$ We admit that $o(n)$ may be infinite for a finite number of numbers n.
 2 " T " reminds of "tilting".
 3 "Weak" since the upper bound is stated for compact sets rather than all closed sets.

[^8]: ${ }^{1}$ In fact, $\inf _{(a, b)} \Lambda_{f}^{*}=\Lambda_{f}^{*}(a)$, since Λ_{f}^{*} is increasing on $[a, b]$.
 2 "... the basic postulate of equilibrium statistical mechanics ... expresses the fact that we know very little about the microscopic state of the system: we only assume that its energy lies in a narrow interval $(E, E+\Delta E)$... each of these states is equally probable \ldots This is the famous principle of equal a priori probabilities. ... The microcanonical ensemble is of prime theoretical importance ... however ... proves to be a mathematically difficult and unflexible tool." R. Balescu, "Equilibrium and nonequilibrium statistical mechanics", 1975, Sect. 4.2 "The microcanonical ensemble".

[^9]: 1 "It was introduced for the first time by J.W. Gibbs (in the classical case) around 1900." Balescu, Sect. 4.3 "The canonical ensemble", page 119.
 ${ }^{2}$ We restrict ourselves to ideal systems (recall Sect. 1a).
 ${ }^{3}$ "It is one of the most important quantities of equilibrium statistical mechanics." Balescu, Sect. 4.3, page 118.

 4 "This result is very important in practice. It allows us, in many cases, to use in a given problem interchangeably one or the other ensemble, the choice being motivated by practical convenience in the calculations." Balescu, Sect. 4.6 "Equivalence of the equilibrium ensembles: fluctuations."

