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6a Entropy in physics and the rate function

Each macrostate is compatible with, and hence is

a summary of, many microstates. The entropy

of a macrostate is a measure of this multiplicity.

Ellis [1, p. 5]

Here are two basic physical models and the corresponding formulas for
the (physical) entropy.

The first (discrete) model consists of a large number n of classical1 spin-1/2
particles; each such particle has two states: spin up, and spin down (and no
other degrees of freedom). The value r = (n+−n−)/n is treated as ‘the order
parameter’ (whatever it could meam); here n+, n− are the number of spins
up and down, respectively. The entropy is

S = −kBn

(

1 + r

2
ln

1 + r

2
+

1− r

2
ln

1− r

2

)

+ const ;

kB (= 1.38 · 10−23J/K) is the Boltzmann constant (recall 1a), and ‘const’ is
an arbitrary constant (it does not depend on r, but may depend on n).

The second (continuous) model consists of a large number n of classi-
cal particles moving in a container of volume V (with no other degrees of
freedom). Let E be the total kinetic energy of the particles. The entropy is

S = kBn
(3

2
lnE + lnV

)

+ const ;

‘const’ is an arbitrary constant (it does not depend on E, V , but may depend
on n and the mass m of each particle).

The question is, can we translate these physical statements into the lan-
guage of large deviations?

1Spin is beyond the reach of classical mechanics, but within the reach of classical
thermodynamics and classical statistical mechanics.
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Amasingly, physical entropy emerged in thermodynamics, on the macro-
scopic level, without any idea of microscopic particles at all!1 This is the
origin of the coefficient kB in the entropy. We put the coefficient aside, and
consider the entropy per particle,

S

kBn
.

In classical physics, only the increments of entropy are well-defined; the ad-
ditive constant remains arbitrary. (It is determined in quantum physics, but
this is another story.)

In both models we have a sequence of measure spaces (Ωn,Fn, Pn) and
measurable maps Xn : Ωn → R. The measures Pn are positive but not
just probability measures; moreover, they may be not finite (like Lebesgue
measure on R). However,

Pn

(

{ω ∈ Ωn : Xn(ω) ∈ [a, b]}
)

< ∞

whenever −∞ < a < b < ∞. We treat each Pn up to an arbitrary coefficient;
that is, Pn may be replaced with cnPn for any c1, c2, · · · ∈ (0,∞). (Ultimately,
the choice of the coefficients is dictated by quantum physics. . . )

In the first (discrete) model, Ωn = {−1,+1}n, Pn is the counting measure
on Ωn (or, if you prefer, the uniform probability distribution on Ωn), and

(6a1) X(s1, . . . , sn) =
s1 + · · ·+ sn

n
.

In the second (continuous) model we have a container, — an open set G ⊂ R
3,

mes3 G = V ∈ (0,∞). A particle is described by coordinates (a point of
G) and momenta (a vector of R

3). Accordingly, Ωn = (G × R
3)n, with

Lebesgue measure.2 Thus, a point of Ωn is a sequence of n points of G×R
3.

Alternatively, you may define a point of Ωn as an n-point subset of G × R
3

(which reflects indistinguishability of the particles3); it introduces the factor
1/n!, which does not matter in our framework. The function Xn is the kinetic
energy,

(6a2) Xn

(

(q1, p1), . . . , (qn, pn)
)

=
1

2m

(

|p1|2 + · · ·+ |pn|2
)

for q1, . . . , qn ∈ G and p1, . . . , pn ∈ R
3; here m is the mass of each particle.

1See [2, Sect. 5.1].
2In fact, the Liouville measure on the phase space, see [2, Sect. 4.1].
3See [2, Sect. 3.5].
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It appears that in both cases

(6a3) ‖f(Xn(·))‖Ln(cnPn) → max
R

(

|f |e−I
)

as n → ∞

for every compactly supported continuous f : R → R, and some I : R →
(−∞,+∞], provided that cn ∈ (0,∞) are chosen appropriately. The freedom
of choosing cn leads to an arbitrary additive constant in I. In the first model,

(6a4) I(x) =
1 + x

2
ln

1 + x

2
+

1− x

2
ln

1− x

2
+ const for x ∈ [−1, 1]

and I(x) = +∞ for other x. In the second model,

(6a5) I(x) = −3

2
ln x+ const for x ∈ [0,∞)

and I(x) = +∞ for other x. The similarity to LDP is evident, and

(6a6) I = − S

kBn
+ const , S = −kBnI + const .

The dependence of S on the volume V disappeared because V was fixed. We
may restore it by considering models with different G (and V ) together, thus
introducing Ωn,G and stipulating the same cn for all G. Doing so we get

IV (x) = −
(3

2
ln x+ lnV

)

+ const .

The relation (6a3) for the first (discrete) model is basically the binomial LDP
of 3a (Sanov’s theorem). For the second (continuous) model we have

∫

Ωn

|f(Xn(·))|n dPn = V n

∫ ∞

0

|f(x)|n d
(

a3n(2mx)3n/2
)

,

where an is the volume of the unit ball in R
n;1 indeed, Pn

(

{ω ∈ Ωn : Xn(ω) ≤
x}

)

is the Lebesgue measure of Gn multiplied by the volume of the 3n-di-

mensional ball {(p1, . . . , pn) ∈ (R3)n : (|p1|2+ · · ·+ |pn|2)1/2 ≤
√
2mx}. Thus,

‖f(Xn(·))‖Ln(Pn) ∼ V a
1/n
3n (2m)3/2

(

3n

2

∫

|f(x)x3/2|n dx

x

)1/n

∼

∼ const(n) · V max
x≥0

(

|f(x)|x3/2
)

.

1In fact, a
1/n
n ∼

√

2πe
n as n → ∞.
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Is energy relevant? I am afraid, if a physicist will read this text,
he/she will say: ‘the continuous model describes a simple (monatomic) ideal
gas, but the author did not say so, why? Probably these words sound too
physical for mathematicians. . . But worse, the author forgot to say that the
particles do not interact.’

Well, I did not forget it. I insist that my models are kinematical, not dy-
namical. Energy is just irrelevant. Maybe the particles interact. Maybe, an
external field is present. The entropy is kBn

(

3
2
lnE+lnV

)

anyway, provided
that the macrostate is specified by the kinetic energy (only). In this sense I
am right. However, the physicist is also right! We have no feasible way to
prepare the macrostate mentioned above, if the corresponding microstates
are of different (total) energy.

See also Sect. 6d below, and the book [3]: Sect. 2.1 about the notion
of entropy, Sect. 4.3 about the continuous model, and Sect. 7.2.1 about the
discrete model.

6b Entropy in physics and entropy in mathematics

A discrete probability measure, consisting of a finite or countable set of
atoms,1 has the entropy

S = −
∑

n

pn ln pn

(just by definition); here pn are the probabilities of the atoms.
The question is, can we relate this ‘mathematical’ entropy to the ‘physical’

entropy of 6a?
Recall the general scheme of 6a,

Xn : Ωn → R , ‖f(Xn(·))‖Ln(cnPn) → max
R

(

|f |e−I
)

for some lower semicontinuous I : R → (−∞,+∞]. Assume in addition that
for every n the measure Pn on Ωn is discrete, consisting of atoms of mass 1
each.

Given an interval (a, b) ⊂ R such that inf(a,b) I = min[a,b] I 6= +∞ we
introduce probability measures Qn on Ωn by conditioning Pn on a < Xn(·) <
b. That is,

Qn(A) =
Pn

(

A ∩X−1
n ((a, b))

)

Pn

(

X−1
n ((a, b))

) for measurable A ⊂ Ωn .

1Not to be confused with atoms in physics. . .
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Clearly, Qn consists of a finite number Pn

(

X−1
n ((a, b))

)

of equiprobable atoms.
Thus its entropy is

S(Qn) = lnPn

(

X−1
n ((a, b))

)

.

Similarly to 4b6, 1
n
ln
(

cnPn

(

X−1
n ((a, b))

)

→ −min[a,b] I, therefore

S(Qn) = −nmin
[a,b]

I − ln cn + o(n) .

Given x ∈ R such that I(x) 6= +∞, and ε > 0, we may condition on
x− ε < Xn(·) < x+ ε getting probability measures Qn,ε. Similarly to 4b12,

(6b1) S(Qn,ε) = −nI(x)− ln cn + o(n)

as ε → 0+, uniformly in n ≥ nε.
For a small ε and large n ≥ nε the measure Qn,ε may be thought of as a

macrostate corresponding to X ≈ x. According to 6a (especially, (6a6)), its
‘physical’ entropy is

S = −kBnI(x) + const

where ‘const’ does not depend on x, but may depend on n. The similarity
to (6b1) is evident.

Why does the measure consist of atoms of mass 1? These
appear naturally in the discrete model, bot not in the continuous model!
Well, in fact they do appear also in the continuous model. . . after quanti-
zation. Physicists call them ‘phase cells’. A large region in the phase space
(smoothed a bit) corresponds to an operator in the Hilbert space, close to
a projection onto a subspace whose dimension is close to the volume of the
domain (if the units are chosen so that the Planck constant is equal to 1).
The trace of this operator is the quantal counterpart of the classical Liou-
ville measure of the region. See also [2, Sect. 3.5 and Exercise (7.3)] and [3,
Sect. 2.1]. Quantization is simpler for spins (the discrete model); each point
of Ωn = {0, 1}n corresponds to a one-dimensional subspace of the 2n-dimen-
sional Hilbert space, and these subspaces are orthogonal.

6c Increase of entropy

Any real engine will create net entropy during a

cycle; no engine can reduce the net amount of

entropy in the Universe.

Sethna [2, p. 80].

We consider the general scheme of 6a, but restrict ourselves to com-
pact spaces and probability measures. Namely, (Ωn,Fn, Pn) are probability
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spaces, K is a compact metrizable space, Xn : Ωn → K are measurable maps,
µn ∈ P (K) is the distribution of Xn.

We assume that (µn)n satisfies LDP with a continuous rate function I :
K → [0,∞).

A new ingredient is dynamics: measure preserving maps Tn : Ωn → Ωn.
Let G ⊂ K be an open set (not empty). For each n we choose an initial

state ωn ∈ Ωn at random among the points satisfying Xn(ωn) ∈ G. We
know (recall 4c4) that I(Xn(ωn)) is close to minG I with high probability, if
n is large. It appears that the same holds for max

(

I(Xn(ωn)), I(Xn(Tωn)),
I(Xn(T

2ωn)), . . . , I(Xn(T
tnωn))

)

, if tn grows not too fast. (However, it does
not mean that I(Xn(Tωn)) is close to minG I.)

6c1 Proposition. Let t1, t2, · · · ∈ {1, 2, . . . } satisfy (tn)
1/n → 1. Then

Pn

(

X−1
n (G) ∩ {ωn ∈ Ωn : ∀t ≤ tn I(Xn(T

tωn)) ≤ ε+minG I}
)

Pn

(

X−1
n (G)

) → 1

as n → ∞, for every ε > 0.

Proof. Denoting for convenience c = minG I we have

Pn

(

X−1
n (G) ∩ {ωn ∈ Ωn : I(Xn(Tωn)) > c+ ε}

)

≤
≤ Pn

(

{ωn ∈ Ωn : I(Xn(Tωn)) > c+ ε}
)

=

= Pn

(

{ωn ∈ Ωn : I(Xn(ωn)) > c+ ε}
)

=

= µn

(

{x ∈ K : I(x) > c+ ε}
)

.

By 4b6 (and continuity of I),

lim
n

(

µn({x ∈ K : I(x) > c+ ε})
)

1/n ≤ e−(c+ε) ,

lim
n

(

µn(G)
)

1/n = e−c .

Therefore

lim sup
n

(

Pn

(

X−1
n (G) ∩ {ωn ∈ Ωn : I(Xn(Tωn)) > c+ ε}

)

Pn

(

X−1
n (G)

)

)1/n

≤

≤ lim sup
n

(

µn

(

{x ∈ K : I(x) > c+ ε}
)

µn(G)

)1/n

≤ e−(c+ε)

e−c
= e−ε .



Tel Aviv University, 2007 Large deviations 46

The same holds for T t (in place of T ) for each t. Taking into account that
(tn)

1/n → 1 we get

lim sup
n

(

Pn

(

X−1
n (G) ∩ {ωn ∈ Ωn : ∃t ≤ tn I(Xn(T

tωn)) > c+ ε}
)

Pn

(

X−1
n (G)

)

)1/n

≤ lim sup
n

(

(tn + 1)µn

(

{x ∈ K : I(x) > c+ ε}
)

µn(G)

)1/n

≤ e−ε < 1 .

In the light of (6a6), decrease of the rate function means increase of the
entropy. We see that dynamics does not reduce the entropy as compared
with the initial state. However, it does not mean that the entropy increases
(nearly) monotonically, since, say, I(Xn(T

2ωn)) may be much greater than
I(Xn(Tωn)).

It is possible to get a (nearly) monotone increase of entropy by introducing
a small random perturbation as follows. We start at some ωn(0), choose ω

′
n(0)

at random among all points satisfying dist
(

Xn(ω
′
n(0)), Xn(ωn(0))

)

< ε, and
jump to ωn(1) = Tω′

n(0). Then we choose ω′
n(1) at random among all points

satisfying dist
(

Xn(ω
′
n(1)), Xn(ωn(1))

)

< ε and jump to ωn(2) = Tω′
n(1). And

so on. The random choices are mutually independent and governed by the
measure Pn conditioned as prescribed. A metric on K should be chosen.

Of course, a physicist would prefer an autonomous deterministic dynam-
ics; alas, we are unable to deduce monotone increase of entropy without
additional hypotheses.

6d The energy and the temperature

The scheme of Xn : Ωn → K is too general for physics. In order to be a bit
more specific we should consider the energy En : Ωn → R. The corresponding
macrostates appear naturally. About the two models of 6a: (6a2) is the
energy of the simple ideal gas (particles do not interact), and (6a1) is the
energy of noninteracting spins in an external magnetic field.

We may combine both models into a single physical system: the gas and
the spins.1 It means the product of measure spaces,

(Ωn,Fn, Pn) = (Ω′
n,F ′

n, P
′
n)× (Ω′′

n,F ′′
n , P

′′
n ) ,

1The particles with spins and the particles of the gas may be the same particles, or
not the same. For simplicity I assume that the number n of particles is the same for both
subsustems.
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and nearly additive energy,

En(ωn) = En(ω
′
n, ω

′′
n) = E ′

n(ω
′
n) + E ′′

n(ω
′′
n) + Eint

n (ω′
n, ω

′′
n) ,

the interaction energy Eint
n being small,1

sup
ω′

n
,ω′′

n

| 1
n
Eint

n (ω′
n, ω

′′
n)| → 0 as n → ∞ .

We know the rate function for each subsystem; denoting r = E′

nE′

1

,

I ′( 1
n
E ′) =

1 + r

2
ln

1 + r

2
+

1− r

2
ln

1− r

2
+ const ,

I ′′( 1
n
E ′′) = −3

2
ln E′′

n
+ constn

(recall (6a4), (6a5)). Similarly to 4d we get the rate function ( 1
n
E ′, 1

n
E ′′) 7→

I ′( 1
n
E ′) + I ′′( 1

n
E ′′) for the combined system. Similarly to the contraction

principle 2b1, the rate function I for the total energy E is

I( 1
n
E) = min{I ′( 1

n
E ′) + I ′′( 1

n
E ′′) : 1

n
E ′ + 1

n
E ′′ = 1

n
E} .

Due to 5d (slightly generalized), the small interaction energy does not inval-
idate this relation.

Along the line 1
n
E ′ + 1

n
E ′′ = 1

n
E the sum I ′( 1

n
E ′) + I ′′( 1

n
E ′′) has a single

minimum (since both functions are strictly convex). Similarly to 4c4, the
macrostate corresponding to E is concentrated near the point of minimum.
That is, the given total energy E decomposes into E ′ +E ′′ according to the
point of minimum. The latter can be found by differentiation,

(6d1)
dI ′( 1

n
E ′)

d 1
n
E ′

=
dI ′′( 1

n
E ′′)

d 1
n
E ′′

.

Specifically,

− 1

kBT ′
=

1

E ′
1

· 1
2
ln

1 + r

1− r
= −3

2

n

E ′′
= − 1

kBT ′′
.

In physics,
d(entropy)

d(energy)
=

1

(temperature)

1The mathematics is easier with E
int

n = 0, however, physically it means that the two
subsustems do not interact, which is uninteresting.
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(see [2, p. 46] and [3, Sect. 2.1 and 2.3.1]). Thus, (6d1) means that the
two subsystems are at the same temperature! This is well-known as the
equilibrium. Starting at equilibrium, dynamical evolution does not lead to
different temperatures (unless you wait an exponentially long time).

Specifically, for the ideal gas the temperature is T ′′ = 2E′′

3kBn
, which looks

quite believable. For the spin system, T ′ =
2E′

1

kBn ln 1−r

1+r

, which is rather coun-

terintuitive for a non-physicist.1

Thermal and mechanical energy. We may also combine one of the
two multiparticle systems (gas, or spins) with a few-particle system, say, just
one particle (maybe, quite massive).2 It means

(Ωn,Fn, Pn) = (Ω′
n,F ′

n, P
′
n)× (Ω′′,F ′′, P ′′) .

Thus, I ′′(·) = const (on the support of the measure; other points are irrele-
vant).3 The minimum of I ′(E ′) + I ′′(E ′′) on the line E ′ +E ′′ = E is reached
when E ′′ is minimal. This is the equilibrium: all the energy is thermal (heat),
not mechanical. Starting at equilibrium, dynamical evolution does not con-
vert any heat into mechanical energy (unless you wait an exponentially long
time). See also [2, p. 81] about the heat death of the Universe.
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1Negative temperature is really possible in such systems, especially in lasers! See [2,
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