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5a The simplest case of Mogulskii’s theorem

Tossing a fair coin n times we get a random element of {0,1}". We embed
all these spaces {0, 1}" into a single metrizable compact space

(5al) K={p€Lx(0,1):0<p<1}

as follows: given 0 = (6, ..., 0,) € {0,1}", we define p3 € K by
k—1 k

5a2 t) = for ¢ — .

(5a2) ealt) = B forte (=)

The relevant metrizable topology on K, well-known as the weak® topology,
may be described as follows: for ¢, v, o, - € K,

(5a3) o — ¢ if and only if Vn € Ly(0,1) /gpkn — /gpn.

Here is an example of a metric that generates this topology:

)

1
(5a4) dist (¢, ) :m]?XE‘/SOWk —/i/mk

where 11,1, ... are a sequence dense in the unit ball of L;(0,1). The choice
of m1,mg, ... influences the metric but not the topology. Another metric (for

the same topology):
fre= 1+

We consider the distribution p,, of the random function g,

(506) e PK). [ Fau =50 3 Flea).

Be{0,1}m

(5ab) dist(p, ¥) = max

t€[0,1]
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5a7 Exercise. Assume that (u,), satisfies LDP with a rate function /. Then

min{I(p) : o € K, [p = u} = Ios(u),

where Ios(u) =ulnge+(1—u)In 52 = ulnu+(1—u) In(1—u)+In2 (recall
(3a5) and (3a9)).

Prove it.

Hint: the contraction principle (Th. 2bl), and 3a4.

5a8 Exercise. Assume that (u,), satisfies LDP with a rate function /. Then

[<Soleft> + [<<)0right>

I(p) = i

for all ¢ € K; here @ieg, pright € K are defined by
lett (t) = ©(0.5t) , Pright(t) = (0.5 +0.5t) for ¢t € (0,1).

Prove it.
Hint: K = Ky x Ko, K1 C Loo(0,0.5), Ko C Loo(0.5,1); pion = p' x '
21(p) = Ii(v1) + Ix(p2) by 4d1, 4d2 and 2al7. On the other hand, the

natural one-to-one correspondence between K and K; transforms p, to ug),

thus, I to I;.

Applying the same formula to I(@ier;) and I(@yignt) we split I(p) into four
terms. And so on.
Now you could guess the rate function!

5a9 Theorem. (u,), satisfies LDP with the rate function

[(80):/0 Tos(p(t)) dt.

See [1, Th. 5.1.2].
Note that I is far from being continuous. In fact,

liminf I(¢)) = I(p) but limsupl(¢) =In2
p—p b=

for all ¢ € K. Note also that

un{p € K:I(p) =In2} =1 foralln.

How could we prove the theorem? The approach of 3a does not work
here, since the number of atoms of p, is exponentially large. No binomial
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coefficients, just 2" atoms of probability 27" each. However, we may apply
Sanov’s theorem to fol ®, 00'5 ®, f01_5 ¢ and so on. Doing so in the next section,
we'll prove the theorem for n € {1,2,4,8,...}. Here we just discuss it.

The map K — C[0, 1],

is continuous and one-to-one, therefore (by compactness) a homeomorphism.
Thus, the LDP on K leads to LDP on the set of functions w : [0,1] — R
such that

(5a10) 0 < w(t)—w(s) <t—s whenever 0 < s<t<1, and w(0)=0

with the rate function

(5all) J(w) = /0 Tos(w'(£)) dt

(The derivative exists almost everywhere.) Note that the random function
wg (corresponding to yg) is piecewise linear, with the derivative g, € {0,1}
on (1 %) Tt is a (rescaled) path of a random walk.

n

Do not hesitate to use Theorem in the exercises below.

5al12 Exercise. A fair coin is tossed n times, giving (0i,...,3,) € {0,1}".
Consider

2
pme:[@(wg:l’,_,’n ‘M_l(ﬁ) <
n

Prove that

lim sup

n—oo

w"/pme_%' —0 ase—0+4.
Hint: use 4b12.

5al13 Exercise. A fair coin is tossed n times, giving (04,...,5,) € {0,1}".
Given ¢ € [0, 1], we consider
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Prove that
pn — 1 for 0 <c<0.5,
1
v Pn — for 0.0 <e<1
Pn = 2¢¢(1 — )t or ==

(0% =1, as before).
Hint: use 4b6; guess the extremal function; prove your guess, taking into
account that fol Tos(p(t)) dt > [05(f0 o(t)dt).

5al4 Exercise. In the situation of bal3, formulate and prove a statement
about the conditional distribution (in the spirit of 4¢5).

Another example:

:]P’(Vk;:l,...,n SRR S

It appears that
ol/4

Ypp, — — asn — 00.
b
The extremal function is
(t) = t— 0.5t for 0 <t < 0.5,
)05t +0.125 for0.5<t<1.

)

In order to prove its extremality, the following lemma helps: J(wAv) < J(w
for every linear function v : [0,1] — R such that v(0) > 0 and ¢'(-) > 0.5;
here w A v is the pointwise minimum.

Two-dimensional random arrays are quite similar. The interval (0, 1)
and the square (0,1) x (0,1) are isomorphic measure spaces, thus, L. (0,1)
and Lo ((0,1) x (0,1)) are isomorphic. But moreover, the natural partition
of the interval into 22" parts corresponds to that of the square. And the
natural correspondence between the compact sets K in dimensions 1 and 2
is a homeomorphism. Thus, Theorem Bad implies the corresponding result
in two (and more) dimensions. Note also that the metric

Hoante )

generates the considered topology on the space K (over the square). Thus,
we may consider two-dimensional ‘paths’, getting the rate function

82
w(s,t) | dsdt.
//01 )% (0,1) (05815 ( ))

dist(¢p,?) = max
s,t€[0,1]
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5b Infinite dimension as the limit of finite dimensions:
the Dawson-Gartner theorem

We return for a while to the general situation: a compact metrizable space
K and a sequence (p,),, of probability measures on K.

Given g € C(K), we may consider the distribution v, of g w.r.t. u,, that
is, the probability measure on R defined by v,(B) = u,({z : g(x) € B}) =
pin(g~ ' (B)) for Borel sets B C R; equivalently, [ fi(g(-))dp, = [ frdv,
for all continuous (or bounded Borel) functions f; : R — R. Clearly, v, are
concentrated on the compact set g(K) C R. If (i), is LD-convergent (on
K) then (v,), is also LD-convergent (on ¢g(K)) by the contraction principle.
The opposite is generally wrong.

5bl Exercise. The sequence (v,), is LD-convergent if and only if the limit
limy, || |2, () exists for all f € C(K) of the form f(-) = fi(g(-)) for contin-
uous f; : R — R.

Prove it.

Hlnt ||f||Ln(Mn) = ||f1||Ln(Vn)

Given g,h € C(K), we may consider the joint distribution v, of g,h
w.r.t. fi,, that is, the probability measure on R? defined by v,(B) = p,({z :
(g9(z),h(z)) € B}) for Borel sets B C R?. Similarly to BRIl LD-convergence
of (v,,)n, means convergence of || f| L, ) for all f € C(K) of the form f(-) =
f2(g(+), h(-)) for continuous fo : R? — R.

Given ¢y, g, -+ € C(K), we may consider the joint distribution v of
g1,--.,9; w.r.t. pu,. LD-convergence of (y,(Lj))n for all 7 means convergence of
| fllLn(ue) for all f e C(K) of the form f(-) = f;(g:1(:),...,g;(-)), for all j.
Are all such f dense in C(K)? They are a subalgebra of C'(K), thus, the
answer is given by the Stone-Weierstrass theorem:

A subalgebra of C'(K) is dense if and only if
it separates points of K.

5b2 Theorem. Let ¢y, go,- - - € C(K) separate points of K, and 9 be the
joint distribution of g,...,g; w.r.t. u,. Then

(a) If for each j the sequence (I/,Sj ))n is LD-convergent (on the image
K; C RJ of K under the map z +— (g1(x),...,g;(x))), then the sequence
(tn)n is LD-convergent.
(b) If for each j the sequence (u(j ))n satisfies LDP with a rate function
I; on K then the sequence (uy,), satisfies LDP with the rate function

I(z) = Sl;plj (91(x), ..., g5(x)).
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(See also [T, Th. 4.6.1].)

Proof. By the Stone-Weierstrass theorem, functions f € C(K) of the form
f()=fi(g:1(-),...,g;(-)) are a dense set D C C(K).

(a) Convergence of || - ||z, (u,) on D implies convergence on the whole

C(K), since
< 2|1 f = fllow) + limsup | Fllz, ) = limint || Fllz,0.) = 20f = Fllew

for f € C(K), f € D.
(b) We will prove that

o' =sup{f(z) : | ]| <1},

where || f|| = limy, || f||£,.(u.)- For each j it is given that

) = sup{f(y,) : [ fill; < 13,
where y; = (g1(2),...,g;(2)) and [Ifill; = lim, [[f5]l, o If f() =
fi(91(), - 95()) then [[f[| = [ f;ll; (since [[fllznm) = [Ifill,, ) and
f(@) = fi(y;). Thus, sup{f(z) : [|f]l <1} > sup{fi(y;) : [ f]] < 1} = et
for all j, therefore

sup{f(x) : [|f[| < 1} > supeh ) =)
i

On the other hand, f(z) = f;(y;) < eli®W) < @ for f € D, |f|| < 1.
More generally, f(z) < ||f||e’® for all f € D. Given £ > 0 and an arbitrary
f € C(K) such that || f|| < 1, we take f € D such that ||f—f||C(K) < ¢, then
f@) < f(@)+e < ||flle’™® 4+ & < (1 +)ef® + . Therefore f(z) < /@),
that is,

e'® > sup{f(z) : | f] < 1}.

Note that

Ij(yla- . .,’yj) = min Ij+1(y1, .. -ayj-l—l) for (yl,. .. ayj) € Kj

Yi+1:(Y1,eyi41) €K1

by the contraction principle. Thus,
(5b3) Li(gi(x),...,gi(x)) T I(x) asj— oo.

It is easy to generalize Theorem bhb2 to the situation where j runs on a
subsequence (say, j € {2,4,8,...}).
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5b4 Exercise. Generalize Eb2 to continuous functions g; : K — K, (rather
than K — R), where K| is another compact metrizable space.

5b5 Exercise. Let K be a compact metrizable space and (p,), a sequence
of probability measures on K. Consider the compact metrizable space

K=K x K x...;

it may be metrized by

. L.
dlStoo((xla Loy .- )7 (yla Y2, .- )) = m]?“X E dlSt(:L‘ka yk) :
On K we consider product measures

ol = [y, X fly X ..

(a) The sequence (£:°),, is LD-convergent if and only if the sequence (1),
is LD-convergent.

(b) If (p4n)n satisfies LDP with a rate function I : K — [0, oo], then (x2°),,
satisfies LDP with the rate function I, : K — [0, 0o,

Lo ((z1,22,...)) = I(z1) + I(22) + ...

Prove it.

Hint: 4d1, 4d2 and BEb4l
If K is defined by (Ball), (Ba3)), then (up to a natural isomorphism)
K* ={¢p € Ly(0,00):0<p <1},

(5b6) . .

or — ¢ if and only if Vn € Li(0,00) /cpkn — /gon

for v, 1,9, - -+ € K. It is straightforward to adapt (Badl) to K*°. However,
(Bad) needs a modification, say,

1 t t
dist = - .
ist(, ) nax, t2+1’/0 @ /01/1’

Now we toss a coin endlessly, getting 5 = (01, 52,...) € {0,1}*, define
vp € K* by (Bad) (waiving the restriction k < n) and observe that this ¢z
is distributed p2° (u, being defined by (Bafl)). By and Theorem Badl (not
proved yet), (us°), satisfies LDP with the rate function I, : K — [0, o0],

(5b7) Le(i) = / " Toslelt)) dt.
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This time,
liminf I(¢)) = I(p) but limsup () = oo

Y= Y-
for all ¢ € K*°. Also

pn{p € K : I(p) =400} =1 foralln.

5¢ Proof for nice n

We return to Theorem It states LDP, namely, that ||f|...) —
max (| fle™) as n — oo for all f € C(K). Here we prove a weaker statement
(LDP along a subsequence):

1 Ly (g ) — maX(\f|e’I) as m — oo .

In order to use BD, we define go, g3, - -- € C(K) by*

where

(I3, 13,14, 15 ...) = ((0,1),(0,0.5), (0.5,1),(0,0.25),...)

is the sequence of all dyadic intervals. Clearly, g; separate points of K. We

introduce v on K ; as in Bh2 but we restrict ourselves to

je{2,4,8,...}, ne{2,4,8, ...}, n>j.

The set
Ko = {(92(¢), .- -, go5()) 1 p € K}

lies in R*¥~! but only the last j coordinates gj1,. .., gs; are really needed;
they determine gs, ..., g; uniquely. (For example, go(-) = 1(g5(-) + 94(*)).)

If ¢ is distributed g, then g;+1(¢), ..., g2;(¢) are independent, identically
distributed; namely, each of them is distributed uff} ;» where (3% means ‘p of
Sect. 3a’. By 3a4, (u3*), satisfies LDP with the rate function Ins. Thus
(similarly to 2al7), for k =7+ 1,...,27,

—
L Car D nun) = I Fllznuza ) = L] /j

Ly (M?f;]) n—oo

N (max(|fj|e_10‘5))1/j — max(|f|e_10‘5/j) ’

I'The numbers start from 2 for convenience; the natural blocks finish at j = 2*.
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that is, lp5/7 is the rate function for gx(-) (along the subsequence, n €
{4,24,37,...} D{4,24,44,... }).

Prop. 4d1 (or rather, its evident generalization to the product of j mea-
sures, and n restricted to a subsequence) gives us the rate function (y;11, ..., y2;) —
%([0.5(%“) + -+ Ios(y2;)) for (gj41,---,925), therefore, the rate function
Igj on ng,

1
(5c1) Lj(y2, - y25) = 3(10.5(.%‘“) + -+ os(y))
for distributions 429 of g2, .-, g2, (along the subsequence, still).

The Dawson-Gértner theorem Bh2 (or rather, its evident generalization
to subsequences) gives us LDP for (u,,), with the rate function

27 k-2—i
I(p) =lim277 > Iys <2j / w)
J kz; (k—1)2—3
(recall BR3)). That is, I(p) = lim; [ Ios(¢;), where ¢; is the orthogonal
projection of ¢ to the 2/-dimensional space of step functions. However, p; —
¢ in measure (in fact, almost everywhere), therefore Iy5(v;) — los(p) in
measure, therefore (using boundedness), [ Ios5(¢;) — [ Ios(¢).

5d Measures coming together

A general situation, again: (u,), and (v,), be two sequences of probability
measures on a compact metrizable space K. We say that they come together,
if there exist probability measures A\, on K x K satisfying two conditions.

First, u, and v, are the marginals of A\, (for every n). That is, \,(B X
K) = p,(B) and A, (K x B) = v,(B) for every Borel set B C K. Or equiv-
alently, [, . f(x) A\ (dzdy) = [, fdp and [ . f(y) \(dady) = [, fdv
for all f € C(K). (Every such )\, is called a joining of u, and v,.)

Second, there exist £, — 0 such that A, ({(z,y) : dist(z,y) < &,}) = 1
for all n. (The choice of the metric affects the choice of ,,, but the condition
is invariant.)

An equivalent definition without joinings exists (but will not be used).
Namely, (i), and (v,), come together, if there exist ,, — 0 such that (recall
(4b9), (4b10)) pn(F) < v,(Flie,) and v, (F) < pn(Fye,) for all closed sets
F C K. (The same (g,), for all F, of course.)

5d1 Proposition. If (1), and (v,), come together, then

(a) (ftn)n is LD-convergent if and only if (v,), is LD-convergent;

(b) if (p4n)n satisfies LDP with a rate function I, then (v,), satisfies LDP
with the same rate function I.
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Proof. Given f € C(K), we introduce f1, fo € C(K x K) by fi(z,y) = f(z)
and fo(z,y) = f(y). Then [[flL, @) = Ifill.ony and [fllz. 0 = [12llz.00)

. However,

max |[fi(z,y) = fo(z,y)| = max |[f(z) = f(y) =0 asn— oo

dist(z,y)<en dist(z,y)<en

since f is uniformly continuous (due to compactness). Thus, || fi—f2||L.(n.) —
0, therefore

1A 2y = 1 N znony = il znirny = 12l ) =0
as n — oo; (a) and (b) follow immediately. O

See also [1l, Th. 4.2.13].

5¢ Proof for all n

Here we finish the proof of Theorem by generalizing the argument of
fromn € {2,4,8,...} ton € {1,2,3,...}.

We consider the distribution v{ on K;; still, j € {2,4,8,...}, but now
n € {1,2,3,...}. It is sufficient to prove that (Vr(bj))n satisfies LDP with the
rate function [; (recall (Bcdl)), that is,

(5el) HfHL o) Hmax(\f|e ) asn — oo

for all f € K; and all j € {2,4,8,...}. Recall that the argument of bd gives
us a weaker statement, namely,

||f||L v —>II}(ELX(|f|e 21') as m — 0o .
J

(Only m € {1,2,4, ...} are used there, but the argument works for all m.)

Let us start w1th 27 = 4. The measure 1 is basically the joint distribu-
tion of g3(p) = 2 fo v and g4(p) =2 fo 5, when ¢ is distributed p,. These
two are 1nde§3endent for even n, but not for odd n; this is the problem. The
solution: V2 and 1/2m 41 are close enough.

(4)

5e2 Lemma. (V(4))m and (Vy,,,1)m come together.

2m

Proof. Basically, uéf‘,{ is the joint distribution of (£; + -+ + §,,)/m and
(Bmy1+- -+ Bom)/m, where (By, ..., Bom) € {0,1}?™ is distributed uniformly.
Similarly, l/éiiﬂ is the joint distribution of (81 +- -+ G, +0.58,11)/(m+0.5)
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and (0.50,41 + Bmaz + -+ -+ Pams1)/(m+0.5). We construct a joining A, of

M) and 1/54,71 41 as the joint distribution of two pairs,

Vom
(ﬁl+"'+5m ﬁm+2+"'+ﬁ2m+1)
, and
m m
Bi+ 4 B+ 0.56m1 0.58m41 + Bz + -+ Bomgr )
m+0.5 ’ m+ 0.5 ’
of course, (81, .. ., Bomy1) is distributed uniformly on {0, 1}*™+1. We estimate

the distance between the two pairs:

Bit +Bn Bt + Bt 058
m m 4+ 0.5
1 1 0.5 1
<m _— = + — —
- <m m+0.5) m+05 m+0.5

<

0;

the same holds for the second coordinate. O

By 7 H f”L2m(”£fr)z+1)

714
to max(| fle™**). The same holds for ||f||L2m+l(V;,l,)l+

behaves similarly to || f| (s> Namely, converges
m Vo,

2m+1
2m

, since — 1 (recall

)
1
the argument of 2a17). Thus, [If]|, @ — max (| fle™").

Similarly, for every j € {2,4,8,...} and every k € {0,1,...,5 — 1},
(V](iﬂk)m and (u](?fg_l))m come together, which implies (Bell) and completes
the proof of Theorem Badl
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