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5a The simplest case of Mogulskii’s theorem

Tossing a fair coin n times we get a random element of {0, 1}n. We embed
all these spaces {0, 1}n into a single metrizable compact space

(5a1) K = {ϕ ∈ L∞(0, 1) : 0 ≤ ϕ ≤ 1}

as follows: given β = (β1, . . . , βn) ∈ {0, 1}n, we define ϕβ ∈ K by

(5a2) ϕβ(t) = βk for t ∈
(k − 1

n
,
k

n

)

.

The relevant metrizable topology on K, well-known as the weak∗ topology,
may be described as follows: for ϕ, ϕ1, ϕ2, · · · ∈ K,

(5a3) ϕk → ϕ if and only if ∀η ∈ L1(0, 1)

∫

ϕkη →
∫

ϕη .

Here is an example of a metric that generates this topology:

(5a4) dist(ϕ, ψ) = max
k

1

k

∣

∣

∣

∣

∫

ϕηk −
∫

ψηk

∣

∣

∣

∣

,

where η1, η2, . . . are a sequence dense in the unit ball of L1(0, 1). The choice
of η1, η2, . . . influences the metric but not the topology. Another metric (for
the same topology):

(5a5) dist(ϕ, ψ) = max
t∈[0,1]

∣

∣

∣

∣

∫ t

0

ϕ−
∫ t

0

ψ

∣

∣

∣

∣

.

We consider the distribution µn of the random function ϕβ,

(5a6) µn ∈ P (K) ,

∫

f dµn =
1

2n

∑

β∈{0,1}n

f(ϕβ) .
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5a7 Exercise. Assume that (µn)n satisfies LDP with a rate function I. Then

min{I(ϕ) : ϕ ∈ K,
∫

ϕ = u} = I0.5(u) ,

where I0.5(u) = u ln u
0.5

+(1−u) ln 1−u
0.5

= u lnu+(1−u) ln(1−u)+ln 2 (recall
(3a5) and (3a9)).

Prove it.
Hint: the contraction principle (Th. 2b1), and 3a4.

5a8 Exercise. Assume that (µn)n satisfies LDP with a rate function I. Then

I(ϕ) =
I(ϕleft) + I(ϕright)

2

for all ϕ ∈ K; here ϕleft, ϕright ∈ K are defined by

ϕleft(t) = ϕ(0.5t) , ϕright(t) = ϕ(0.5 + 0.5t) for t ∈ (0, 1) .

Prove it.
Hint: K = K1 ×K2, K1 ⊂ L∞(0, 0.5), K2 ⊂ L∞(0.5, 1); µ2n = µ

(1)
n ×µ(2)

n ;
2I(ϕ) = I1(ϕ1) + I2(ϕ2) by 4d1, 4d2 and 2a17. On the other hand, the

natural one-to-one correspondence between K and K1 transforms µn to µ
(1)
n ,

thus, I to I1.

Applying the same formula to I(ϕleft) and I(ϕright) we split I(ϕ) into four
terms. And so on.

Now you could guess the rate function!

5a9 Theorem. (µn)n satisfies LDP with the rate function

I(ϕ) =

∫ 1

0

I0.5(ϕ(t)) dt .

See [1, Th. 5.1.2].
Note that I is far from being continuous. In fact,

lim inf
ψ→ϕ

I(ψ) = I(ϕ) but lim sup
ψ→ϕ

I(ψ) = ln 2

for all ϕ ∈ K. Note also that

µn{ϕ ∈ K : I(ϕ) = ln 2} = 1 for all n .

How could we prove the theorem? The approach of 3a does not work
here, since the number of atoms of µn is exponentially large. No binomial
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coefficients, just 2n atoms of probability 2−n each. However, we may apply
Sanov’s theorem to

∫ 1

0
ϕ,

∫ 0.5

0
ϕ,

∫ 1

0.5
ϕ and so on. Doing so in the next section,

we’ll prove the theorem for n ∈ {1, 2, 4, 8, . . .}. Here we just discuss it.
The map K → C[0, 1],

ϕ 7→ w , w(t) =

∫ t

0

ϕ(s) ds ,

is continuous and one-to-one, therefore (by compactness) a homeomorphism.
Thus, the LDP on K leads to LDP on the set of functions w : [0, 1] → R

such that

(5a10) 0 ≤ w(t)−w(s) ≤ t−s whenever 0 ≤ s ≤ t ≤ 1 , and w(0) = 0

with the rate function

(5a11) J(w) =

∫ 1

0

I0.5(w
′(t)) dt .

(The derivative exists almost everywhere.) Note that the random function
wβ (corresponding to ϕβ) is piecewise linear, with the derivative βk ∈ {0, 1}
on

(

k−1
n
, k
n

)

. It is a (rescaled) path of a random walk.
Do not hesitate to use Theorem 5a9 in the exercises below.

5a12 Exercise. A fair coin is tossed n times, giving (β1, . . . , βn) ∈ {0, 1}n.
Consider

pn,ε = P

(

∀k = 1, . . . , n
∣

∣

∣

β1 + · · ·+ βk
n

− 1

2

(k

n

)2∣
∣

∣
≤ ε

)

.
b b b

b b

b b b

b

b

b

b

b

1

0.5

Prove that

lim sup
n→∞

∣

∣

∣

∣

n
√
pn,ε −

√
e

2

∣

∣

∣

∣

→ 0 as ε→ 0 + .

Hint: use 4b12.

5a13 Exercise. A fair coin is tossed n times, giving (β1, . . . , βn) ∈ {0, 1}n.
Given c ∈ [0, 1], we consider

pn = P

(

∀k = 1, . . . , n
β1 + · · ·+ βk

n
≥ c

(k

n

)2)

.
b

b

b b b

b

b b

b

b

b

b

b

1

c



Tel Aviv University, 2007 Large deviations 32

Prove that

n
√
pn → 1 for 0 ≤ c ≤ 0.5 ,

n
√
pn → 1

2cc(1 − c)1−c
for 0.5 ≤ c ≤ 1

(00 = 1, as before).
Hint: use 4b6; guess the extremal function; prove your guess, taking into

account that
∫ 1

0
I0.5(ϕ(t)) dt ≥ I0.5

(∫ 1

0
ϕ(t) dt

)

.

5a14 Exercise. In the situation of 5a13, formulate and prove a statement
about the conditional distribution (in the spirit of 4c5).

Another example:

pn = P

(

∀k = 1, . . . , n
β1 + · · ·+ βk

n
≥ k

n
− 1

2

(k

n

)2)

.
b

b

b

b

b b

b b

b

b b

b

b

1

0.5

It appears that

n
√
pn → e1/4

√
2

as n→ ∞ .

The extremal function is

w(t) =

{

t− 0.5t2 for 0 ≤ t ≤ 0.5,

0.5t+ 0.125 for 0.5 ≤ t ≤ 1.

In order to prove its extremality, the following lemma helps: J(w∧v) ≤ J(w)
for every linear function v : [0, 1] → R such that v(0) ≥ 0 and v′(·) ≥ 0.5;
here w ∧ v is the pointwise minimum.

Two-dimensional random arrays are quite similar. The interval (0, 1)
and the square (0, 1) × (0, 1) are isomorphic measure spaces, thus, L∞(0, 1)
and L∞

(

(0, 1) × (0, 1)
)

are isomorphic. But moreover, the natural partition
of the interval into 22n parts corresponds to that of the square. And the
natural correspondence between the compact sets K in dimensions 1 and 2
is a homeomorphism. Thus, Theorem 5a9 implies the corresponding result
in two (and more) dimensions. Note also that the metric

dist(ϕ, ψ) = max
s,t∈[0,1]

∣

∣

∣

∣

∫∫

(0,s)×(0,t)

(ϕ− ψ)

∣

∣

∣

∣

generates the considered topology on the space K (over the square). Thus,
we may consider two-dimensional ‘paths’, getting the rate function

J(w) =

∫∫

(0,1)×(0,1)

I0.5

(

∂2

∂s∂t
w(s, t)

)

dsdt .
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5b Infinite dimension as the limit of finite dimensions:

the Dawson-Gärtner theorem

We return for a while to the general situation: a compact metrizable space
K and a sequence (µn)n of probability measures on K.

Given g ∈ C(K), we may consider the distribution νn of g w.r.t. µn, that
is, the probability measure on R defined by νn(B) = µn({x : g(x) ∈ B}) =
µn(g

−1(B)) for Borel sets B ⊂ R; equivalently,
∫

K
f1(g(·)) dµn =

∫

R
f1 dνn

for all continuous (or bounded Borel) functions f1 : R → R. Clearly, νn are
concentrated on the compact set g(K) ⊂ R. If (µn)n is LD-convergent (on
K) then (νn)n is also LD-convergent (on g(K)) by the contraction principle.
The opposite is generally wrong.

5b1 Exercise. The sequence (νn)n is LD-convergent if and only if the limit
limn ‖f‖Ln(µn) exists for all f ∈ C(K) of the form f(·) = f1(g(·)) for contin-
uous f1 : R → R.

Prove it.
Hint: ‖f‖Ln(µn) = ‖f1‖Ln(νn).

Given g, h ∈ C(K), we may consider the joint distribution νn of g, h
w.r.t. µn, that is, the probability measure on R

2 defined by νn(B) = µn({x :
(g(x), h(x)) ∈ B}) for Borel sets B ⊂ R

2. Similarly to 5b1, LD-convergence
of (νn)n means convergence of ‖f‖Ln(µn) for all f ∈ C(K) of the form f(·) =
f2(g(·), h(·)) for continuous f2 : R

2 → R.

Given g1, g2, · · · ∈ C(K), we may consider the joint distribution ν
(j)
n of

g1, . . . , gj w.r.t. µn. LD-convergence of (ν
(j)
n )n for all j means convergence of

‖f‖Ln(µn) for all f ∈ C(K) of the form f(·) = fj(g1(·), . . . , gj(·)), for all j.
Are all such f dense in C(K)? They are a subalgebra of C(K), thus, the
answer is given by the Stone-Weierstrass theorem:

A subalgebra of C(K) is dense if and only if
it separates points of K.

5b2 Theorem. Let g1, g2, · · · ∈ C(K) separate points of K, and ν
(j)
n be the

joint distribution of g1, . . . , gj w.r.t. µn. Then

(a) If for each j the sequence
(

ν
(j)
n

)

n is LD-convergent (on the image
Kj ⊂ R

j of K under the map x 7→ (g1(x), . . . , gj(x))), then the sequence
(µn)n is LD-convergent.

(b) If for each j the sequence
(

ν
(j)
n

)

n satisfies LDP with a rate function
Ij on Kj then the sequence (µn)n satisfies LDP with the rate function

I(x) = sup
j
Ij

(

g1(x), . . . , gj(x)
)

.
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(See also [1, Th. 4.6.1].)

Proof. By the Stone-Weierstrass theorem, functions f ∈ C(K) of the form
f(·) = fj(g1(·), . . . , gj(·)) are a dense set D ⊂ C(K).

(a) Convergence of ‖ · ‖Ln(µn) on D implies convergence on the whole
C(K), since

lim sup
n

‖f‖Ln(µn) − lim inf
n

‖f‖Ln(µn) ≤

≤ 2‖f − f̃‖C(K) + lim sup
n

‖f̃‖Ln(µn) − lim inf
n

‖f̃‖Ln(µn) = 2‖f − f̃‖C(K)

for f ∈ C(K), f̃ ∈ D.
(b) We will prove that

eI(x) = sup{f(x) : ‖f‖ ≤ 1} ,
where ‖f‖ = limn ‖f‖Ln(µn). For each j it is given that

eIj(yj) = sup{fj(yj) : ‖fj‖j ≤ 1} ,
where yj =

(

g1(x), . . . , gj(x)
)

and ‖fj‖j = limn ‖fj‖Ln(ν
(j)
n )

. If f(·) =

fj(g1(·), . . . , gj(·)) then ‖f‖ = ‖fj‖j (since ‖f‖Ln(µn) = ‖fj‖Ln(ν
(j)
n )

) and

f(x) = fj(yj). Thus, sup{f(x) : ‖f‖ ≤ 1} ≥ sup{fj(yj) : ‖fj‖ ≤ 1} = eIj(yj)

for all j, therefore

sup{f(x) : ‖f‖ ≤ 1} ≥ sup
j

eIj(yj) = eI(x) .

On the other hand, f(x) = fj(yj) ≤ eIj(yj) ≤ eI(x) for f ∈ D, ‖f‖ ≤ 1.
More generally, f(x) ≤ ‖f‖eI(x) for all f ∈ D. Given ε > 0 and an arbitrary
f ∈ C(K) such that ‖f‖ ≤ 1, we take f̃ ∈ D such that ‖f− f̃‖C(K) ≤ ε, then

f(x) ≤ f̃(x) + ε ≤ ‖f̃‖eI(x) + ε ≤ (1 + ε)eI(x) + ε. Therefore f(x) ≤ eI(x),
that is,

eI(x) ≥ sup{f(x) : ‖f‖ ≤ 1} .

Note that

Ij(y1, . . . , yj) = min
yj+1:(y1,...,yj+1)∈Kj+1

Ij+1(y1, . . . , yj+1) for (y1, . . . , yj) ∈ Kj

by the contraction principle. Thus,

(5b3) Ij(g1(x), . . . , gj(x)) ↑ I(x) as j → ∞ .

It is easy to generalize Theorem 5b2 to the situation where j runs on a
subsequence (say, j ∈ {2, 4, 8, . . .}).
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5b4 Exercise. Generalize 5b2 to continuous functions gj : K → K0 (rather
than K → R), where K0 is another compact metrizable space.

5b5 Exercise. Let K be a compact metrizable space and (µn)n a sequence
of probability measures on K. Consider the compact metrizable space

K∞ = K ×K × . . . ;

it may be metrized by

dist∞
(

(x1, x2, . . . ), (y1, y2, . . . )
)

= max
k

1

k
dist(xk, yk) .

On K∞ we consider product measures

µ∞
n = µn × µn × . . .

(a) The sequence (µ∞
n )n is LD-convergent if and only if the sequence (µn)n

is LD-convergent.
(b) If (µn)n satisfies LDP with a rate function I : K → [0,∞], then (µ∞

n )n
satisfies LDP with the rate function I∞ : K∞ → [0,∞],

I∞
(

(x1, x2, . . . )
)

= I(x1) + I(x2) + . . .

Prove it.
Hint: 4d1, 4d2 and 5b4.

If K is defined by (5a1), (5a3), then (up to a natural isomorphism)

(5b6)

K∞ = {ϕ ∈ L∞(0,∞) : 0 ≤ ϕ ≤ 1} ,

ϕk → ϕ if and only if ∀η ∈ L1(0,∞)

∫

ϕkη →
∫

ϕη

for ϕ, ϕ1, ϕ2, · · · ∈ K∞. It is straightforward to adapt (5a4) toK∞. However,
(5a5) needs a modification, say,

dist(ϕ, ψ) = max
t∈[0,∞)

1

t2 + 1

∣

∣

∣

∣

∫ t

0

ϕ−
∫ t

0

ψ

∣

∣

∣

∣

.

Now we toss a coin endlessly, getting β = (β1, β2, . . . ) ∈ {0, 1}∞, define
ϕβ ∈ K∞ by (5a2) (waiving the restriction k ≤ n) and observe that this ϕβ
is distributed µ∞

n (µn being defined by (5a6)). By 5b5 and Theorem 5a9 (not
proved yet), (µ∞

n )n satisfies LDP with the rate function I∞ : K∞ → [0,∞],

(5b7) I∞(ϕ) =

∫ ∞

0

I0.5(ϕ(t)) dt .
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This time,
lim inf
ψ→ϕ

I(ψ) = I(ϕ) but lim sup
ψ→ϕ

I(ψ) = ∞

for all ϕ ∈ K∞. Also

µn{ϕ ∈ K∞ : I(ϕ) = +∞} = 1 for all n .

5c Proof for nice n

We return to Theorem 5a9. It states LDP, namely, that ‖f‖Ln(µn) →
max

(

|f |e−I
)

as n→ ∞ for all f ∈ C(K). Here we prove a weaker statement
(LDP along a subsequence):

‖f‖L2m(µ2m ) → max
(

|f |e−I
)

as m→ ∞ .

In order to use 5b, we define g2, g3, · · · ∈ C(K) by1

gj(ϕ) =
1

mes Ij

∫

Ij

ϕ ,

where
(I2, I3, I4, I5 . . . ) =

(

(0, 1), (0, 0.5), (0.5, 1), (0, 0.25), . . .
)

is the sequence of all dyadic intervals. Clearly, gj separate points of K. We

introduce ν
(j)
n on Kj as in 5b2, but we restrict ourselves to

j ∈ {2, 4, 8, . . .} , n ∈ {2, 4, 8, . . .} , n ≥ j .

The set
K2j = {(g2(ϕ), . . . , g2j(ϕ)) : ϕ ∈ K}

lies in R
2j−1, but only the last j coordinates gj+1, . . . , g2j are really needed;

they determine g2, . . . , gj uniquely. (For example, g2(·) = 1
2
(g3(·) + g4(·)).)

If ϕ is distributed µn then gj+1(ϕ), . . . , g2j(ϕ) are independent, identically
distributed; namely, each of them is distributed µ3a

n/j, where µ3a means ‘µ of

Sect. 3a’. By 3a4, (µ3a
k )k satisfies LDP with the rate function I0.5. Thus

(similarly to 2a17), for k = j + 1, . . . , 2j,

‖f(gk(·))‖Ln(µn) = ‖f‖Ln(µ3a
n/j

) = ‖f j‖1/j

Ln/j(µ
3a
n/j

)
−−−→
n→∞

−−−→
n→∞

(

max
(

|f j|e−I0.5
))

1/j = max
(

|f |e−I0.5/j
)

,

1The numbers start from 2 for convenience; the natural blocks finish at j = 2k.
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that is, I0.5/j is the rate function for gk(·) (along the subsequence, n ∈
{j, 2j, 3j, . . . } ⊃ {j, 2j, 4j, . . . }).

Prop. 4d1 (or rather, its evident generalization to the product of j mea-
sures, and n restricted to a subsequence) gives us the rate function (yj+1, . . . , y2j) 7→
1
j

(

I0.5(yj+1) + · · · + I0.5(y2j)
)

for (gj+1, . . . , g2j), therefore, the rate function
I2j on K2j ,

(5c1) I2j(y2, . . . , y2j) =
1

j

(

I0.5(yj+1) + · · · + I0.5(y2j)
)

for distributions ν
(2j)
n of g2, . . . , g2j (along the subsequence, still).

The Dawson-Gärtner theorem 5b2 (or rather, its evident generalization
to subsequences) gives us LDP for (µn)n with the rate function

I(ϕ) = lim
j

2−j
2j

∑

k=1

I0.5

(

2j
∫ k·2−j

(k−1)2−j

ϕ

)

(recall 5b3). That is, I(ϕ) = limj

∫

I0.5(ϕj), where ϕj is the orthogonal
projection of ϕ to the 2j-dimensional space of step functions. However, ϕj →
ϕ in measure (in fact, almost everywhere), therefore I0.5(ϕj) → I0.5(ϕ) in
measure, therefore (using boundedness),

∫

I0.5(ϕj) →
∫

I0.5(ϕ).

5d Measures coming together

A general situation, again: (µn)n and (νn)n be two sequences of probability
measures on a compact metrizable space K. We say that they come together,

if there exist probability measures λn on K ×K satisfying two conditions.
First, µn and νn are the marginals of λn (for every n). That is, λn(B ×

K) = µn(B) and λn(K × B) = νn(B) for every Borel set B ⊂ K. Or equiv-
alently,

∫

K×K
f(x)λn(dxdy) =

∫

K
f dµ and

∫

K×K
f(y)λn(dxdy) =

∫

K
f dν

for all f ∈ C(K). (Every such λn is called a joining of µn and νn.)
Second, there exist εn → 0 such that λn

(

{(x, y) : dist(x, y) ≤ εn}
)

= 1
for all n. (The choice of the metric affects the choice of εn, but the condition
is invariant.)

An equivalent definition without joinings exists (but will not be used).
Namely, (µn)n and (νn)n come together, if there exist εn → 0 such that (recall
(4b9), (4b10)) µn(F ) ≤ νn(F+εn) and νn(F ) ≤ µn(F+εn) for all closed sets
F ⊂ K. (The same (εn)n for all F , of course.)

5d1 Proposition. If (µn)n and (νn)n come together, then
(a) (µn)n is LD-convergent if and only if (νn)n is LD-convergent;
(b) if (µn)n satisfies LDP with a rate function I, then (νn)n satisfies LDP

with the same rate function I.
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Proof. Given f ∈ C(K), we introduce f1, f2 ∈ C(K ×K) by f1(x, y) = f(x)
and f2(x, y) = f(y). Then ‖f‖Ln(µn) = ‖f1‖Ln(λn) and ‖f‖Ln(νn) = ‖f2‖Ln(λn)

. However,

max
dist(x,y)≤εn

|f1(x, y) − f2(x, y)| = max
dist(x,y)≤εn

|f(x) − f(y)| → 0 as n→ ∞

since f is uniformly continuous (due to compactness). Thus, ‖f1−f2‖Ln(λn) →
0, therefore

‖f‖Ln(µn) − ‖f‖Ln(νn) = ‖f1‖Ln(λn) − ‖f2‖Ln(λn) → 0

as n→ ∞; (a) and (b) follow immediately.

See also [1, Th. 4.2.13].

5e Proof for all n

Here we finish the proof of Theorem 5a9 by generalizing the argument of 5c
from n ∈ {2, 4, 8, . . .} to n ∈ {1, 2, 3, . . .}.

We consider the distribution ν
(j)
n on Kj ; still, j ∈ {2, 4, 8, . . .}, but now

n ∈ {1, 2, 3, . . .}. It is sufficient to prove that (ν
(j)
n )n satisfies LDP with the

rate function Ij (recall (5c1)), that is,

(5e1) ‖f‖
Ln(ν

(j)
n )

→ max
Kj

(

|f |e−Ij
)

as n→ ∞

for all f ∈ Kj and all j ∈ {2, 4, 8, . . .}. Recall that the argument of 5c gives
us a weaker statement, namely,

‖f‖
Lmj(ν

(2j)
mj )

→ max
Kj

(

|f |e−I2j
)

as m→ ∞ .

(Only m ∈ {1, 2, 4, . . .} are used there, but the argument works for all m.)

Let us start with 2j = 4. The measure ν
(4)
n is basically the joint distribu-

tion of g3(ϕ) = 2
∫ 0.5

0
ϕ and g4(ϕ) = 2

∫ 1

0.5
ϕ, when ϕ is distributed µn. These

two are independent for even n, but not for odd n; this is the problem. The
solution: ν

(4)
2m and ν

(4)
2m+1 are close enough.

5e2 Lemma. (ν
(4)
2m)m and (ν

(4)
2m+1)m come together.

Proof. Basically, ν
(4)
2m is the joint distribution of (β1 + · · · + βm)/m and

(βm+1+· · ·+β2m)/m, where (β1, . . . , β2m) ∈ {0, 1}2m is distributed uniformly.

Similarly, ν
(4)
2m+1 is the joint distribution of (β1+· · ·+βm+0.5βm+1)/(m+0.5)
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and (0.5βm+1 +βm+2 + · · ·+ β2m+1)/(m+0.5). We construct a joining λm of

ν
(4)
2m and ν

(4)
2m+1 as the joint distribution of two pairs,

(

β1 + · · · + βm
m

,
βm+2 + · · ·+ β2m+1

m

)

and

(

β1 + · · ·+ βm + 0.5βm+1

m+ 0.5
,
0.5βm+1 + βm+2 + · · ·+ β2m+1

m+ 0.5

)

;

of course, (β1, . . . , β2m+1) is distributed uniformly on {0, 1}2m+1. We estimate
the distance between the two pairs:

∣

∣

∣

∣

β1 + · · · + βm
m

− β1 + · · ·+ βm + 0.5βm+1

m+ 0.5

∣

∣

∣

∣

≤

≤ m

(

1

m
− 1

m+ 0.5

)

+
0.5

m+ 0.5
=

1

m+ 0.5
→ 0 ;

the same holds for the second coordinate.

By 5d1, ‖f‖
L2m(ν

(4)
2m+1)

behaves similarly to ‖f‖
L2m(ν

(4)
2m)

, namely, converges

to max
(

|f |e−I4
)

. The same holds for ‖f‖
L2m+1(ν

(4)
2m+1)

, since 2m+1
2m

→ 1 (recall

the argument of 2a17). Thus, ‖f‖
Ln(ν

(4)
n )

→ max
(

|f |e−I4
)

.

Similarly, for every j ∈ {2, 4, 8, . . .} and every k ∈ {0, 1, . . . , j − 1},
(

ν
(2j)
jm+k

)

m and
(

ν
(2j)
j(m−1)

)

m come together, which implies (5e1) and completes
the proof of Theorem 5a9.
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