Tel Aviv University, 2007 Large deviations 21

4 More on the basic notions

4a  Every LD-convergent sequence satisfies LDP . . ﬁ
4b  The probability decay rate . . . . . ... ... .. |2__1]
4c  Restriction and conditioning . . . . . ... .. .. %
4d LDP for product measures . . . . . . ... .. .. Iﬂ

4a Every LD-convergent sequence satisfies LDP

Here we prove Prop. 2all for every seminorm || - || on C'(K) that satisfies
(2al), (2a2) and (2a6).
First, let f € C(K) satisfy || f|| < 1; we have to prove that max(| f|II) < 1,
that is, | f(z)|II(z) < 1 for all x. However, 1/II(x) > |f(z)| by (2a7).
Second, let f € C(K) satisfy max(|f|II) < 1; we have to prove that
IfIl < 1. By (2a7),

1
()] < i) ~ sup{g(z) : [[g]l <1}
for every x € K.

Let ¢ > 0 be given. For every z € K there exists ¢ € C(K) such
that ||g|| < 1 and g(x) > |f(z)] — . The inequality still holds on some
neighborhood of . By compactness we may cover K by a finite number
of such neighborhoods. In other words, we have g¢q,...,g, € C(K) such
that ||g1]] < 1,...,|lgn]] < 1 and g1 V---V g, > |f| —¢ on K. By (2a6),
g1V -V gall < llgall vV -- - Vlgnll < 1. By (2al) and (2a2), || f]| <1+ ¢ for
every € > 0, which completes the proof.

4b The probability decay rate

We deal with a compact metrizable space K and probability measures pu,, on
K satisfying LDP with a rate function /. However, our first lemma does not
use p, (and its first item does not use the topology of K).

4b1 Lemma. (a) Let ¢,, ¢ : K — R, ¢, T ¢ pointwise; then (supg ¢,) T
(supg ) as n — oc.

(b) Let ¢,,¢ : K — R be upper semicontinuous, and ¢,, | ¢ pointwise;
then (maxg ¢,) | (maxg @) as n — oo.
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Proof. (a) For every € > 0 we take x € K such that ¢(x) > (supy ¢) — e and

n such that ¢, (x) > (supg ¢) — €; then (supy ¢n) > (supg @) — €.

(b) We have (maxg ¢,) | ¢ for some ¢ € R. For every £ > 0 the sets
{z € K:p,(x) > c— e} are a decreasing sequence of nonempty closed sets.
By compactness, some x belongs to all these sets. Thus, ¢(z) = lim, ¢, (x) >

c—¢ and maxg ¢ > ¢ — €.

4b2 Exercise. Without the semicontinuity EhIl(b) need not hold.
Find a counterexample.

4b3 Lemma. Let f: K — R.
(a) If | f| is lower semicontinuous then

ti inf [ 1] 2,4y = Sl}l(P(lf\e*I) ;

(b) if | f| is upper semicontinuous then

lim sup || £ ) < max(| fle”).

Proof. (a) We take f,, € C(K) such that 0 < f, 1 |f|. For every j,
im inf || £, uy = Himinf [|£]1 1, ) = max(fe™") ;

however,
m}z(xx(fje_l) T 8111(p(|f|e_1) as j — 0o
by BbIl(a).
(b): similar (but using semicontinuity).
4b4 Corollary.
(a) limninf(/,cn(G))l/” > exp(— igf I) for every open G C K,

(b)  limsup(ua(F))"™ < exp(— min I) for every closed F' C K .

4b5 Exercise. Reconsider 2al18 and 2a20 in the light of Eb4l
4b6 Corollary. If an open set G C K satisfies

(a) inf / = min /
G G

then

(b) lirrln(un(G))l/" = lirrln(un(é))l/" = exp(— igf I) =exp(— main I),

that is,

1 1 —
(c) hinﬁ Inu,(G) = lirrlng Inu,(G) = —iIGlfI = —mén].

O
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4b7 Exercise. Bh(a) does not imply i, (G) ~ p,(G) as n — oco.

Find a counterexample.

Hint: try K = [0,1], G = (0, 1], combine p, from Lebesgue measure and
an atom at 0, and find appropriate coefficients.

Continuity of I is, of course, sufficient for Eh0l(a). Here is a weaker suffi-
cient condition:

(4b8) limsup I(y) < I(z) forall z € 0G.

y—z,yeG

We may also consider p,(A,) assuming that A, converge to GG in an
appropriate sense. To this end we choose a metric on K and, given a set
A C K, we introduce (for any € > 0)

(4b9) A ={r € K : dist(x, A) < ¢},

(4b10) A_. ={r € K : dist(z,CA) > ¢} ;

here dist(z, A) = inf,c dist(z,y), and CA={x € K:z ¢ A}. Note that
A,. is closed, A_. is open, N.A,. = A is the closure of A, and U.A_. = A°
is the interior of A.

4b11 Exercise. Let A, C K be such that A, is u,-measurable.
(a) Let G C K be an open set, and

A, D G-, forsomee, 0.

Then
lim inf(,un(An))l/” > exp(— iréf I).

(b) Let F' C K be a closed set, and
A, C Fy., forsomece,|O0.

Then
lim sup (un(An))l/" < exp(— mFin I).

(¢) Let G C K be an open set such that infs I = ming I, and

G_., CA,CG,, forsomee,|O0.

Then

lirrbn(un(An))l/n = exp(— iIG1f I) = exp(— main I).

Prove it.

Hint: (a) the argument of the proof of Bh3l(a) works for appropriate f,,
say, fo(z) = (1/g,)dist(z,CG) — 1 if this number lies on [0, 1], otherwise
0 (if the number is negative) or 1 (if it exceeds 1); (b) similar (but using
semicontinuity), (c) follows from (a), (b).
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We can also describe the value I(z) of the rate function at a given point
x in terms of probabilities. To this end we choose (once again) a metric on
K and use open and closed balls,

B(z,r—) ={y € K : dist(z,y) <r}, B(x,r+)={y e K :dist(z,y <r}.

4b12 Proposition. For every z € K there exists a function (0,1) —
{1,2,...}, r+— n,, such that

1
—In p,(B(x,r+)) — —I(x) asr — 0+
n

uniformly in n > n,. (Here ‘+’ means that the claim holds for closed and
open balls.)

Proof. By b4,
lim inf (1, (B(z, r—)))l/” > exp(— B(inf )[) :
. 1/n _ . '
hmnsup(un(B(x, r+)))"" < exp( B{r;}rri) I)

We choose n, such that
(n(B(x,r=)))/" > exp(— inf I)—r,

B(xz,r—)

1/n _ :
(n(B(z,74+)))'" < exp(— min 1) 4

for all n > n,. By lower semicontinuity of 7,
inf 71 .
B(;r}ri) T1(z) asr— 0+
We have
exp(—B(inf )I)—r < (,un(B(x,r—)))% < (,un(B(x,r+)))% < eXp(—BI(nin )[)+r
o \ / e
e_I(x)

therefore
(pn (B, r )™ — e asr — 0+

uniformly in n > n,. O

In fact, the (necessary) condition

(4b13)
. .. IR VRt . 1/n
rli,r& hmnlnf(un(B(x, r—))) rll,%l+ lim sup (pin (B(z,7+))) forz € K

n

is also sufficient for LD-convergence of (i,),. I give no proof. (See also [,
Sect. 3.1, Remark 3.1(c)] and [I, Th. 4.1.11].)
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4c Restriction and conditioning

Any large deviation is done in the least
unlikely of all the unlikely ways!
den Hollander [ p. 10]
Let probability measures p, on a compact metrizable space K satisfy LDP
with a rate function /. Assume that an open set G C K satisfies (HLS)
(which always holds if I is continuous).

4cl Proposition. For every f € C(K),

1/n 1/n
hy( / |f|ndﬂn) =li£n( i IfI"dun) = sup((fle”") = max(|fJe”").

Proof. We may assume that f(-) > 0, since only | f| is relevant. Moreover, we
may assume that f(-) > 0, since strictly positive functions are dense among
weakly positive functions. Thus, we assume that f =e " h € C(K).

We define probability measures v, on K by

dv,
v — Cnefnh
dpsy,

and apply Theorem 2cl (change of measure): (v,,), satisfies LDP with the
rate function J = I +h—a, a = lim, + In¢,. Condition (D) is satisfied also
by J, thus can be applied to (v,), giving

lim(yn(G))l/" = lim(l/n(a))l/” = exp(— iréf J) = exp(—min J).
n n G

However,

(/Gf" dun) 1/n _ (/Ge—"h dun) Ln = (e (@) V" = ¢ lim (1, ()"

as n — o0o; the same holds for G. Also,

—(h+1) ~(J+a) _

sup(fe’l) =supe =supe e @ exp(— inf J) ;
G G G G

the same holds for G. O

It may happen that I(x) = 400 for all z € G. Let us exclude this case.
Then 11,(G) # 0 for all n large enough, and we may introduce conditional
measures, — probability measures v, on G such that

(1c2) [ v - ﬁ [ s,

for all bounded Borel functions f : G — R. The set G is another compact
metrizable space, and we may consider LDP on this space.
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4c3 Proposition. Let ming I # +o00, then the sequence (v, ), of conditional
measures on G satisfies LDP with the rate function J : G — [0, 0o,

J(r)=I(x) —minl forz€q.
a

Proof. Let f € C(G); we have to prove that (f5|f|"dyn)1/” —
max5(| fle™ ) By HEcIl (applied to any continuous extension of f),
(fé |f|"dun)1/" — maX§(|f|e’I). Therefore

1/n " nq . 1/n max— e,[
([isran) " = (Jlildn )™ moalled) ).
G G

(@) maxg(e7)

4c4 Exercise. Let I be continuous and ming I # +00, then

tn({z € G : I(z) < ming I +¢})

Hn (a)

— 1 asn — o

for all € > 0.
Prove it.
Hint: use Bc3, and apply 2a20(a) to v,.

4c5 Exercise. A fair coin is tossed n times, giving S,, ‘heads’. Prove that
P(S, <0.71n|S, >0.7n) —1 asn — occ.

Hint: 3a4 and Hcal

4c6 Exercise. A fair die is throwed n times, giving the outcomes 1,...,6
respectively S,(f), ceey S times. Prove that

P(0.15n < SP,...,S® <017n|SY > 02n) =1 asn — oo.
Hint: 3b3 and Ecdl

4c7 Exercise. Let Xi,..., X, be independent, identically distributed ran-
dom variables, each taking on the three values —1,0, 1 with equal probabili-
ties (1/3). Prove that

2 .« e . 2
P<§—8<X1+ 2
7 - n

- X +---+ X,

<2
-7 n

3
2?)—>1 as n — 00

for every € > 0.
Hint: 3c, and Ecal
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You may also think about the conditional dlstribution of the frequencies
% ko % (and the mean %(X1 + 4 X)) == — k—) where

=#{j: X; = -1}, =#{j: X; =0}, k =#{j:X;=1}

(recall 3c), the condition being a large deviation of the frequencies from the
probabilities in the sense that

2

ko 1

n 3

In terms of the so-called x? statistics, x* = 2((k- — %)%+ (ko — 2)*+ (ks —

£)?), it means x° 2 3en

4c8 Exercise. Generalize HcT], and Bcdl, replacing the single set G with
a sequence of sets A, such that A, is p,-measurable, and

G.. CA,CG,., forsomeeg,|O0.
Hint: use EhIl(c).
See also [2, Sect. 4] and [I, Sect. 3.3].

4d LDP for product measures

Let K, K5 be compact metrizable spaces, then their product K = K; x K,
is also a compact metrizable space.

Let un be probability measures on K, and un) — on Ks, then their
products pu, = ug) X ug) are probability measures on K.

4d1 Proposition. If (,u,(f))n satisfies LDP with a rate function /; and (ug))n
— with I, then (u,), satisfies LDP with the rate function I defined by

I(z,y) = L(z)+ L(y) forze Ky, yeK,.
Proof. Given f € C(K), we define g, g1, go, - : K1 — R by

) = 15, = ([ 150 2 ) "
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glw) = sup(|f(x,-)]e™") = sup (I (z,y)le ")

yeK>
Clearly, g, — g pointwise. But moreover, g, — ¢ uniformly, due to uniform
continuity:

[9n (1) = gn(w2)| < sup (1, ) = f(@2, )]
l9(x1) = g(@a)l < sup | f(21, ) = flaa, )]

We note that [lgall, o) = IfllLage) 929l 0 < supk, [ga—g] =0
and ||9|| L0y —>supK1(|g|e Il) therefore

HfHann) — sup(|gle™) =
K

= sup (&7 sup (| f(z,y)]) ) = sup(|fle”).
K

zeK1 yeKo

O

4d2 Exercise. (p,), is LD-convergent if and only if both (,ﬁ}’)n and (ug))n
are LD-convergent.

Prove it.

Hint: use the contraction principle for ‘only if’.
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