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24a Derivative

24a1 Definition. A Gaussian process Ξ : R→ G ⊂ L2(Ω, P ) is mean-square
differentiable, if for every t ∈ R the limit

Ξ′(t) = lim
s→t,s 6=t

Ξ(s)− Ξ(t)

s− t

exists in L2(Ω, P ).

The derivative Ξ′ : R→ G is another Gaussian process.

24a2 Exercise. If Ξ is mean-square differentiable then Ξ is mean-square
continuous, and Ξ′ is measurable.

Prove it.

24a3 Exercise. If a stationary Gaussian process Ξ is mean-square differen-
tiable then

(
Ξ(t + h) − Ξ(t)

)
/h converges to Ξ′(t) (in L2(Ω, P ), as h → 0)

uniformly in t.
Prove it.

Thus, stationarity ensures that Ξ′ is mean-square continuous.
It was rather about vector-functions; probability enters now.

24a4 Lemma. Let a Gaussian process Ξ be mean-square differentiable and
Ξ′ mean-square continuous, then for each t,

Ξ(t) = Ξ(0) +

∫ t

0

Y (s) ds ,

where Y is a jointly measurable modification of Ξ′.
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Proof. Let t = 1 (the general case is similar). We have (recall 23a)

Ξ(t) =
∞∑
k=1

fk(t)gk , fk(t) = 〈Ξ(t), gk〉 .

Each fk is continuously differentiable, and

Ξ′(t) =
∞∑
k=1

f ′k(t)gk

(think, why). We apply 23a2 to Y and f(·) = 1:

∞∑
k=1

(∫ 1

0

f ′k(t) dt
)
gk︸ ︷︷ ︸

=
∑

(fk(1)−fk(0))gk=Ξ(1)−Ξ(0)

=

∫ 1

0

Y (t) dt in L2(Ω, P ) .

The following conclusion is trivial when Ξ′ is sample continuous, but
nontrivial in general.

24a5 Proposition. If a stationary Gaussian process Ξ is mean-square dif-
ferentiable then it has a sample continuous modification1 X, and

∀t ∈ R X(t) = X(0) +

∫ t

0

Y (s) ds ,

where Y is a jointly measurable modification of Ξ′.

24a6 Exercise. (a) If a Gaussian process has a sample continuous modifi-
cation then it is mean-square continuous.

(b) If a Gaussian random function is continuously differentiable (almost
surely), then it is mean-square continuously differentiable (that is, mean-
square differentiable, and the derivative is mean-square continuous).

Prove it. (Stationarity is not assumed.)

24b Rice’s formula

The proof of Theorem 2b1 (and in particular Rice’s formula) given in Sect. 12a
for finite dimension, generalizes easily to stationary processes with sample

1This claim also follows easily from the criterion at the end of Sect. 21e.
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continuous second derivative. However, the formula does not involve the sec-
ond derivative, thus it is natural not to assume its existence. But then it is
not evident whether or not (a) {t ∈ [0, 1] : X(t) = 0} is finite; (b) X(·) is
piecewise monotone; (c) X(·) and X ′(·) cannot vanish simultaneously. And
nevertheless Theorem 2b1 generalizes, as follows.

24b1 Theorem. Let a stationary Gaussian random function X be contin-
uously differentiable (almost surely), EX2(0) = 1 and EX ′2(0) = 1. Let
a measurable function ϕ : R → R satisfy

∫
|ϕ(y)||y|e−y2/2 dy < ∞. Then

{t ∈ [0, 1] : X(t) = 0} is finite almost surely, the random variable

ξ =
∑

t∈[0,1],X(t)=0

ϕ
(
X ′(t)

)
is integrable, and

E ξ =
1

2π

∫
ϕ(y)|y|e−y2/2 dy .

Similarly to 2b1, [0, 1] may be replaced with [0, L].
In particular (for ϕ(·) = 1), the expected number of zeroes per unit time

is equal to 1/π (Rice’s formula).
The idea of the proof is a discrete approximation of the continuous time.

Instead of X(t) for t ∈ [0, 1] we consider X
(
k

2n

)
for k = 0, 1, . . . , 2n, and

instead of t ∈ [0, 1] such that X(t) = 0 we consider k ∈ {1, 2, . . . , 2n} such
that

X
(k − 1

2n

)
X
( k

2n

)
< 0 .

Denote by Zn the (random) number of these k.

24b2 Exercise. Let G ⊂ L2(Ω, P ) be a Gaussian space and g1, g2 ∈ G,
‖g1‖ = ‖g2‖ = 1. Then

P
(
g1g2 < 0

)
=

1

π
arccos〈g1, g2〉 =

2

π
arcsin

‖g1 − g2‖
2

.

Prove it.

24b3 Exercise. Prove that EZn → 1/π as n→∞.

We have Z1 ≤ Z2 ≤ . . . (think, why) and supn EZn < ∞, therefore
Zn ↑ Z∞ <∞ a.s., and EZ∞ = limEZn = 1/π. It follows easily that

E#{t ∈ (0, 1) : X(t) = 0, X ′(t) 6= 0} ≤ 1/π ,

E#{t ∈ (0, 1) : X(t) = 0} ≥ 1/π .
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24b4 Lemma. Let u ∈ R. Almost surely, no t ∈ R satisfies both X(t) = u
and X ′(t) = 0.

(The proof will be given later.)
Thus,

E#{t ∈ (0, 1) : X(t) = 0} = 1/π ,

which proves Theorem 24b1 for ϕ(·) = 1 (Rice’s formula).
For a measurable ϕ : R → R satisfying

∫
|ϕ(y)||y|e−y2/2 dy < ∞, 24b2

generalizes as follows:

E
(
ϕ
( g1 − g2

‖g1 − g2‖

)
1(−∞,0)(g1g2)

)
=

∫ +∞

−∞
γ1(dy)ϕ(y)γ1

(
[−|y| tanα, |y| tanα]

)
where α = 1

2
arccos〈g1, g2〉 = arcsin ‖g1−g2‖

2
. For α → 0 we have

1
α
γ1
(
[−|y| tanα, |y| tanα]

)
→ 2|y|/

√
2π and 1

α
γ1
(
[−|y| tanα, |y| tanα]

)
≤

2|y|/
√

2π, thus

1

α

∫ +∞

−∞
γ1(dy)ϕ(y)γ1

(
[−|y| tanα, |y| tanα]

)
→ 2√

2π

∫ +∞

−∞
γ1(dy)ϕ(y)|y| ;

E
(
ϕ
( g1 − g2

‖g1 − g2‖

)
1(−∞,0)(g1g2)

)
=
(
1 + o(1)

)‖g1 − g2‖
2π

∫ +∞

−∞
ϕ(y)|y|e−y2/2 dy .

Taking g2 = X
(
k−1
2n

)
and g1 = X

(
k

2n

)
we get an approximation to E

(
ϕ(X ′(t))

1(−∞,0)

(
X(k−1

2n
)X( k

2n
)
))

. That is, we introduce

ξn =
2n∑
k=1

ϕ

(
X( k

2n
)−X(k−1

2n
)

‖X( k
2n

)−X(k−1
2n

)‖

)
1(−∞,0)

(
X
(k − 1

2n

)
X
( k

2n

))

and note that E ξn → 1
2π

∫ +∞
−∞ ϕ(y)|y|e−y2/2 dy. Assume in addition that

ϕ : R→ [0, 1] is continuous. Then |ξn| ≤ Z∞ a.s., and for every ε > 0,

|ξn − ξ| ≤ εZ∞

for all n large enough (that is, n ≥ N(ω)); therefore ξn → ξ a.s., and the
dominated convergence theorem gives E ξn → E ξ.

Theorem 24b1 is thus proved under the additional assumptions on ϕ. The
general case follows, similarly to Sect. 12a (recall 12a4, (12a5)). However,
Lemma 24b4 will be proved in the next section.
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24c Stratification

A surface in R3 is negligible (a null set for the three-dimensional Lebesgue
measure) since it has negligible intersections with parallel lines. Here is a
similar infinite-dimensional argument.1

24c1 Lemma. Let a measurable set A in (R∞, γ∞) be such that

{c ∈ R : (x1 + c, x2, x3, . . . ) ∈ A}

is a null set for almost all (x1, x2, x3, . . . ) ∈ (R∞, γ∞). Then γ∞(A) = 0.

Proof. First,∫ (∫
f(x+ c) dc

)
γ1(dx) =

∫
f(c) dc =

√
2π

∫
f(x)ex

2/2 γ1(dx) ∈ [0,∞]

for every measurable f : R→ [0,∞). Second,∫ (∫
f(x1 + c, x2, . . . ) dc

)
γ∞(dx1dx2 . . . ) =

=
√

2π

∫
f(x1, x2, . . . )e

x21/2 γ∞(dx1dx2 . . . ) ∈ [0,∞]

for every measurable f : (R∞, γ∞) → [0,∞). It remains to apply it to
f = 1A.

24c2 Proposition. Let Ξ : [0, 1] → G ⊂ L2(Ω, P ) be a Gaussian process,
as in Sect. 23a:2

Ξ(t) = f1(t)g1 + f2(t)g2 + . . . ,
∑
k

∫
|fk(t)|2 dt <∞ ,

and X : Ω→ L2[0, 1] the corresponding random equivalence class. Let a set
A ⊂ L2[0, 1] be such that X−1(A) is measurable, and

{c ∈ R : X(·) + cf1 ∈ A}

is a null set, almost surely. Then P
(
X−1(A)

)
= 0.

1This approach is a special case of the “stratification method” developed in the book:
Yu.A. Davydov, M.A. Lifshits, N.V. Smorodina, “Local properties of stochastic function-
als”, AMS 1998 (transl. from Russian 1995).

2In fact, we may waive the condition
∑∫

|fk(t)|2 dt <∞ and work in L0[0, 1] instead
of L2[0, 1]. This general case is reduced to the special case by considering t 7→ Ξ(t)/‖Ξ(t)‖.
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Proof. Similarly to the proof of 23a3 we assume that (Ω, P ) = (R∞, γ∞), gk
are the coordinates, note that

X(x1 + c, x2, . . . )−X(x1, x2, . . . ) = cf1

for almost all x ∈ (R∞, γ∞), and apply Lemma 24c1 to X−1(A).

Note that f1(t) = 〈Ξ(t), g1〉, and g1 is just a unit vector in G; we may
choose it at will.1

24c3 Corollary. Let X be a sample continuous Gaussian random function
on [0, 1], B ⊂ C[0, 1] a Borel set, and f ∈ C[0, 1] be defined by f(t) =
E
(
gX(t)

)
for some g of the Gaussian space. If

{c ∈ R : X(·) + cf ∈ B}

is a null set almost surely, then X(·) /∈ B almost surely.

24c4 Lemma. Let f, ϕ : [0, 1] → R be continuously differentiable, ∀t ∈
[0, 1] f(t) 6= 0, and u ∈ R. Then for almost every c ∈ R, no t ∈ [0, 1]
satisfies both ϕ(t) + cf(t) = u and ϕ′(t) + cf ′(t) = 0.

Proof. We assume u = 0 (otherwise replace ϕ(·) with ϕ(·) − u). If such t
exists for a given c, then this c is a critical value of the function −ϕ(·)/f(·),
since on one hand c = −ϕ(t)

f(t)
and on the other hand

(
− ϕ

f

)′
(t) =

−fϕ′ + ϕf ′

f 2
(t) = − 1

f(t)

(
ϕ′(t)−ϕ(t)f ′(t)

f(t)︸ ︷︷ ︸
+cf ′(t)

)
= 0 .

By Sard’s theorem, critical points of a continuously differentiable function
are a null set.

24c5 Proposition. Let a Gaussian random function X on R be continuously
differentiable (almost surely), and ∀t ∈ R EX2(t) 6= 0. Let u ∈ R. Then,
almost surely, no t ∈ R satisfies both X(t) = u and X ′(t) = 0.

Proof. By 24a6, X is mean-square continuously differentiable. Thus, the
function f : R→ R defined by

f(t) = 〈X(t), X(0)〉 = E
(
X(0)X(t)

)
1In fact, every admissible shift of X[γ∞] may serve as f1.
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is continuously differentiable. Clearly, f(0) 6= 0, thus f(·) 6= 0 on some
[−ε, ε]. By 24c4, almost surely, for almost every c ∈ R, no t ∈ [−ε, ε]
satisfies both X(t) + cf(t) = u and X ′(t) + cf ′(t) = 0.

The set B of all continuously differentiable functions x such that ∃t ∈
[−ε, ε]

(
x(t) = u, x′(t) = 0

)
is closed, therefore a Borel set. By 24c3,

X(·) /∈ B almost surely.
That is, X(t) = u together with X ′(t) = 0 does not happen (almost

surely) in a neighborhood of 0. The same holds in a neighborhood of every
point of R. It remains to take a countable subcovering of the given open
covering.

Lemma 24b4 follows immediately, which finalizes the proof of Theorem
24b1.

24d Hints to exercises

24a2: Ξ′ is the limit of a sequence of continuous vector-functions.

24b2: consider first the two-dimensional Gaussian space (R2, γ2)∗.

24b3: EZn is the sum of 2n equal probabilities; also, ‖X(ε)−X(0)‖ ∼ ε.

24a6: convergence almost sure implies convergence in probability; in the
Gaussian case the latter is equivalent to mean-square convergence.
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