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23a  Random element of 1,0, 1]

Continuing Sect. 22d, we consider a Gaussian process
=:[0,1] =G C L(2, P), E@)=fil)gr + f2()g2 + -,

where (g1,92,...) is an orthonormal basis of G, and fi(t) = (=(t), gx) are
measurable. Necessarily,!

vee[0.1] AP +1LOF +- - =120 < co.

We upgrade = to the corresponding random element of Lg[0, 1] (as explained
in Sect. 22d), denoted by X : Q — Ly[0,1]. In general, fol IZ2(®)|?dt =
>k [ 1fx(t)|* dt need not be finite. From now on we assume that it is:

1
/ IE@IP dt < oo
0

then, by Tonelli’s theorem,

E/O |X(t)|2dt_/o (E1X (1)) dt_/o IZ()|2dt < oo

which shows that X is in fact a random element of L,[0, 1]. We approximate
X by another random element X, of L,[0, 1],

We may also treat X and X,, as elements of L ([0,1] x ).

23al Exercise. X,, & X in Ly([0,1] x Q). 2
Prove it.

!This is also sufficient (think, why).
2In fact, almost surely the series converges in Lo (0, 1).
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23a2 Exercise. For every f € L5[0,1] the random variables (f, X,) =

(fi,Hgn + - (fn,f>gn converge (as n — 00) in Ly(2) to the random
variable ( f X) fo

Prove it.

Thus,

Var(f, X) Z| £ P < Cllf)?

for some €' < 32, | fell2 = fi I2(0)[2dt < oc.

23a3 Proposition. Let C' be such that
Vf e Ly[0,1]  Var(f, X) < C|/f|]*.

Let ¢ : L1]0,1] — R be a Lip(1) function. Then the random variable 1 (X)
belongs to GaussLip(v/C).

First, we need the duality argument used already in 11c3.
23a4 Lemma. |la;fi+asfot+...||* < C(ai+ai+...) forall (ay,as,...) € ls.

Proof. We introduce a linear operator S : Iy — L3[0,1] by Sa
> ak fr; the series converges in Ly[0, 1], since Y ||arfell = D la| - || fxll
(X laH) V211 fell?)V? < co. We have Va € Iy Vf € Ly[0,1] (f,Sa)
(S*f,a), where S* : L[0,1] = lo, S*f = ((f, /1), ([, f2). - ).

We note that Var(f, X) = |S*f||%; thus, ||S*f]|> < C| f|* for all f.
Finally,

IIA

[Sall = sup (f,Sa) = sup (5" f,a) < sup, ||S*f||||a|| <VClla] .
e IS 171

O

Proof of the proposition. Similarly to the proof of 22d5 we assume that (2, P)
(R*®,7>), g) are the coordinates, and will prove that ¢(X) is a Lip(v/C)
function on (R>, ).

We take ny < ny < ... such that' > figi — X (as k — oo) almost
everywhere on [0, 1] x €.

n fact, n; = k fit.
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Given a € lp, we introduce h = a1 fi+asfo+- -+ € L]0, 1];* ||A]|* < Clal?
by For almost all (¢,z) € [0, 1] x (R>,7*°) we have

X(x—l—a,t)—X(xt—hmle—l—alfz —hmZ:z:zfl =

Thus, X (z + a) — X (x) = h for almost all z € (R*,7°°). Finally,

(X (2 +a)) = (X (2)] < [ X(x +a) = X ()] = 4] < VC]a] .

Here is a useful formula for the variance:

(23a5) Var(f, X / / f(s EZ=(s)=(t)) dsdt

for every f € L0, 1]. Proof:

E(/f(t)X(t) at) —E//f X (t) dsdt =

- / [ x5 0x0) dsit,

since

B [[ 156X lasat =2 ( [ Irx @) <
<5 ( / foP ) ( [1x0P ) = 1P / 12612 dt < oo.

23b Using assumption A,

Let Z: R — G C Lo(2, P) be a mean-square continuous stationary Gaussian
random process on R, and p its spectral measure:

EE(O)E(t):/ Ooewu(d)\):/ Oocos)\tu(d/\).

[e.9] o0

n fact, the distribution X[y*°] of X is a Gaussian measure on L0, 1], and h is its
admissible shift.
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Here is another useful formula for the variance, this time in terms of the
spectral measure (recall 11c4):

(23b1) Var(f, X) = / /O f®)eMdt| p(dN)

for every f € L0, 1]. Proof:
Var(f, X) = / / £(5) f(t)< / eiW—sm(dA)) dsdt =

— [uan( [ se@as)( [ roerar).,

/u(dA)/ ‘f(s>f<t)eix(ts)‘dsdt—u(R)(/U(t)\dt)Q < 0.

We generalize assumptions A and A,, of Sect. 2 as follows.

ASSUMPTION A:
n(R)=1.

That is, X(0) ~ N(0,1). Otherwise we may rescale X.
ASSUMPTION A,,: assumption A holds, and in addition,’

VA€ [0,00) (A A+1]) <

SRS

The argument of Sect. 1lc still applies, recall (11c5): for every f €
L2[07 1]7

[ 19 i< ¢ [ 1a00P ax) sup (a1 + 1)
as before, g(\) = [ €M f(t)dt, ||} = 2| f||3, and
Var(£,X) = [ lof* du.
Thus, assumption A, implies (recall 11c3)

Var(f, X) <

C
1P,

! Alternatively you may take A € R; it is the same up to a factor 2 absorbed by an
absolute constant.
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and, by [23a3]
(X)) € GaussLip(C/v/n)

whenever 1 : Ly[0,1] — R is a Lip(1) function.

Now all arguments of 11d, 1le apply, and so, Theorems 2a2, 2a3 are
generalized as follows.

Let X be a jointly measurable modification of a mean-square continuous
stationary Gaussian random process on R, satisfying assumption A,,.

23b2 Proposition. Let a function ¢ : R — R be continuous almost every-
where, and
x
p 1202)

» 1+ |z

< 00

Then the random variable

e= [ olx)a
is integrable, E{ = [ ¢ dy!, and for every £ > 0,
P(|¢ —E¢ >¢) < 26"
for some ¢, ,, > 0 (dependent on ¢ and ¢ only, not on n).

23b3 Proposition.
P(T(X() >¢e) <2 "

for some c. > 0 dependent on ¢ only.

As before, for f € L]0, 1],

7(1) = inf [ 170 = a(0)]

where the infimum is taken over all measurable g : (0,1) — R that send
Lebesgue measure to .

A trivial rescaling of ¢ by arbitrary L > 0 turns assumption A, and
Proposition [23b2] into the following.

ASSUMPTION A, 1: assumption A holds, and in addition,

YA € [0, 00) p([)\,)\Jr%]) < %
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23b4 Corollary. Let X satisfy A, 1 and ¢ be as in[23b2] Then the random

variable e
£ = z/o p(X (1)) dt

is integrable, E§ = [ ¢ dy?, and for every € > 0,
]P’(|§ —E¢|l > 6) < 27
for some ¢, , > 0.

Now, at last, we can deal with a single process, getting rid of assumption
AL

23b5 Theorem. Let X be a jointly measurable! modification of a mean-
square continuous stationary Gaussian random process on R whose spectral
measure has a bounded density.? Let a function ¢ : R — R be continuous
almost everywhere, and

()]
P e =
Then random variables
1 [E
& = Z/ ¢(X(t))dt for L € (0,00)
0

are integrable, B¢, = [ pdy', and for every € > 0,
]P)(KL - IEgL| > 5) < 2e_ca<p,ML

for some ¢. 4 > 0 (dependent only on €, ¢ and the supremum M of the
spectral density, not on L).

23b6 Exercise. Prove Theorem 23b5l.

23b7 Exercise. Formulate and prove a single-process counterpart of [23b3].

23c Dimension two, and higher

A two-component (in other words, R2-valued) Gaussian random process on
a set T may be defined as a pair (2, Z,) of Gaussian processes Z;,Zs : T —
G C Ly(Q, P). Or equivalently, as a Gaussian process = : T x {1,2} —

!Sample continuity is of course sufficient (by 22d3).

?Equivalently, sup, ., % < 0.
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G.! Similarly, a two-component random function £ on T is a pair (£1,&) of
random functions &1, & : Q — R”, or a random function £ : Q — RT*{1.2} =
RT x RT. Clearly, (£1,&) is a modification of (Z1,=5) if and only if both
&1 is a modification of Z; and &, is a modification of =5. Continuity and
measurabilty properties are defined evidently.

The covariance function of = : T'x{1,2} — Gis (s, k;t,l) — EZ(s, k)=(t,1) =
E Zk(s)=i(t). Stationarity (assuming 7= R) is, by definition (recall 21el),

Vs,t eR \V//{Z,l S {1, 2} EEk(S)El<t) = EEk(O)El(t — S) .

For a stationarity = : Rx {1,2} — G the covariance function R : Rx {1,2} x
{1,2} — R is, by definition,

R(t, k1) = Ry (t) = EER(0)E(¢) ;
it determines the process up to isometry. Another function r : R — R,
r(t) =E(2(0),2(t)) = E (Z1(0)Z1(t) + Z2(0)Z5(t)) = Ru1(t) + Roo(t),

containing only a partial information about R, will be called the traced co-
variance function. Normalizing the process to r(0) = 1 one may call r the
correlation function. However, such normalization is sometimes inconvenient,
since the case Z(0) ~ ~? leads to 7(0) = 2.

Clearly, the function r is positive definite. Assuming mean square conti-
nuity of = we apply Bochner’s theorem and get the traced spectral measure,?
— a symmetric measure g on R such that

E (2(0), 5(8)) = r(t) = / M ().

In the finite-dimensional case treated in 11f, r(t) = Y, |ax|? cos Agt (ay, being
vectors), thus, g1 =", |ax|?(dx, +0-x,)/2.

Similarly to we upgrade a two-component process = to the corre-
sponding random element® X of L,([0,1] — R?) and consider

(f, X) = (fi, X1) + (f2, X2)

LA coordinate-free definition of a F-valued Gaussian process on T, for a finite-
dimensional linear space E, may be given as follows: it is a linear map from E* to GT.

2The full (non-traced) spectral measure may be treated as a matrix-valued measure
on R, or equivalently, a 2 x 2 matrix whose elements are (signed) measures on R. For an
E-valued process one gets a “scalar product” on E* whose values are (signed) measures
on R.

3Just upgrade Z1 to X7, Zp to X, and take X = (X7, Xo).
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for f = (f1, f2) € L2([0,1] — R?). We cannot calculate Var(f, X) in terms
of the traced spectral measure u (like (23b1))), but we can bound it:!

2

Var(f, X) <2 t)e? dt| p(d)) =

_2 (‘/ fi(t l“dt + /Olfg(t)ei“dtQ)u(d/\).

Var(f, X) = [I(f, X)11° = [1(fr, Xo)+(fa, Xo) 7 < 201 fr, Xo) [P +2][(f2, Xo) ||

2 1 2
() +2 [ | [ e a] paatan,
0

where g1 ; is the spectral measure for X, and pgo — for Xs; it remains to
note that 1 = py1 + pio2 (think, why).
Assumption A is replaced with

Proof:

=2 t)e dt

2(0) ~7*

(which implies u(R) = 2); assumption A, still adds
1
VA € [0, 00) ,u([)\,/\—I— 1]) < -
where p is the traced spectral measure. As before we get

Vf e L2([07 1] — R2) Var(f, X) < %“J‘-‘H?7
Y(X) € GaussLip(C/+/n)

whenever 9 : LQ([O, 1] — ]RQ) — R is a Lip(1) function. Similarly to 11f,
Propositions 23b2 and 23b3| generalize to two-component processes satisfying
assumption A,,. Also Theorem generalizes to two-component processes

whose traced spectral measures have bounded densities.
All said about R? holds equally well for RY, d = 3,4, ...

23d Hints to exercises
R23b6l L = Chn.

n fact, the coefficient “2” is superfluous (see 11f for the discrete case); however, the
stronger inequality is harder to prove.
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