23 Random real zeroes: no derivatives

23a	Random element of $L_2[0,1]$	19
23 b	Using assumption A_n	21
23 c	Dimension two, and higher	24
23 d	Hints to exercises	26

23a Random element of $L_2[0,1]$

Continuing Sect. 22d, we consider a Gaussian process

$$\Xi: [0,1] \to G \subset L_2(\Omega, P), \quad \Xi(t) = f_1(t)g_1 + f_2(t)g_2 + \dots,$$

where $(g_1, g_2, ...)$ is an orthonormal basis of G, and $f_k(t) = \langle \Xi(t), g_k \rangle$ are measurable. Necessarily,¹

$$\forall t \in [0,1] \quad |f_1(t)|^2 + |f_2(t)|^2 + \dots = ||\Xi(t)||^2 < \infty.$$

We upgrade Ξ to the corresponding random element of $L_0[0, 1]$ (as explained in Sect. 22d), denoted by $X : \Omega \to L_0[0, 1]$. In general, $\int_0^1 ||\Xi(t)||^2 dt = \sum_k \int |f_k(t)|^2 dt$ need not be finite. From now on we assume that it is:

$$\int_0^1 \|\Xi(t)\|^2 \,\mathrm{d}t < \infty \,;$$

then, by Tonelli's theorem,

$$\mathbb{E} \int_0^1 |X(t)|^2 \, \mathrm{d}t = \int_0^1 \left(\mathbb{E} \, |X(t)|^2 \right) \, \mathrm{d}t = \int_0^1 \|\Xi(t)\|^2 \, \mathrm{d}t < \infty \,,$$

which shows that X is in fact a random element of $L_2[0, 1]$. We approximate X by another random element X_n of $L_2[0, 1]$,

$$X_n(t) = g_1 f_1(t) + \dots + g_n f_n(t) \,.$$

We may also treat X and X_n as elements of $L_2([0,1] \times \Omega)$.

23a1 Exercise. $X_n \to X$ in $L_2([0,1] \times \Omega)$.²

Prove it.

¹This is also sufficient (think, why).

²In fact, almost surely the series converges in $L_2(0, 1)$.

23a2 Exercise. For every $f \in L_2[0,1]$ the random variables $\langle f, X_n \rangle = \langle f_1, f \rangle g_1 + \dots + \langle f_n, f \rangle g_n$ converge (as $n \to \infty$) in $L_2(\Omega)$ to the random variable $\langle f, X \rangle = \int_0^1 f(t)X(t) dt$.

Prove it.

Thus,

$$\operatorname{Var}\langle f, X \rangle = \sum_{k} |\langle f, f_k \rangle|^2 \le C ||f||^2$$

for some $C \le \sum_k ||f_k||^2 = \int_0^1 ||\Xi(t)||^2 dt < \infty$.

23a3 Proposition. Let C be such that

$$\forall f \in L_2[0,1] \quad \operatorname{Var}\langle f, X \rangle \le C \|f\|^2 \,.$$

Let $\psi : L_2[0,1] \to \mathbb{R}$ be a Lip(1) function. Then the random variable $\psi(X)$ belongs to GaussLip(\sqrt{C}).

First, we need the duality argument used already in 11c3.

23a4 Lemma. $||a_1f_1+a_2f_2+\ldots||^2 \leq C(a_1^2+a_2^2+\ldots)$ for all $(a_1,a_2,\ldots) \in l_2$.

Proof. We introduce a linear operator $S : l_2 \to L_2[0,1]$ by $Sa = \sum a_k f_k$; the series converges in $L_2[0,1]$, since $\sum ||a_k f_k|| = \sum |a_k| \cdot ||f_k|| \le (\sum |a_k|^2)^{1/2} (\sum ||f_k||^2)^{1/2} < \infty$. We have $\forall a \in l_2 \quad \forall f \in L_2[0,1] \quad \langle f, Sa \rangle = \langle S^*f, a \rangle$, where $S^* : L_2[0,1] \to l_2$, $S^*f = (\langle f, f_1 \rangle, \langle f, f_2 \rangle, \ldots)$. We note that $\operatorname{Var}\langle f, X \rangle = ||S^*f||^2$; thus, $||S^*f||^2 \le C||f||^2$ for all f.

We note that $\operatorname{Var}\langle f, X \rangle = \|S^*f\|^2$; thus, $\|S^*f\|^2 \leq C\|f\|^2$ for all f. Finally,

$$||Sa|| = \sup_{\|f\| \le 1} \langle f, Sa \rangle = \sup_{\|f\| \le 1} \langle S^*f, a \rangle \le \sup_{\|f\| \le 1} ||S^*f|| ||a|| \le \sqrt{C} ||a||.$$

Proof of the proposition. Similarly to the proof of 22d5 we assume that $(\Omega, P) = (\mathbb{R}^{\infty}, \gamma^{\infty}), g_k$ are the coordinates, and will prove that $\psi(X)$ is a $\operatorname{Lip}(\sqrt{C})$ function on $(\mathbb{R}^{\infty}, \gamma^{\infty})$.

We take $n_1 < n_2 < \ldots$ such that $\sum_{i=1}^{n_k} f_i g_i \to X$ (as $k \to \infty$) almost everywhere on $[0, 1] \times \Omega$.

 \square

¹In fact, $n_k = k$ fit.

Given $a \in l_2$, we introduce $h = a_1 f_1 + a_2 f_2 + \cdots \in L_2[0, 1]; \|h\|^2 \leq C \|a\|^2$ by 23a4. For almost all $(t, x) \in [0, 1] \times (\mathbb{R}^{\infty}, \gamma^{\infty})$ we have

$$X(x+a,t) - X(x,t) = \lim_{k} \sum_{i=1}^{n_{k}} (x_{i}+a_{i})f_{i}(t) - \lim_{k} \sum_{i=1}^{n_{k}} x_{i}f_{i}(t) =$$
$$= \lim_{k} \sum_{i=1}^{n_{k}} a_{i}f_{i}(t) = h(t).$$

Thus, X(x+a) - X(x) = h for almost all $x \in (\mathbb{R}^{\infty}, \gamma^{\infty})$. Finally,

$$|\psi(X(x+a)) - \psi(X(x))| \le ||X(x+a) - X(x)|| = ||h|| \le \sqrt{C} ||a||.$$

Here is a useful formula for the variance:

(23a5)
$$\operatorname{Var}\langle f, X \rangle = \int_0^1 \int_0^1 f(s) f(t) \left(\mathbb{E} \,\Xi(s) \Xi(t) \right) \,\mathrm{d}s \,\mathrm{d}t$$

for every $f \in L_2[0, 1]$. Proof:

$$\begin{split} \mathbb{E}\left(\int f(t)X(t)\,\mathrm{d}t\right)^2 &= \mathbb{E}\,\iint f(s)X(s)f(t)X(t)\,\mathrm{d}s\mathrm{d}t = \\ &= \iint \left(\mathbb{E}\,f(s)X(s)f(t)X(t)\right)\mathrm{d}s\mathrm{d}t\,, \end{split}$$

since

$$\mathbb{E} \iint |f(s)X(s)f(t)X(t)| \,\mathrm{d}s \mathrm{d}t = \mathbb{E} \left(\int |f(t)X(t)| \,\mathrm{d}t \right)^2 \leq \\ \leq \mathbb{E} \left(\int |f(t)|^2 \,\mathrm{d}t \right) \left(\int |X(t)|^2 \,\mathrm{d}t \right) = \|f\|^2 \int_0^1 \|\Xi(t)\|^2 \,\mathrm{d}t < \infty \,.$$

23b Using assumption A_n

Let $\Xi : \mathbb{R} \to G \subset L_2(\Omega, P)$ be a mean-square continuous stationary Gaussian random process on \mathbb{R} , and μ its spectral measure:

$$\mathbb{E} \Xi(0)\Xi(t) = \int_{-\infty}^{+\infty} e^{i\lambda t} \mu(d\lambda) = \int_{-\infty}^{+\infty} \cos \lambda t \, \mu(d\lambda) \, .$$

¹In fact, the distribution $X[\gamma^{\infty}]$ of X is a Gaussian measure on $L_2[0,1]$, and h is its admissible shift.

Here is another useful formula for the variance, this time in terms of the spectral measure (recall 11c4):

(23b1)
$$\operatorname{Var}\langle f, X \rangle = \int \left| \int_0^1 f(t) \mathrm{e}^{\mathrm{i}\lambda t} \, \mathrm{d}t \right|^2 \mu(\mathrm{d}\lambda)$$

for every $f \in L_2[0, 1]$. Proof:

$$\begin{aligned} \operatorname{Var}\langle f, X \rangle &= \iint f(s) f(t) \Big(\int e^{i\lambda(t-s)} \mu(\mathrm{d}\lambda) \Big) \, \mathrm{d}s \mathrm{d}t = \\ &= \int \mu(\mathrm{d}\lambda) \Big(\int f(s) \overline{e^{i\lambda s}} \, \mathrm{d}s \Big) \Big(\int f(t) e^{i\lambda t} \, \mathrm{d}t \Big) \,, \end{aligned}$$

since

$$\int \mu(\mathrm{d}\lambda) \iint \left| f(s)f(t)\mathrm{e}^{\mathrm{i}\lambda(t-s)} \right| \mathrm{d}s\mathrm{d}t = \mu(\mathbb{R}) \left(\int \left| f(t) \right| \mathrm{d}t \right)^2 < \infty.$$

We generalize assumptions A and A_n of Sect. 2 as follows. ASSUMPTION A:

$$\mu(\mathbb{R}) = 1.$$

That is, $X(0) \sim N(0, 1)$. Otherwise we may rescale X. ASSUMPTION A_n : assumption A holds, and in addition,¹

$$\forall \lambda \in [0,\infty) \quad \mu([\lambda,\lambda+1]) \leq \frac{1}{n}.$$

The argument of Sect. 11c still applies, recall (11c5): for every $f \in L_2[0,1]$,

$$\int |g|^2 \,\mathrm{d}\mu \le C \Big(\int |g(\lambda)|^2 \,\mathrm{d}\lambda \Big) \sup_{\lambda} \mu \big([\lambda, \lambda + 1] \big) ;$$

as before, $g(\lambda) = \int_0^1 e^{i\lambda t} f(t) dt$, $||g||_2^2 = 2\pi ||f||_2^2$, and

$$\operatorname{Var}\langle f, X \rangle = \int |g|^2 \,\mathrm{d}\mu \,.$$

Thus, assumption A_n implies (recall 11c3)

$$\operatorname{Var}\langle f, X \rangle \le \frac{C}{n} \|f\|^2,$$

¹Alternatively you may take $\lambda \in \mathbb{R}$; it is the same up to a factor 2 absorbed by an absolute constant.

and, by 23a3,

$$\psi(X) \in \operatorname{GaussLip}(C/\sqrt{n})$$

whenever $\psi: L_2[0,1] \to \mathbb{R}$ is a Lip(1) function.

Now all arguments of 11d, 11e apply, and so, Theorems 2a2, 2a3 are generalized as follows.

Let X be a jointly measurable modification of a mean-square continuous stationary Gaussian random process on \mathbb{R} , satisfying assumption A_n .

23b2 Proposition. Let a function $\varphi : \mathbb{R} \to \mathbb{R}$ be continuous almost everywhere, and

$$\sup_{x} \frac{|\varphi(x)|}{1+|x|} < \infty \,.$$

Then the random variable

$$\xi = \int_0^1 \varphi \big(X(t) \big) \, \mathrm{d}t$$

is integrable, $\mathbb{E}\xi = \int \varphi \, \mathrm{d}\gamma^1$, and for every $\varepsilon > 0$,

$$\mathbb{P}\left(\left|\xi - \mathbb{E}\,\xi\right| \ge \varepsilon\right) \le 2\mathrm{e}^{-c_{\varepsilon,\varphi}n}$$

for some $c_{\varepsilon,\varphi} > 0$ (dependent on ε and φ only, not on n).

23b3 Proposition.

$$\mathbb{P}(T(X(\cdot)) \ge \varepsilon) \le 2\mathrm{e}^{-c_{\varepsilon}n}$$

for some $c_{\varepsilon} > 0$ dependent on ε only.

As before, for $f \in L_1[0, 1]$,

$$T(f) = \inf_{g} \int_{0}^{1} |f(t) - g(t)| \, \mathrm{d}t$$

where the infimum is taken over all measurable $g : (0,1) \to \mathbb{R}$ that send Lebesgue measure to γ^1 .

A trivial rescaling of t by arbitrary L > 0 turns assumption A_n and Proposition 23b2 into the following.

ASSUMPTION $A_{n,L}$: assumption A holds, and in addition,

$$\forall \lambda \in [0,\infty) \quad \mu\left(\left[\lambda,\lambda+\frac{1}{L}\right]\right) \leq \frac{1}{n}.$$

$$\xi = \frac{1}{L} \int_0^L \varphi \left(X(t) \right) dt$$

is integrable, $\mathbb{E}\xi = \int \varphi \, d\gamma^1$, and for every $\varepsilon > 0$,

$$\mathbb{P}(|\xi - \mathbb{E}\xi| \ge \varepsilon) \le 2\mathrm{e}^{-c_{\varepsilon,\varphi}n}$$

for some $c_{\varepsilon,\varphi} > 0$.

Now, at last, we can deal with a single process, getting rid of assumption $A_{n,L}$.

23b5 Theorem. Let X be a jointly measurable¹ modification of a meansquare continuous stationary Gaussian random process on \mathbb{R} whose spectral measure has a bounded density.² Let a function $\varphi : \mathbb{R} \to \mathbb{R}$ be continuous almost everywhere, and

$$\sup_{x} \frac{|\varphi(x)|}{1+|x|} < \infty \,.$$

Then random variables

$$\xi_L = \frac{1}{L} \int_0^L \varphi(X(t)) \, \mathrm{d}t \quad \text{for } L \in (0,\infty)$$

are integrable, $\mathbb{E}\xi_L = \int \varphi \, \mathrm{d}\gamma^1$, and for every $\varepsilon > 0$,

$$\mathbb{P}\left(\left|\xi_L - \mathbb{E}\,\xi_L\right| \ge \varepsilon\right) \le 2\mathrm{e}^{-c_{\varepsilon,\varphi,M}L}$$

for some $c_{\varepsilon,\varphi,M} > 0$ (dependent only on ε , φ and the supremum M of the spectral density, not on L).

23b6 Exercise. Prove Theorem 23b5.

23b7 Exercise. Formulate and prove a single-process counterpart of 23b3.

23c Dimension two, and higher

A two-component (in other words, \mathbb{R}^2 -valued) Gaussian random process on a set T may be defined as a pair (Ξ_1, Ξ_2) of Gaussian processes $\Xi_1, \Xi_2 : T \to G \subset L_2(\Omega, P)$. Or equivalently, as a Gaussian process $\Xi : T \times \{1, 2\} \to$

¹Sample continuity is of course sufficient (by 22d3).

²Equivalently, $\sup_{a < b} \frac{\mu([a,b])}{b-a} < \infty$.

 $G.^1$ Similarly, a two-component random function ξ on T is a pair (ξ_1, ξ_2) of random functions $\xi_1, \xi_2 : \Omega \to \mathbb{R}^T$, or a random function $\xi : \Omega \to \mathbb{R}^{T \times \{1,2\}} = \mathbb{R}^T \times \mathbb{R}^T$. Clearly, (ξ_1, ξ_2) is a modification of (Ξ_1, Ξ_2) if and only if both ξ_1 is a modification of Ξ_1 and ξ_2 is a modification of Ξ_2 . Continuity and measurability properties are defined evidently.

The covariance function of $\Xi : T \times \{1, 2\} \to G$ is $(s, k; t, l) \mapsto \mathbb{E} \Xi(s, k) \Xi(t, l) = \mathbb{E} \Xi_k(s) \Xi_l(t)$. Stationarity (assuming $T = \mathbb{R}$) is, by definition (recall 21e1),

$$\forall s, t \in \mathbb{R} \ \forall k, l \in \{1, 2\} \ \mathbb{E} \Xi_k(s) \Xi_l(t) = \mathbb{E} \Xi_k(0) \Xi_l(t-s) \,.$$

For a stationarity $\Xi : \mathbb{R} \times \{1, 2\} \to G$ the covariance function $R : \mathbb{R} \times \{1, 2\} \times \{1, 2\} \to \mathbb{R}$ is, by definition,

$$R(t,k,l) = R_{k,l}(t) = \mathbb{E} \Xi_k(0) \Xi_l(t);$$

it determines the process up to isometry. Another function $r : \mathbb{R} \to \mathbb{R}$,

$$r(t) = \mathbb{E} \langle \Xi(0), \Xi(t) \rangle = \mathbb{E} \left(\Xi_1(0) \Xi_1(t) + \Xi_2(0) \Xi_2(t) \right) = R_{1,1}(t) + R_{2,2}(t) ,$$

containing only a partial information about R, will be called the traced covariance function. Normalizing the process to r(0) = 1 one may call r the correlation function. However, such normalization is sometimes inconvenient, since the case $\Xi(0) \sim \gamma^2$ leads to r(0) = 2.

Clearly, the function r is positive definite. Assuming mean square continuity of Ξ we apply Bochner's theorem and get the traced spectral measure,² — a symmetric measure μ on \mathbb{R} such that

$$\mathbb{E} \langle \Xi(0), \Xi(t) \rangle = r(t) = \int e^{i\lambda t} \mu(d\lambda) \,.$$

In the finite-dimensional case treated in 11f, $r(t) = \sum_k |a_k|^2 \cos \lambda_k t$ (a_k being vectors), thus, $\mu = \sum_k |a_k|^2 (\delta_{\lambda_k} + \delta_{-\lambda_k})/2$.

Similarly to 23a we upgrade a two-component process Ξ to the corresponding random element³ X of $L_2([0,1] \to \mathbb{R}^2)$ and consider

$$\langle f, X \rangle = \langle f_1, X_1 \rangle + \langle f_2, X_2 \rangle$$

¹A coordinate-free definition of a *E*-valued Gaussian process on *T*, for a finitedimensional linear space *E*, may be given as follows: it is a linear map from E^* to G^T .

²The full (non-traced) spectral measure may be treated as a matrix-valued measure on \mathbb{R} , or equivalently, a 2 × 2 matrix whose elements are (signed) measures on \mathbb{R} . For an *E*-valued process one gets a "scalar product" on E^* whose values are (signed) measures on \mathbb{R} .

³Just upgrade Ξ_1 to X_1 , Ξ_2 to X_2 , and take $X = (X_1, X_2)$.

for $f = (f_1, f_2) \in L_2([0, 1] \to \mathbb{R}^2)$. We cannot calculate $\operatorname{Var}\langle f, X \rangle$ in terms of the *traced* spectral measure μ (like (23b1)), but we can bound it:¹

$$\begin{aligned} \operatorname{Var}\langle f, X \rangle &\leq 2 \int \left| \int_0^1 f(t) \mathrm{e}^{\mathrm{i}\lambda t} \, \mathrm{d}t \right|^2 \mu(\mathrm{d}\lambda) = \\ &= 2 \int \left(\left| \int_0^1 f_1(t) \mathrm{e}^{\mathrm{i}\lambda t} \, \mathrm{d}t \right|^2 + \left| \int_0^1 f_2(t) \mathrm{e}^{\mathrm{i}\lambda t} \, \mathrm{d}t \right|^2 \right) \mu(\mathrm{d}\lambda) \,. \end{aligned}$$

Proof:

$$\begin{aligned} \operatorname{Var}\langle f, X \rangle &= \|\langle f, X \rangle\|^2 = \|\langle f_1, X_1 \rangle + \langle f_2, X_2 \rangle\|^2 \le 2\|\langle f_1, X_1 \rangle\|^2 + 2\|\langle f_2, X_2 \rangle\|^2 \\ &= 2\int \left| \int_0^1 f_1(t) \mathrm{e}^{\mathrm{i}\lambda t} \, \mathrm{d}t \right|^2 \mu_{1,1}(\mathrm{d}\lambda) + 2\int \left| \int_0^1 f_2(t) \mathrm{e}^{\mathrm{i}\lambda t} \, \mathrm{d}t \right|^2 \mu_{2,2}(\mathrm{d}\lambda) \,, \end{aligned}$$

where $\mu_{1,1}$ is the spectral measure for X_1 , and $\mu_{2,2}$ — for X_2 ; it remains to note that $\mu = \mu_{1,1} + \mu_{2,2}$ (think, why).

Assumption A is replaced with

$$\Xi(0) \sim \gamma^2$$

(which implies $\mu(\mathbb{R}) = 2$); assumption A_n still adds

$$\forall \lambda \in [0, \infty) \quad \mu([\lambda, \lambda + 1]) \le \frac{1}{n}$$

where μ is the traced spectral measure. As before we get

$$\forall f \in L_2([0,1] \to \mathbb{R}^2) \quad \operatorname{Var}\langle f, X \rangle \leq \frac{C}{n} \|f\|^2;$$
$$\psi(X) \in \operatorname{GaussLip}(C/\sqrt{n})$$

whenever $\psi : L_2([0,1] \to \mathbb{R}^2) \to \mathbb{R}$ is a Lip(1) function. Similarly to 11f, Propositions 23b2 and 23b3 generalize to two-component processes satisfying assumption A_n . Also Theorem 23b5 generalizes to two-component processes whose *traced* spectral measures have bounded densities.

All said about \mathbb{R}^2 holds equally well for \mathbb{R}^d , $d = 3, 4, \ldots$

23d Hints to exercises

23b6: L = Cn.

 $^{^{1}}$ In fact, the coefficient "2" is superfluous (see 11f for the discrete case); however, the stronger inequality is harder to prove.