23 Random real zeroes: no derivatives

23a Random element of $L_{2}[0,1]$ 19
23b Using assumption A_{n} 21
23c Dimension two, and higher 24
23d Hints to exercises 26

23a Random element of $L_{2}[0,1]$

Continuing Sect. 22d, we consider a Gaussian process

$$
\Xi:[0,1] \rightarrow G \subset L_{2}(\Omega, P), \quad \Xi(t)=f_{1}(t) g_{1}+f_{2}(t) g_{2}+\ldots,
$$

where $\left(g_{1}, g_{2}, \ldots\right)$ is an orthonormal basis of G, and $f_{k}(t)=\left\langle\Xi(t), g_{k}\right\rangle$ are measurable. Necessarily, ${ }^{1}$

$$
\forall t \in[0,1] \quad\left|f_{1}(t)\right|^{2}+\left|f_{2}(t)\right|^{2}+\cdots=\|\Xi(t)\|^{2}<\infty .
$$

We upgrade Ξ to the corresponding random element of $L_{0}[0,1]$ (as explained in Sect. 22 d), denoted by $X: \Omega \rightarrow L_{0}[0,1]$. In general, $\int_{0}^{1}\|\Xi(t)\|^{2} \mathrm{~d} t=$ $\sum_{k} \int\left|f_{k}(t)\right|^{2} \mathrm{~d} t$ need not be finite. From now on we assume that it is:

$$
\int_{0}^{1}\|\Xi(t)\|^{2} \mathrm{~d} t<\infty
$$

then, by Tonelli's theorem,

$$
\mathbb{E} \int_{0}^{1}|X(t)|^{2} \mathrm{~d} t=\int_{0}^{1}\left(\mathbb{E}|X(t)|^{2}\right) \mathrm{d} t=\int_{0}^{1}\|\Xi(t)\|^{2} \mathrm{~d} t<\infty,
$$

which shows that X is in fact a random element of $L_{2}[0,1]$. We approximate X by another random element X_{n} of $L_{2}[0,1]$,

$$
X_{n}(t)=g_{1} f_{1}(t)+\cdots+g_{n} f_{n}(t) .
$$

We may also treat X and X_{n} as elements of $L_{2}([0,1] \times \Omega)$.
23a1 Exercise. $X_{n} \rightarrow X$ in $L_{2}([0,1] \times \Omega)$. ${ }^{2}$
Prove it.

[^0]23a2 Exercise. For every $f \in L_{2}[0,1]$ the random variables $\left\langle f, X_{n}\right\rangle=$ $\left\langle f_{1}, f\right\rangle g_{1}+\cdots+\left\langle f_{n}, f\right\rangle g_{n}$ converge (as $n \rightarrow \infty$) in $L_{2}(\Omega)$ to the random variable $\langle f, X\rangle=\int_{0}^{1} f(t) X(t) \mathrm{d} t$.

Prove it.
Thus,

$$
\operatorname{Var}\langle f, X\rangle=\sum_{k}\left|\left\langle f, f_{k}\right\rangle\right|^{2} \leq C\|f\|^{2}
$$

for some $C \leq \sum_{k}\left\|f_{k}\right\|^{2}=\int_{0}^{1}\|\Xi(t)\|^{2} \mathrm{~d} t<\infty$.
23a3 Proposition. Let C be such that

$$
\forall f \in L_{2}[0,1] \quad \operatorname{Var}\langle f, X\rangle \leq C\|f\|^{2}
$$

Let $\psi: L_{2}[0,1] \rightarrow \mathbb{R}$ be a $\operatorname{Lip}(1)$ function. Then the random variable $\psi(X)$ belongs to GaussLip (\sqrt{C}).

First, we need the duality argument used already in 11c3.
23a4 Lemma. $\left\|a_{1} f_{1}+a_{2} f_{2}+\ldots\right\|^{2} \leq C\left(a_{1}^{2}+a_{2}^{2}+\ldots\right)$ for all $\left(a_{1}, a_{2}, \ldots\right) \in l_{2}$.
Proof. We introduce a linear operator $S: l_{2} \rightarrow L_{2}[0,1]$ by $S a=$ $\sum a_{k} f_{k}$; the series converges in $L_{2}[0,1]$, since $\sum\left\|a_{k} f_{k}\right\|=\sum\left|a_{k}\right| \cdot\left\|f_{k}\right\| \leq$ $\left(\sum\left|a_{k}\right|^{2}\right)^{1 / 2}\left(\sum\left\|f_{k}\right\|^{2}\right)^{1 / 2}<\infty$. We have $\forall a \in l_{2} \forall f \in L_{2}[0,1]\langle f, S a\rangle=$ $\left\langle S^{*} f, a\right\rangle$, where $S^{*}: L_{2}[0,1] \rightarrow l_{2}, S^{*} f=\left(\left\langle f, f_{1}\right\rangle,\left\langle f, f_{2}\right\rangle, \ldots\right)$.

We note that $\operatorname{Var}\langle f, X\rangle=\left\|S^{*} f\right\|^{2}$; thus, $\left\|S^{*} f\right\|^{2} \leq C\|f\|^{2}$ for all f. Finally,

$$
\|S a\|=\sup _{\|f\| \leq 1}\langle f, S a\rangle=\sup _{\|f\| \leq 1}\left\langle S^{*} f, a\right\rangle \leq \sup _{\|f\| \leq 1}\left\|S^{*} f\right\|\|a\| \leq \sqrt{C}\|a\|
$$

Proof of the proposition. Similarly to the proof of 22 d 5 we assume that $(\Omega, P)=$ $\left(\mathbb{R}^{\infty}, \gamma^{\infty}\right), g_{k}$ are the coordinates, and will prove that $\psi(X)$ is a $\operatorname{Lip}(\sqrt{C})$ function on $\left(\mathbb{R}^{\infty}, \gamma^{\infty}\right)$.

We take $n_{1}<n_{2}<\ldots$ such that ${ }^{1} \sum_{i=1}^{n_{k}} f_{i} g_{i} \rightarrow X($ as $k \rightarrow \infty)$ almost everywhere on $[0,1] \times \Omega$.

[^1]Given $a \in l_{2}$, we introduce $h=a_{1} f_{1}+a_{2} f_{2}+\cdots \in L_{2}[0,1] ;{ }^{1}\|h\|^{2} \leq C\|a\|^{2}$ by 23a4. For almost all $(t, x) \in[0,1] \times\left(\mathbb{R}^{\infty}, \gamma^{\infty}\right)$ we have

$$
\begin{aligned}
X(x+a, t)-X(x, t)=\lim _{k} \sum_{i=1}^{n_{k}}\left(x_{i}+a_{i}\right) f_{i}(t)-\lim _{k} & \sum_{i=1}^{n_{k}} x_{i} f_{i}(t)= \\
& =\lim _{k} \sum_{i=1}^{n_{k}} a_{i} f_{i}(t)=h(t) .
\end{aligned}
$$

Thus, $X(x+a)-X(x)=h$ for almost all $x \in\left(\mathbb{R}^{\infty}, \gamma^{\infty}\right)$. Finally,

$$
|\psi(X(x+a))-\psi(X(x))| \leq\|X(x+a)-X(x)\|=\|h\| \leq \sqrt{C}\|a\|
$$

Here is a useful formula for the variance:

$$
\begin{equation*}
\operatorname{Var}\langle f, X\rangle=\int_{0}^{1} \int_{0}^{1} f(s) f(t)(\mathbb{E} \Xi(s) \Xi(t)) \mathrm{d} s \mathrm{~d} t \tag{23a5}
\end{equation*}
$$

for every $f \in L_{2}[0,1]$. Proof:

$$
\begin{aligned}
\mathbb{E}\left(\int f(t) X(t) \mathrm{d} t\right)^{2}=\mathbb{E} \iint f(s) X(s) & f(t) X(t) \mathrm{d} s \mathrm{~d} t= \\
& =\iint(\mathbb{E} f(s) X(s) f(t) X(t)) \mathrm{d} s \mathrm{~d} t
\end{aligned}
$$

since

$$
\begin{aligned}
& \mathbb{E} \iint|f(s) X(s) f(t) X(t)| \mathrm{d} s \mathrm{~d} t=\mathbb{E}\left(\int|f(t) X(t)| \mathrm{d} t\right)^{2} \leq \\
& \quad \leq \mathbb{E}\left(\int|f(t)|^{2} \mathrm{~d} t\right)\left(\int|X(t)|^{2} \mathrm{~d} t\right)=\|f\|^{2} \int_{0}^{1}\|\Xi(t)\|^{2} \mathrm{~d} t<\infty
\end{aligned}
$$

23b Using assumption A_{n}

Let $\Xi: \mathbb{R} \rightarrow G \subset L_{2}(\Omega, P)$ be a mean-square continuous stationary Gaussian random process on \mathbb{R}, and μ its spectral measure:

$$
\mathbb{E} \Xi(0) \Xi(t)=\int_{-\infty}^{+\infty} \mathrm{e}^{\mathrm{i} \lambda t} \mu(\mathrm{~d} \lambda)=\int_{-\infty}^{+\infty} \cos \lambda t \mu(\mathrm{~d} \lambda) .
$$

[^2]Here is another useful formula for the variance, this time in terms of the spectral measure (recall 11c4):

$$
\begin{equation*}
\operatorname{Var}\langle f, X\rangle=\int\left|\int_{0}^{1} f(t) \mathrm{e}^{\mathrm{i} \lambda t} \mathrm{~d} t\right|^{2} \mu(\mathrm{~d} \lambda) \tag{23b1}
\end{equation*}
$$

for every $f \in L_{2}[0,1]$. Proof:

$$
\begin{aligned}
\operatorname{Var}\langle f, X\rangle=\iint f(s) f(t)(& \left.\int \mathrm{e}^{\mathrm{i} \lambda(t-s)} \mu(\mathrm{d} \lambda)\right) \mathrm{d} s \mathrm{~d} t= \\
& =\int \mu(\mathrm{d} \lambda)\left(\int f(s) \overline{\mathrm{e}^{\mathrm{i} \lambda s}} \mathrm{~d} s\right)\left(\int f(t) \mathrm{e}^{\mathrm{i} \lambda t} \mathrm{~d} t\right)
\end{aligned}
$$

since

$$
\int \mu(\mathrm{d} \lambda) \iint\left|f(s) f(t) \mathrm{e}^{\mathrm{i} \lambda(t-s)}\right| \mathrm{d} s \mathrm{~d} t=\mu(\mathbb{R})\left(\int|f(t)| \mathrm{d} t\right)^{2}<\infty
$$

We generalize assumptions A and A_{n} of Sect. 2 as follows.
Assumption A :

$$
\mu(\mathbb{R})=1
$$

That is, $X(0) \sim N(0,1)$. Otherwise we may rescale X.
Assumption A_{n} : assumption A holds, and in addition, ${ }^{1}$

$$
\forall \lambda \in[0, \infty) \quad \mu([\lambda, \lambda+1]) \leq \frac{1}{n}
$$

The argument of Sect. 11c still applies, recall (11c5): for every $f \in$ $L_{2}[0,1]$,

$$
\int|g|^{2} \mathrm{~d} \mu \leq C\left(\int|g(\lambda)|^{2} \mathrm{~d} \lambda\right) \sup _{\lambda} \mu([\lambda, \lambda+1])
$$

as before, $g(\lambda)=\int_{0}^{1} \mathrm{e}^{\mathrm{i} \lambda t} f(t) \mathrm{d} t,\|g\|_{2}^{2}=2 \pi\|f\|_{2}^{2}$, and

$$
\operatorname{Var}\langle f, X\rangle=\int|g|^{2} \mathrm{~d} \mu
$$

Thus, assumption A_{n} implies (recall 11c3)

$$
\operatorname{Var}\langle f, X\rangle \leq \frac{C}{n}\|f\|^{2},
$$

[^3]and, by 23a3
$$
\psi(X) \in \operatorname{GaussLip}(C / \sqrt{n})
$$
whenever $\psi: L_{2}[0,1] \rightarrow \mathbb{R}$ is a $\operatorname{Lip}(1)$ function.
Now all arguments of 11d, 11e apply, and so, Theorems 2a2, 2a3 are generalized as follows.

Let X be a jointly measurable modification of a mean-square continuous stationary Gaussian random process on \mathbb{R}, satisfying assumption A_{n}.

23b2 Proposition. Let a function $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ be continuous almost everywhere, and

$$
\sup _{x} \frac{|\varphi(x)|}{1+|x|}<\infty .
$$

Then the random variable

$$
\xi=\int_{0}^{1} \varphi(X(t)) \mathrm{d} t
$$

is integrable, $\mathbb{E} \xi=\int \varphi \mathrm{d} \gamma^{1}$, and for every $\varepsilon>0$,

$$
\mathbb{P}(|\xi-\mathbb{E} \xi| \geq \varepsilon) \leq 2 \mathrm{e}^{-c_{\varepsilon, \varphi} n}
$$

for some $c_{\varepsilon, \varphi}>0$ (dependent on ε and φ only, not on n).

23b3 Proposition.

$$
\mathbb{P}(T(X(\cdot)) \geq \varepsilon) \leq 2 \mathrm{e}^{-c_{\varepsilon} n}
$$

for some $c_{\varepsilon}>0$ dependent on ε only.
As before, for $f \in L_{1}[0,1]$,

$$
T(f)=\inf _{g} \int_{0}^{1}|f(t)-g(t)| \mathrm{d} t
$$

where the infimum is taken over all measurable $g:(0,1) \rightarrow \mathbb{R}$ that send Lebesgue measure to γ^{1}.

A trivial rescaling of t by arbitrary $L>0$ turns assumption A_{n} and Proposition 23 b 2 into the following.

Assumption $A_{n, L}$: assumption A holds, and in addition,

$$
\forall \lambda \in[0, \infty) \quad \mu\left(\left[\lambda, \lambda+\frac{1}{L}\right]\right) \leq \frac{1}{n}
$$

23b4 Corollary. Let X satisfy $A_{n, L}$ and φ be as in 23b2. Then the random variable

$$
\xi=\frac{1}{L} \int_{0}^{L} \varphi(X(t)) \mathrm{d} t
$$

is integrable, $\mathbb{E} \xi=\int \varphi \mathrm{d} \gamma^{1}$, and for every $\varepsilon>0$,

$$
\mathbb{P}(|\xi-\mathbb{E} \xi| \geq \varepsilon) \leq 2 \mathrm{e}^{-\varepsilon_{\varepsilon, \varphi} n}
$$

for some $c_{\varepsilon, \varphi}>0$.
Now, at last, we can deal with a single process, getting rid of assumption $A_{n, L}$.

23b5 Theorem. Let X be a jointly measurable ${ }^{1}$ modification of a meansquare continuous stationary Gaussian random process on \mathbb{R} whose spectral measure has a bounded density. ${ }^{2}$ Let a function $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ be continuous almost everywhere, and

$$
\sup _{x} \frac{|\varphi(x)|}{1+|x|}<\infty .
$$

Then random variables

$$
\xi_{L}=\frac{1}{L} \int_{0}^{L} \varphi(X(t)) \mathrm{d} t \quad \text { for } L \in(0, \infty)
$$

are integrable, $\mathbb{E} \xi_{L}=\int \varphi \mathrm{d} \gamma^{1}$, and for every $\varepsilon>0$,

$$
\mathbb{P}\left(\left|\xi_{L}-\mathbb{E} \xi_{L}\right| \geq \varepsilon\right) \leq 2 \mathrm{e}^{-\varepsilon_{\varepsilon, \varphi, M} L}
$$

for some $c_{\varepsilon, \varphi, M}>0$ (dependent only on ε, φ and the supremum M of the spectral density, not on L).

23b6 Exercise. Prove Theorem 23b5.
23b7 Exercise. Formulate and prove a single-process counterpart of 23b3.

23c Dimension two, and higher

A two-component (in other words, \mathbb{R}^{2}-valued) Gaussian random process on a set T may be defined as a pair $\left(\Xi_{1}, \Xi_{2}\right)$ of Gaussian processes $\Xi_{1}, \Xi_{2}: T \rightarrow$ $G \subset L_{2}(\Omega, P)$. Or equivalently, as a Gaussian process $\Xi: T \times\{1,2\} \rightarrow$

[^4]$G .{ }^{1}$ Similarly, a two-component random function ξ on T is a pair $\left(\xi_{1}, \xi_{2}\right)$ of random functions $\xi_{1}, \xi_{2}: \Omega \rightarrow \mathbb{R}^{T}$, or a random function $\xi: \Omega \rightarrow \mathbb{R}^{T \times\{1,2\}}=$ $\mathbb{R}^{T} \times \mathbb{R}^{T}$. Clearly, $\left(\xi_{1}, \xi_{2}\right)$ is a modification of $\left(\Xi_{1}, \Xi_{2}\right)$ if and only if both ξ_{1} is a modification of Ξ_{1} and ξ_{2} is a modification of Ξ_{2}. Continuity and measurabilty properties are defined evidently.

The covariance function of $\Xi: T \times\{1,2\} \rightarrow G$ is $(s, k ; t, l) \mapsto \mathbb{E} \Xi(s, k) \Xi(t, l)=$ $\mathbb{E} \Xi_{k}(s) \Xi_{l}(t)$. Stationarity (assuming $T=\mathbb{R}$) is, by definition (recall 21e1),

$$
\forall s, t \in \mathbb{R} \quad \forall k, l \in\{1,2\} \quad \mathbb{E} \Xi_{k}(s) \Xi_{l}(t)=\mathbb{E} \Xi_{k}(0) \Xi_{l}(t-s) .
$$

For a stationarity $\Xi: \mathbb{R} \times\{1,2\} \rightarrow G$ the covariance function $R: \mathbb{R} \times\{1,2\} \times$ $\{1,2\} \rightarrow \mathbb{R}$ is, by definition,

$$
R(t, k, l)=R_{k, l}(t)=\mathbb{E} \Xi_{k}(0) \Xi_{l}(t) ;
$$

it determines the process up to isometry. Another function $r: \mathbb{R} \rightarrow \mathbb{R}$,

$$
r(t)=\mathbb{E}\langle\Xi(0), \Xi(t)\rangle=\mathbb{E}\left(\Xi_{1}(0) \Xi_{1}(t)+\Xi_{2}(0) \Xi_{2}(t)\right)=R_{1,1}(t)+R_{2,2}(t),
$$

containing only a partial information about R, will be called the traced covariance function. Normalizing the process to $r(0)=1$ one may call r the correlation function. However, such normalization is sometimes inconvenient, since the case $\Xi(0) \sim \gamma^{2}$ leads to $r(0)=2$.

Clearly, the function r is positive definite. Assuming mean square continuity of Ξ we apply Bochner's theorem and get the traced spectral measure, ${ }^{2}$ - a symmetric measure μ on \mathbb{R} such that

$$
\mathbb{E}\langle\Xi(0), \Xi(t)\rangle=r(t)=\int \mathrm{e}^{\mathrm{i} \lambda t} \mu(\mathrm{~d} \lambda)
$$

In the finite-dimensional case treated in 11f, $r(t)=\sum_{k}\left|a_{k}\right|^{2} \cos \lambda_{k} t$ (a_{k} being vectors), thus, $\mu=\sum_{k}\left|a_{k}\right|^{2}\left(\delta_{\lambda_{k}}+\delta_{-\lambda_{k}}\right) / 2$.

Similarly to 23a we upgrade a two-component process Ξ to the corresponding random element ${ }^{3} X$ of $L_{2}\left([0,1] \rightarrow \mathbb{R}^{2}\right)$ and consider

$$
\langle f, X\rangle=\left\langle f_{1}, X_{1}\right\rangle+\left\langle f_{2}, X_{2}\right\rangle
$$

[^5]for $f=\left(f_{1}, f_{2}\right) \in L_{2}\left([0,1] \rightarrow \mathbb{R}^{2}\right)$. We cannot calculate $\operatorname{Var}\langle f, X\rangle$ in terms of the traced spectral measure μ (like (23b1)), but we can bound it: ${ }^{1}$
\[

$$
\begin{aligned}
\operatorname{Var}\langle f, X\rangle \leq 2 \int \mid & \left.\int_{0}^{1} f(t) \mathrm{e}^{\mathrm{i} \lambda t} \mathrm{~d} t\right|^{2} \mu(\mathrm{~d} \lambda)= \\
& =2 \int\left(\left|\int_{0}^{1} f_{1}(t) \mathrm{e}^{\mathrm{i} \lambda t} \mathrm{~d} t\right|^{2}+\left|\int_{0}^{1} f_{2}(t) \mathrm{e}^{\mathrm{i} \lambda t} \mathrm{~d} t\right|^{2}\right) \mu(\mathrm{d} \lambda)
\end{aligned}
$$
\]

Proof:

$$
\begin{gathered}
\operatorname{Var}\langle f, X\rangle=\|\langle f, X\rangle\|^{2}=\left\|\left\langle f_{1}, X_{1}\right\rangle+\left\langle f_{2}, X_{2}\right\rangle\right\|^{2} \leq 2\left\|\left\langle f_{1}, X_{1}\right\rangle\right\|^{2}+2\left\|\left\langle f_{2}, X_{2}\right\rangle\right\|^{2} \\
=2 \int\left|\int_{0}^{1} f_{1}(t) \mathrm{e}^{\mathrm{i} \lambda t} \mathrm{~d} t\right|^{2} \mu_{1,1}(\mathrm{~d} \lambda)+2 \int\left|\int_{0}^{1} f_{2}(t) \mathrm{e}^{\mathrm{i} \lambda t} \mathrm{~d} t\right|^{2} \mu_{2,2}(\mathrm{~d} \lambda),
\end{gathered}
$$

where $\mu_{1,1}$ is the spectral measure for X_{1}, and $\mu_{2,2}$ - for X_{2}; it remains to note that $\mu=\mu_{1,1}+\mu_{2,2}$ (think, why).

Assumption A is replaced with

$$
\Xi(0) \sim \gamma^{2}
$$

(which implies $\mu(\mathbb{R})=2$); assumption A_{n} still adds

$$
\forall \lambda \in[0, \infty) \quad \mu([\lambda, \lambda+1]) \leq \frac{1}{n}
$$

where μ is the traced spectral measure. As before we get

$$
\begin{gathered}
\forall f \in L_{2}\left([0,1] \rightarrow \mathbb{R}^{2}\right) \quad \operatorname{Var}\langle f, X\rangle \leq \frac{C}{n}\|f\|^{2} ; \\
\psi(X) \in \operatorname{GaussLip}(C / \sqrt{n})
\end{gathered}
$$

whenever $\psi: L_{2}\left([0,1] \rightarrow \mathbb{R}^{2}\right) \rightarrow \mathbb{R}$ is a $\operatorname{Lip}(1)$ function. Similarly to 11 f , Propositions 23b2 and 23b3 generalize to two-component processes satisfying assumption A_{n}. Also Theorem 23b5 generalizes to two-component processes whose traced spectral measures have bounded densities.

All said about \mathbb{R}^{2} holds equally well for $\mathbb{R}^{d}, d=3,4, \ldots$

23d Hints to exercises

23b6. $L=C n$.

[^6]
[^0]: ${ }^{1}$ This is also sufficient (think, why).
 ${ }^{2}$ In fact, almost surely the series converges in $L_{2}(0,1)$.

[^1]: ${ }^{1}$ In fact, $n_{k}=k$ fit.

[^2]: ${ }^{1}$ In fact, the distribution $X\left[\gamma^{\infty}\right]$ of X is a Gaussian measure on $L_{2}[0,1]$, and h is its admissible shift.

[^3]: ${ }^{1}$ Alternatively you may take $\lambda \in \mathbb{R}$; it is the same up to a factor 2 absorbed by an absolute constant.

[^4]: ${ }^{1}$ Sample continuity is of course sufficient (by 22d3).
 ${ }^{2}$ Equivalently, $\sup _{a<b} \frac{\mu([a, b])}{b-a}<\infty$.

[^5]: ${ }^{1} \mathrm{~A}$ coordinate-free definition of a E-valued Gaussian process on T, for a finitedimensional linear space E, may be given as follows: it is a linear map from E^{*} to G^{T}.
 ${ }^{2}$ The full (non-traced) spectral measure may be treated as a matrix-valued measure on \mathbb{R}, or equivalently, a 2×2 matrix whose elements are (signed) measures on \mathbb{R}. For an E-valued process one gets a "scalar product" on E^{*} whose values are (signed) measures on \mathbb{R}.
 ${ }^{3}$ Just upgrade Ξ_{1} to X_{1}, Ξ_{2} to X_{2}, and take $X=\left(X_{1}, X_{2}\right)$.

[^6]: ${ }^{1}$ In fact, the coefficient " 2 " is superfluous (see 11 f for the discrete case); however, the stronger inequality is harder to prove.

