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23a Random element of L2[0, 1]

Continuing Sect. 22d, we consider a Gaussian process

Ξ : [0, 1]→ G ⊂ L2(Ω, P ) , Ξ(t) = f1(t)g1 + f2(t)g2 + . . . ,

where (g1, g2, . . . ) is an orthonormal basis of G, and fk(t) = 〈Ξ(t), gk〉 are
measurable. Necessarily,1

∀t ∈ [0, 1] |f1(t)|2 + |f2(t)|2 + · · · = ‖Ξ(t)‖2 <∞ .

We upgrade Ξ to the corresponding random element of L0[0, 1] (as explained

in Sect. 22d), denoted by X : Ω → L0[0, 1]. In general,
∫ 1

0
‖Ξ(t)‖2 dt =∑

k

∫
|fk(t)|2 dt need not be finite. From now on we assume that it is:∫ 1

0

‖Ξ(t)‖2 dt <∞ ;

then, by Tonelli’s theorem,

E
∫ 1

0

|X(t)|2 dt =

∫ 1

0

(
E |X(t)|2

)
dt =

∫ 1

0

‖Ξ(t)‖2 dt <∞ ,

which shows that X is in fact a random element of L2[0, 1]. We approximate
X by another random element Xn of L2[0, 1],

Xn(t) = g1f1(t) + · · ·+ gnfn(t) .

We may also treat X and Xn as elements of L2

(
[0, 1]× Ω

)
.

23a1 Exercise. Xn → X in L2

(
[0, 1]× Ω

)
. 2

Prove it.

1This is also sufficient (think, why).
2In fact, almost surely the series converges in L2(0, 1).
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23a2 Exercise. For every f ∈ L2[0, 1] the random variables 〈f,Xn〉 =
〈f1, f〉g1 + · · · + 〈fn, f〉gn converge (as n → ∞) in L2(Ω) to the random

variable 〈f,X〉 =
∫ 1

0
f(t)X(t) dt.

Prove it.

Thus,

Var〈f,X〉 =
∑
k

|〈f, fk〉|2 ≤ C‖f‖2

for some C ≤
∑

k ‖fk‖2 =
∫ 1

0
‖Ξ(t)‖2 dt <∞.

23a3 Proposition. Let C be such that

∀f ∈ L2[0, 1] Var〈f,X〉 ≤ C‖f‖2 .

Let ψ : L2[0, 1] → R be a Lip(1) function. Then the random variable ψ(X)
belongs to GaussLip(

√
C).

First, we need the duality argument used already in 11c3.

23a4 Lemma. ‖a1f1+a2f2+. . . ‖2 ≤ C(a21+a22+. . . ) for all (a1, a2, . . . ) ∈ l2.

Proof. We introduce a linear operator S : l2 → L2[0, 1] by Sa =∑
akfk; the series converges in L2[0, 1], since

∑
‖akfk‖ =

∑
|ak| · ‖fk‖ ≤(∑

|ak|2
)
1/2
(∑
‖fk‖2

)
1/2 < ∞. We have ∀a ∈ l2 ∀f ∈ L2[0, 1] 〈f, Sa〉 =

〈S∗f, a〉, where S∗ : L2[0, 1]→ l2, S
∗f =

(
〈f, f1〉, 〈f, f2〉, . . .

)
.

We note that Var〈f,X〉 = ‖S∗f‖2; thus, ‖S∗f‖2 ≤ C‖f‖2 for all f .
Finally,

‖Sa‖ = sup
‖f‖≤1

〈f, Sa〉 = sup
‖f‖≤1

〈S∗f, a〉 ≤ sup
‖f‖≤1

‖S∗f‖‖a‖ ≤
√
C‖a‖ .

Proof of the proposition. Similarly to the proof of 22d5 we assume that (Ω, P ) =
(R∞, γ∞), gk are the coordinates, and will prove that ψ(X) is a Lip(

√
C)

function on (R∞, γ∞).
We take n1 < n2 < . . . such that1

∑nk

i=1 figi → X (as k → ∞) almost
everywhere on [0, 1]× Ω.

1In fact, nk = k fit.
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Given a ∈ l2, we introduce h = a1f1+a2f2+· · · ∈ L2[0, 1];1 ‖h‖2 ≤ C‖a‖2
by 23a4. For almost all (t, x) ∈ [0, 1]× (R∞, γ∞) we have

X(x+ a, t)−X(x, t) = lim
k

nk∑
i=1

(xi + ai)fi(t)− lim
k

nk∑
i=1

xifi(t) =

= lim
k

nk∑
i=1

aifi(t) = h(t) .

Thus, X(x+ a)−X(x) = h for almost all x ∈ (R∞, γ∞). Finally,

|ψ
(
X(x+ a)

)
− ψ

(
X(x)

)
| ≤ ‖X(x+ a)−X(x)‖ = ‖h‖ ≤

√
C‖a‖ .

Here is a useful formula for the variance:

(23a5) Var〈f,X〉 =

∫ 1

0

∫ 1

0

f(s)f(t)
(
EΞ(s)Ξ(t)

)
dsdt

for every f ∈ L2[0, 1]. Proof:

E
(∫

f(t)X(t) dt
)2

= E
∫∫

f(s)X(s)f(t)X(t) dsdt =

=

∫∫ (
E f(s)X(s)f(t)X(t)

)
dsdt ,

since

E
∫∫
|f(s)X(s)f(t)X(t)| dsdt = E

(∫
|f(t)X(t)| dt

)2
≤

≤ E
(∫
|f(t)|2 dt

)(∫
|X(t)|2 dt

)
= ‖f‖2

∫ 1

0

‖Ξ(t)‖2 dt <∞ .

23b Using assumption An

Let Ξ : R→ G ⊂ L2(Ω, P ) be a mean-square continuous stationary Gaussian
random process on R, and µ its spectral measure:

EΞ(0)Ξ(t) =

∫ +∞

−∞
eiλt µ(dλ) =

∫ +∞

−∞
cosλt µ(dλ) .

1In fact, the distribution X[γ∞] of X is a Gaussian measure on L2[0, 1], and h is its
admissible shift.
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Here is another useful formula for the variance, this time in terms of the
spectral measure (recall 11c4):

(23b1) Var〈f,X〉 =

∫ ∣∣∣∣ ∫ 1

0

f(t)eiλt dt

∣∣∣∣2 µ(dλ)

for every f ∈ L2[0, 1]. Proof:

Var〈f,X〉 =

∫∫
f(s)f(t)

(∫
eiλ(t−s) µ(dλ)

)
dsdt =

=

∫
µ(dλ)

(∫
f(s)eiλs ds

)(∫
f(t)eiλt dt

)
,

since ∫
µ(dλ)

∫∫ ∣∣f(s)f(t)eiλ(t−s)
∣∣ dsdt = µ(R)

(∫
|f(t)| dt

)2
<∞ .

We generalize assumptions A and An of Sect. 2 as follows.

Assumption A:
µ(R) = 1 .

That is, X(0) ∼ N(0, 1). Otherwise we may rescale X.

Assumption An: assumption A holds, and in addition,1

∀λ ∈ [0,∞) µ
(
[λ, λ+ 1]

)
≤ 1

n
.

The argument of Sect. 11c still applies, recall (11c5): for every f ∈
L2[0, 1], ∫

|g|2 dµ ≤ C
(∫
|g(λ)|2 dλ

)
sup
λ
µ
(
[λ, λ+ 1]

)
;

as before, g(λ) =
∫ 1

0
eiλtf(t) dt, ‖g‖22 = 2π‖f‖22, and

Var〈f,X〉 =

∫
|g|2 dµ .

Thus, assumption An implies (recall 11c3)

Var〈f,X〉 ≤ C

n
‖f‖2 ,

1Alternatively you may take λ ∈ R; it is the same up to a factor 2 absorbed by an
absolute constant.
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and, by 23a3,
ψ(X) ∈ GaussLip(C/

√
n)

whenever ψ : L2[0, 1]→ R is a Lip(1) function.
Now all arguments of 11d, 11e apply, and so, Theorems 2a2, 2a3 are

generalized as follows.
Let X be a jointly measurable modification of a mean-square continuous

stationary Gaussian random process on R, satisfying assumption An.

23b2 Proposition. Let a function ϕ : R → R be continuous almost every-
where, and

sup
x

|ϕ(x)|
1 + |x|

<∞ .

Then the random variable

ξ =

∫ 1

0

ϕ
(
X(t)

)
dt

is integrable, E ξ =
∫
ϕ dγ1, and for every ε > 0,

P
(
|ξ − E ξ| ≥ ε

)
≤ 2e−cε,ϕn

for some cε,ϕ > 0 (dependent on ε and ϕ only, not on n).

23b3 Proposition.
P
(
T (X(·)) ≥ ε

)
≤ 2e−cεn

for some cε > 0 dependent on ε only.

As before, for f ∈ L1[0, 1],

T (f) = inf
g

∫ 1

0

|f(t)− g(t)| dt

where the infimum is taken over all measurable g : (0, 1) → R that send
Lebesgue measure to γ1.

A trivial rescaling of t by arbitrary L > 0 turns assumption An and
Proposition 23b2 into the following.

Assumption An,L: assumption A holds, and in addition,

∀λ ∈ [0,∞) µ
([
λ, λ+

1

L

])
≤ 1

n
.
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23b4 Corollary. Let X satisfy An,L and ϕ be as in 23b2. Then the random
variable

ξ =
1

L

∫ L

0

ϕ
(
X(t)

)
dt

is integrable, E ξ =
∫
ϕ dγ1, and for every ε > 0,

P
(
|ξ − E ξ| ≥ ε

)
≤ 2e−cε,ϕn

for some cε,ϕ > 0.

Now, at last, we can deal with a single process, getting rid of assumption
An,L.

23b5 Theorem. Let X be a jointly measurable1 modification of a mean-
square continuous stationary Gaussian random process on R whose spectral
measure has a bounded density.2 Let a function ϕ : R → R be continuous
almost everywhere, and

sup
x

|ϕ(x)|
1 + |x|

<∞ .

Then random variables

ξL =
1

L

∫ L

0

ϕ
(
X(t)

)
dt for L ∈ (0,∞)

are integrable, E ξL =
∫
ϕ dγ1, and for every ε > 0,

P
(
|ξL − E ξL| ≥ ε

)
≤ 2e−cε,ϕ,ML

for some cε,ϕ,M > 0 (dependent only on ε, ϕ and the supremum M of the
spectral density, not on L).

23b6 Exercise. Prove Theorem 23b5.

23b7 Exercise. Formulate and prove a single-process counterpart of 23b3.

23c Dimension two, and higher

A two-component (in other words, R2-valued) Gaussian random process on
a set T may be defined as a pair (Ξ1,Ξ2) of Gaussian processes Ξ1,Ξ2 : T →
G ⊂ L2(Ω, P ). Or equivalently, as a Gaussian process Ξ : T × {1, 2} →

1Sample continuity is of course sufficient (by 22d3).
2Equivalently, supa<b

µ([a,b])
b−a <∞.
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G.1 Similarly, a two-component random function ξ on T is a pair (ξ1, ξ2) of
random functions ξ1, ξ2 : Ω→ RT , or a random function ξ : Ω→ RT×{1,2} =
RT × RT . Clearly, (ξ1, ξ2) is a modification of (Ξ1,Ξ2) if and only if both
ξ1 is a modification of Ξ1 and ξ2 is a modification of Ξ2. Continuity and
measurabilty properties are defined evidently.

The covariance function of Ξ : T×{1, 2} → G is (s, k; t, l) 7→ EΞ(s, k)Ξ(t, l) =
EΞk(s)Ξl(t). Stationarity (assuming T = R) is, by definition (recall 21e1),

∀s, t ∈ R ∀k, l ∈ {1, 2} EΞk(s)Ξl(t) = EΞk(0)Ξl(t− s) .

For a stationarity Ξ : R×{1, 2} → G the covariance function R : R×{1, 2}×
{1, 2} → R is, by definition,

R(t, k, l) = Rk,l(t) = EΞk(0)Ξl(t) ;

it determines the process up to isometry. Another function r : R→ R,

r(t) = E 〈Ξ(0),Ξ(t)〉 = E
(
Ξ1(0)Ξ1(t) + Ξ2(0)Ξ2(t)

)
= R1,1(t) +R2,2(t) ,

containing only a partial information about R, will be called the traced co-
variance function. Normalizing the process to r(0) = 1 one may call r the
correlation function. However, such normalization is sometimes inconvenient,
since the case Ξ(0) ∼ γ2 leads to r(0) = 2.

Clearly, the function r is positive definite. Assuming mean square conti-
nuity of Ξ we apply Bochner’s theorem and get the traced spectral measure,2

— a symmetric measure µ on R such that

E 〈Ξ(0),Ξ(t)〉 = r(t) =

∫
eiλt µ(dλ) .

In the finite-dimensional case treated in 11f, r(t) =
∑

k |ak|2 cosλkt (ak being
vectors), thus, µ =

∑
k |ak|2(δλk + δ−λk)/2.

Similarly to 23a we upgrade a two-component process Ξ to the corre-
sponding random element3 X of L2

(
[0, 1]→ R2

)
and consider

〈f,X〉 = 〈f1, X1〉+ 〈f2, X2〉
1A coordinate-free definition of a E-valued Gaussian process on T , for a finite-

dimensional linear space E, may be given as follows: it is a linear map from E∗ to GT .
2The full (non-traced) spectral measure may be treated as a matrix-valued measure

on R, or equivalently, a 2× 2 matrix whose elements are (signed) measures on R. For an
E-valued process one gets a “scalar product” on E∗ whose values are (signed) measures
on R.

3Just upgrade Ξ1 to X1, Ξ2 to X2, and take X = (X1, X2).
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for f = (f1, f2) ∈ L2

(
[0, 1] → R2

)
. We cannot calculate Var〈f,X〉 in terms

of the traced spectral measure µ (like (23b1)), but we can bound it:1

Var〈f,X〉 ≤ 2

∫ ∣∣∣∣ ∫ 1

0

f(t)eiλt dt

∣∣∣∣2 µ(dλ) =

= 2

∫ (∣∣∣∣ ∫ 1

0

f1(t)e
iλt dt

∣∣∣∣2 +

∣∣∣∣ ∫ 1

0

f2(t)e
iλt dt

∣∣∣∣2)µ(dλ) .

Proof:

Var〈f,X〉 = ‖〈f,X〉‖2 = ‖〈f1, X1〉+〈f2, X2〉‖2 ≤ 2‖〈f1, X1〉‖2+2‖〈f2, X2〉‖2

= 2

∫ ∣∣∣∣ ∫ 1

0

f1(t)e
iλt dt

∣∣∣∣2 µ1,1(dλ) + 2

∫ ∣∣∣∣ ∫ 1

0

f2(t)e
iλt dt

∣∣∣∣2 µ2,2(dλ) ,

where µ1,1 is the spectral measure for X1, and µ2,2 — for X2; it remains to
note that µ = µ1,1 + µ2,2 (think, why).

Assumption A is replaced with

Ξ(0) ∼ γ2

(which implies µ(R) = 2); assumption An still adds

∀λ ∈ [0,∞) µ
(
[λ, λ+ 1]

)
≤ 1

n

where µ is the traced spectral measure. As before we get

∀f ∈ L2

(
[0, 1]→ R2

)
Var〈f,X〉 ≤ C

n
‖f‖2 ;

ψ(X) ∈ GaussLip(C/
√
n)

whenever ψ : L2

(
[0, 1] → R2

)
→ R is a Lip(1) function. Similarly to 11f,

Propositions 23b2 and 23b3 generalize to two-component processes satisfying
assumption An. Also Theorem 23b5 generalizes to two-component processes
whose traced spectral measures have bounded densities.

All said about R2 holds equally well for Rd, d = 3, 4, . . .

23d Hints to exercises

23b6: L = Cn.

1In fact, the coefficient “2” is superfluous (see 11f for the discrete case); however, the
stronger inequality is harder to prove.
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