22 Functions of normal random variables

22a	Functions of infinitely many random variables .	11
22b	The Cameron-Martin formula	13
22 c	Lipschitz functions	14
22 d	A special case \ldots \ldots \ldots \ldots \ldots \ldots \ldots	16
22 e	Hints to exercises	18

22a Functions of infinitely many random variables

Recall that \mathbb{R}^{∞} is equipped with the σ -field \mathcal{F} generated by the coordinates. Denoting by \mathcal{F}_n the sub- σ -field generated by the first n coordinates we have $\mathcal{F}_n \uparrow \mathcal{F}$ (that is, \mathcal{F} is the least sub- σ -field containing all \mathcal{F}_n).

We'll consider the relation $\mathcal{F}_n \uparrow \mathcal{F}_{\infty}$ in general.

22a1 Exercise. Let (Ω, \mathcal{F}, P) be a probability space, and $\mathcal{F}_1 \subset \mathcal{F}_2 \subset \cdots \subset \mathcal{F}$ sub- σ -fields. Consider all $A \in \mathcal{F}$ such that there exist $A_1 \in \mathcal{F}_1, A_2 \in \mathcal{F}_2, \ldots$ satisfying¹ $P(A \triangle A_n) \to 0$. Prove that all such A are a sub- σ -field.

22a2 Corollary. Let (Ω, \mathcal{F}, P) be a probability space, and $\mathcal{F}_1 \subset \mathcal{F}_2 \subset \cdots \subset \mathcal{F}_\infty \subset \mathcal{F}$ sub- σ -fields such that $\mathcal{F}_n \uparrow \mathcal{F}_\infty$. Then for every $A \in \mathcal{F}_\infty$ there exist $A_1 \in \mathcal{F}_1, A_2 \in \mathcal{F}_2, \ldots$ satisfying $P(A \bigtriangleup A_n) \to 0$.

22a3 Lemma. Let (Ω, \mathcal{F}, P) be a probability space, and $\mathcal{F}_1 \subset \mathcal{F}_2 \subset \cdots \subset \mathcal{F}_{\infty} \subset \mathcal{F}$ sub- σ -fields such that $\mathcal{F}_n \uparrow \mathcal{F}_{\infty}$. Then²

$$L_2(\mathcal{F}_n) \uparrow L_2(\mathcal{F}_\infty)$$

(that is, $L_2(\mathcal{F}_{\infty})$ is the least (closed linear) subspace containing all $L_2(\mathcal{F}_n)$).

Proof. Clearly, $L_2(\mathcal{F}_n) \uparrow H \subset L_2(\mathcal{F}_\infty)$; we have to prove that $H = L_2(\mathcal{F}_\infty)$. By 22a2, $\mathbf{1}_A \in H$ for every $A \in \mathcal{F}_\infty$. Linear combinations of such indicators approximate every $f \in L_2(\mathcal{F}_\infty)$.

The orthogonal projection $L_2(\mathcal{F}) \to L_2(\mathcal{F}_n)$ is, by definition, the operator of conditional expectation, $X \mapsto \mathbb{E}(X | \mathcal{F}_n)$. It follows from 22a3 that

(22a4)
$$\mathbb{E}(X|\mathcal{F}_n) \to \mathbb{E}(X|\mathcal{F}_\infty) \text{ in } L_2 \text{ as } n \to \infty$$

¹Here $A \triangle B = (A \setminus B) \cup (B \setminus A)$.

²Here $L_2(\mathcal{F}_n) = L_2(\Omega, \mathcal{F}_n, P|_{\mathcal{F}_n}).$

Tel Aviv University, 2010

for every $X \in L_2(\mathcal{F})$.¹ In particular, $\mathbb{E}(X | \mathcal{F}_n) \to X$ for $X \in L_2(\mathcal{F}_\infty)$, and $\mathbb{P}(A | \mathcal{F}_n) \to \mathbf{1}_A$ for $A \in \mathcal{F}_\infty$. In this sense, a random event occurs gradually!

Conditioning is simple on the product $(\Omega, \mathcal{F}, P) = (\Omega_1, \mathcal{F}_1, P_1) \times (\Omega_2, \mathcal{F}_2, P_2)$ of two probability spaces. We have two independent sub- σ -fields $\tilde{\mathcal{F}}_1, \tilde{\mathcal{F}}_2 \subset \mathcal{F}$,

$$\tilde{\mathcal{F}}_1 = \{A \times \Omega_2 : A \in \mathcal{F}_1\}, \quad \tilde{\mathcal{F}}_2 = \{\Omega_1 \times B : B \in \mathcal{F}_2\}.$$

We'll see that

(22a5)
$$\mathbb{E}(f|\mathcal{F}_1)(\omega_1,\omega_2) = \int_{\Omega_2} f(\omega_1,\omega_2') P_2(\mathrm{d}\omega_2')$$

for all $f \in L_2(\Omega, \mathcal{F}, P)$. Denote $f_1(\omega_1) = \int_{\Omega_2} f(\omega_1, \omega_2) P_2(d\omega_2)$.

22a6 Exercise. Prove that $f_1 \in L_2(\Omega_1, P_1)$ and $||f_1|| \le ||f||$.

For every $g \in L_2(\Omega_1, P_1)$ we introduce $\tilde{g} \in L_2(\Omega, P)$ by $\tilde{g}(\omega_1, \omega_2) = g(\omega_1)$.

22a7 Exercise. Prove that $\langle f, \tilde{g} \rangle = \langle f_1, g \rangle$ for all $g \in L_2(\Omega, P_1)$.

Now we are in position to minimize $||f - \tilde{g}||$ in g:

$$||f - \tilde{g}||^2 = ||f||^2 - 2\langle f, \tilde{g} \rangle + ||\tilde{g}||^2 = = ||f||^2 - 2\langle f_1, g \rangle + ||g||^2 = ||f||^2 + ||g - f_1||^2 - ||f_1||^2;$$

this value is minimal when $g = f_1$. It means that $\mathbb{E}(f | \mathcal{F}_1) = \tilde{f}_1$, which proves (22a5).

The probability space $(\mathbb{R}^{\infty}, \gamma^{\infty})$ is isomorphic to $(\mathbb{R}^{n}, \gamma^{n}) \times (\mathbb{R}^{\infty}, \gamma^{\infty})$. By (22a5),

(22a8)
$$\mathbb{E}\left(f \mid \mathcal{F}_{n}\right)(\omega_{1}, \omega_{2}, \dots) = \int_{\mathbb{R}^{\infty}} f(\omega_{1}, \dots, \omega_{n}, \omega'_{n+1}, \omega'_{n+2}, \dots) \gamma^{\infty}(\mathrm{d}\omega'_{n+1}\mathrm{d}\omega'_{n+2}\dots)$$

for all $f \in L_2(\mathbb{R}^\infty, \gamma^\infty)$. Basically,

$$\mathbb{E}(f|\mathcal{F}_n)(\omega_1,\ldots,\omega_n) = \int f(\omega_1,\omega_2,\ldots) \gamma^{\infty}(\mathrm{d}\omega_{n+1}\mathrm{d}\omega_{n+2}\ldots).$$

¹In fact, almost sure convergence also holds (the martingale convergence...).

22b The Cameron-Martin formula

The shift $S_a : \mathbb{R} \to \mathbb{R}$, $S_a(x) = x + a$, sends γ^1 to a measure $S_a[\gamma^1]$ with the density $x \mapsto \frac{1}{\sqrt{2\pi}} e^{-(x-a)^2/2} = e^{ax-a^2/2} \cdot \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$; thus,

$$\frac{\mathrm{d}S_a[\gamma^1]}{\mathrm{d}\gamma^1}(x) = \mathrm{e}^{ax - a^2/2}$$

The corresponding finite-dimensional formula is

$$\frac{\mathrm{d}S_a[\gamma^d]}{\mathrm{d}\gamma^d}(x) = \mathrm{e}^{\langle a,x\rangle - |a|^2/2} \,.$$

That is,

$$\int_{\mathbb{R}^d} f(x+a)\gamma^d(\mathrm{d}x) = \int_{\mathbb{R}^d} f(x)\mathrm{e}^{\langle a,x\rangle - |a|^2/2} \gamma^d(\mathrm{d}x)$$

for every bounded measurable $f : \mathbb{R}^d \to \mathbb{R}$. What about infinite dimension?

22b1 Exercise. Let (Ω, \mathcal{F}, P) be a probability space, $f, f_n \in L_2(\Omega, P)$, $f_n \to f$ in probability, and $\sup_n ||f_n||_{L_2} < \infty$.

- (a) Prove that $f_n \to f$ in L_1 .
- (b) Show by example that convergence in L_2 need not hold.
- (c) Assuming only $f \in L_0(\Omega, P)$ prove that $f \in L_2(\Omega, P)$.

22b2 Exercise. Let $a \in l_2$, $g(x) = \langle a, x \rangle - ||a||^2/2$ and $g_n(x) = a_1x_1 + \cdots + a_nx_n - (a_1^2 + \cdots + a_n^2)/2$. Prove that $e^{g_n} \to e^g$ in $L_1(\mathbb{R}^\infty, \gamma^\infty)$.

Thus,

$$\int e^{\langle a, x \rangle - \|a\|^2/2} \gamma^{\infty}(dx) = 1 \quad \text{for all } a \in l_2.$$

22b3 Proposition. For every $a \in l_2$,

$$\frac{\mathrm{d}S_a[\gamma^{\infty}]}{\mathrm{d}\gamma^{\infty}}(x) = \mathrm{e}^{\langle a,x\rangle - \|a\|^2/2};$$

that is,

$$\int_{\mathbb{R}^{\infty}} f(x+a) \, \gamma^{\infty}(\mathrm{d}x) = \int_{\mathbb{R}^{\infty}} f(x) \mathrm{e}^{\langle a,x\rangle - \|a\|^2/2} \, \gamma^{\infty}(\mathrm{d}x)$$

for every bounded measurable $f : \mathbb{R}^{\infty} \to \mathbb{R}$.

Proof. For $f(x_1, x_2, \dots) = \mathbf{1}_{[u_1, v_1]}(x_1) \dots \mathbf{1}_{[u_n, v_n]}(x_n)$ we have on one hand

$$\int f(x+a) \gamma^{\infty}(\mathrm{d}x) = \int \mathbf{1}_{[u_1-a_1,v_1-a_1]}(x_1) \dots \mathbf{1}_{[u_n-a_n,v_n-a_n]}(x_n) \gamma^{\infty}(\mathrm{d}x) =$$
$$= \gamma^1 ([u_1-a_1,v_1-a_1]) \dots \gamma^1 ([u_n-a_n,v_n-a_n])$$

and on the other hand,

$$\int f(x) e^{\langle a,x\rangle - ||a||^2/2} \gamma^{\infty}(dx) =$$

$$= \int \mathbf{1}_{[u_1,v_1]}(x_1) \dots \mathbf{1}_{[u_n,v_n]}(x_n) e^{a_1x_1 + \dots + a_nx_n - (a_1^2 + \dots + a_n^2)/2} \gamma^n(dx) \cdot$$

$$\cdot \int e^{a_{n+1}x_{n+1} + a_{n+2}x_{n+2} + \dots - (a_{n+1}^2 + a_{n+2}^2 + \dots)/2} \gamma^{\infty}(dx_{n+1}dx_{n+2}\dots) =$$

$$= \left(\int_{u_1}^{v_1} e^{a_1x_1 - a_1^2/2} \gamma^1(dx_1) \right) \dots \left(\int_{u_n}^{v_n} e^{a_nx_n - a_n^2/2} \gamma^1(dx_n) \right) \cdot 1,$$

which is the same. Thus, the two measures coincide on a generating algebra of sets. $\hfill \Box$

We see that the shifted measure $S_a[\gamma^{\infty}]$ is equivalent (that is, mutually absolutely continuous) to γ^{∞} , provided that $a \in l_2$.¹ In this sense, vectors of l_2 are admissible shifts for γ^{∞} .

22b4 Exercise. If $E \subset (\mathbb{R}^{\infty}, \gamma^{\infty})$ is a linear subspace² of full measure³ then $E \supset l_2$.⁴

Prove it.

22c Lipschitz functions

22c1 Definition. A Lip(σ) function on $(\mathbb{R}^{\infty}, \gamma^{\infty})$ (for a given $\sigma \in [0, \infty)$) is $\xi \in L_0(\mathbb{R}^{\infty}, \gamma^{\infty})$ such that for every $a \in l_2$,⁵

$$|\xi(x+a) - \xi(x)| \le \sigma ||a||$$
 for almost all x .

Note that the null set of bad x may depend on a.

Clearly, linear functions $x \mapsto \langle a, x \rangle$ for $a \in l_2$ are $\operatorname{Lip}(||a||)$. If $\xi_1, \xi_2, \dots \in \operatorname{Lip}(\sigma)$ and $\sup_n \xi_n = \xi < \infty$ a.s. then $\xi \in \operatorname{Lip}(\sigma)$.

It may seem that 22c1 is ridiculously weak. Even a much stronger condition $\forall a \in l_2 \ \forall x \in \mathbb{R}^\infty \ \xi(x+a) - \xi(x) = 0$ is satisfied by many nonconstant functions! However, w.r.t. γ^∞ they all are either nonmeasurable or constant almost everywhere.

¹In fact, for $a \notin l_2$ these two measures are singular.

 $^{^{2}}$ Just linear, not required to be closed in some topology.

³That is, $\gamma^{\infty}(E) = 1$; E need not be Borel, rather, it must contain a Borel set of full measure.

⁴In fact, l_2 is exactly the intersection of all such E. (Think about $E = \{x : \sum a_k x_k \text{ converges }\}$ where a runs over l_2 .)

⁵In fact, this condition may be checked only for a dense subset of the unit ball of l_2 .

Tel Aviv University, 2010

Similarly to 22c1 we may define the $\operatorname{Lip}(\sigma)$ property for an equivalence class $\xi \in L_0(\mathbb{R}^n)$ as follows: for every $a \in \mathbb{R}^n$,

$$|\xi(x+a) - \xi(x)| \le \sigma |a|$$
 for almost all $x \in \mathbb{R}^n$

We'll see that such equivalence class contains a $\text{Lip}(\sigma)$ function. Consider first the one-dimensional case.

Given $f \in L_2(\mathbb{R})$ and $\varepsilon > 0$, we define $f_{\varepsilon} : \mathbb{R} \to \mathbb{R}$ by

$$f_{\varepsilon}(x) = \frac{1}{\varepsilon} \int_{x}^{x+\varepsilon} f(t) \,\mathrm{d}t$$

Note that f_{ε} is continuous, and $||f_{\varepsilon}||_{L_2} \leq ||f||_{L_2}$.¹ We have

$$||f_{\varepsilon} - f|| \to 0 \text{ as } \varepsilon \to 0$$

for all $f \in L_2(\mathbb{R})$, since the set of such f is closed in $L_2(\mathbb{R})$ (think, why) and contains all compactly supported Lipschitz functions.

If an equivalence class $f \in L_2(\mathbb{R})$ satisfies $\operatorname{Lip}(\sigma)$ then for every ε the function f_{ε} satisfies $\operatorname{Lip}(\sigma)$. It follows (via Cauchy sequences) that f_{ε} converge uniformly as $\varepsilon \to 0$ (think, why); their limit is a $\operatorname{Lip}(\sigma)$ function in the equivalence class f.

The same holds for $\operatorname{Lip}(\sigma)$ functions of L_0 .

A similar argument works in \mathbb{R}^n . In this sense, the two definitions of $\operatorname{Lip}(\sigma)$ conform in finite dimension. It follows that Theorem 1a2 applies to every $\xi \in L_2(\mathbb{R}^n, \gamma^n)$ satisfying $\operatorname{Lip}(\sigma)$; it gives $\xi[\gamma^n] = f[\gamma^1]$ for an increasing $f : \mathbb{R} \to \mathbb{R}, f \in \operatorname{Lip}(\sigma)$; that is, $\xi \in \operatorname{GaussLip}(\sigma)$ as defined in Sect. 11b.

22c2 Exercise. If $\xi \in L_2(\mathbb{R}^\infty, \gamma^\infty)$ satisfies $\operatorname{Lip}(\sigma)$ then for every $n, \xi_n \in L_2(\mathbb{R}^n, \gamma^n)$ defined by $\mathbb{E}(\xi | \mathcal{F}_n)(x_1, x_2, \dots) = \xi_n(x_1, \dots, x_n)$ satisfies $\operatorname{Lip}(\sigma)$ and therefore belongs to $\operatorname{GaussLip}(\sigma)$.

Prove it.

22c3 Exercise. Every $\xi \in L_2(\mathbb{R}^\infty, \gamma^\infty)$ satisfying $\operatorname{Lip}(\sigma)$ belongs to $\operatorname{GaussLip}(\sigma)$. Prove it.

22c4 Exercise. Generalize 22c3 to $\xi \in L_0(\mathbb{R}^\infty, \gamma^\infty)$.

¹Since $|f_{\varepsilon}(x)|^2 \leq \frac{1}{\varepsilon} \int_x^{x+\varepsilon} |f(t)|^2 dt$.

22d A special case

In this section, 11d3 is generalized to all mean-square continuous stationary Gaussian processes (even those having no sample continuous modification).

Let $\Xi : [0,1] \to G \subset L_2(\Omega, P)$ be a Gaussian process. Assume that Ξ is measurable (as a map $[0,1] \to G$;¹ mean-square continuity is evidently sufficient but not necessary²). Assume also that dim $G = \infty$; otherwise the matter becomes trivial. Choosing an orthonormal basis (g_1, g_2, \ldots) of G we get

$$\Xi(t) = f_1(t)g_1 + f_2(t)g_2 + \dots$$

where $f_k(t) = \langle \Xi(t), g_k \rangle$ (they are measurable); the series converges in $L_2(\Omega, P)$ for each $t \in [0, 1]$.

Here is a general fact.

22d1 Lemma. Let $(\Omega, P) = (\Omega_1, P_1) \times (\Omega_2, P_2)$ be the product of two probability spaces, and $f_n : \Omega \to \mathbb{R}$ measurable functions. If the sequence of functions $(f_n(\omega_1, \cdot))_n$ on Ω_2 converges in probability for almost all $\omega_1 \in \Omega_1$ then there exists a measurable function $f : \Omega \to \mathbb{R}$ such that $f_n(\omega_1, \cdot) \to f(\omega_1, \cdot)$ in probability for almost all $\omega_1 \in \Omega_1$.

Remark. Do not think that the convergence itself ensures measurability of f. Such f may be changed on any set A of the form $\bigcup_{\omega_1 \in \Omega_1} (\{\omega_1\} \times A_{\omega_1})$ where each $A_{\omega_1} \subset \Omega_2$ is a null set. Such A is a null set (by Fubini) provided that it is measurable; however, it need not be measurable!

Proof. We assume that $f_n : \Omega \to (-1, 1)$ (otherwise take $\frac{2}{\pi} \arctan f_n$).

The function $\omega_1 \mapsto \|\lim_n f_n(\omega_1, \cdot)\|_{L_1(\Omega_2)}$ is measurable (on Ω_1), since it is equal to $\lim_n \|f_n(\omega_1, \cdot)\|_{L_1(\Omega_2)}$. Similarly, functions

$$g_n(\omega_1) = \|f_n(\omega_1, \cdot) - \lim_k f_k(\omega_1, \cdot)\|_{L_1(\Omega_2)}$$

are measurable. Also, $g_n \to 0$ a.s.

We assume that $\sum_{n} \|g_n\|_{L_1(\Omega_1)} < \infty$ (otherwise choose a subsequence).

We have $||f_n - f_m||_{L_1(\Omega)} \le ||g_n||_{L_1(\Omega_1)} + ||g_m||_{L_1(\Omega_1)}$ (Fubini, and the triangle inequality). Thus $\sum_n ||f_{n+1} - f_n||_{L_1(\Omega)} < \infty$, which ensures convergence: $f_n \to f$ a.s. on Ω (for some f). Finally, for almost every $\omega_1 \in \Omega_1$ we get $f_n(\omega_1, \cdot) \to f(\omega_1, \cdot)$ a.s. on Ω_2 .

Returning to the Gaussian process, we apply Lemma 22d1 to the sequence of functions $\Xi_n(t,\omega) = f_1(t)g_1(\omega) + \cdots + f_n(t)g_n(\omega)$ on $[0,1] \times \Omega$ and get a

¹Weakly or strongly, it is all the same...

²In fact, for *stationary* Gaussian processes it is also necessary.

measurable function $\tilde{\Xi} : [0, 1] \times \Omega \to \mathbb{R}$ such that $\Xi_n(t, \cdot) \to \tilde{\Xi}(t, \cdot)$ in $L_2(\Omega, P)$ for each $t \in [0, 1]$ (not only in probability for almost all t, since convergence in L_2 is given for all t, and we may change $\tilde{\Xi}$ on the null set of bad t).

Note that we did not find "the right modification" of Ξ . Indeed, $\tilde{\Xi}$ may be changed on a *measurable* set A of the form $\cup_{t \in [0,1]} (\{t\} \times A_t)$ where each $A_t \subset \Omega$ is a null set. Measurability of A does not imply that $\cup_t A_t$ is a null set. Not all modifications are jointly measurable (as defined below), but many of them are. A jointly measurable modification of a measurable Gaussian process exists,¹ but usually is highly non-unique.

22d2 Definition. A random function $\xi : \Omega \to \mathbb{R}^{[0,1]}$ is *jointly measurable*, if the function $(t, \omega) \mapsto \xi(\omega)(t)$ is measurable on $[0, 1] \times \Omega$.

Note that sample functions of such ξ are measurable on [0, 1] (which is not sufficient, however).

22d3 Exercise. A sample continuous random function on \mathbb{R} is jointly measurable.

Prove it.

22d4 Exercise. Let ξ_1, ξ_2 be two jointly measurable modifications of the same random process. Then almost all ω satisfy

$$\xi_1(\omega)(\cdot) = \xi_2(\omega)(\cdot)$$
 almost everywhere on $[0,1]$.

Prove it.

We did not upgrade Ξ to "the right random function", but we did upgrade it to "the right random element of $L_0([0, 1])$ ".

Given a bounded continuous (or just Borel) function $\varphi : \mathbb{R} \to \mathbb{R}$, we may consider the random variable

$$\int_0^1 \varphi\bigl(\xi(\cdot,t)\bigr) \,\mathrm{d}t \in L_0(\Omega)\,;$$

it does not depend on the choice of a jointly measurable modification ξ of the process Ξ , thus, it does not harm to write

$$\int_0^1 \varphi\bigl(\Xi(t)\bigr) \, \mathrm{d}t \in L_0(\Omega) \, .$$

¹In fact, this existence holds for arbitrary (not just Gaussian) measurable processes, and for arbitrary measure spaces in place of [0, 1]. Also, existence of a jointly measurable modification implies measurability of Ξ (try Fubini...).

22d5 Proposition. If a measurable Gaussian process Ξ on [0, 1] satisfies $\|\Xi(t)\| \leq 1$ for almost all $t \in [0, 1]$, and $\varphi : \mathbb{R} \to \mathbb{R}$ is a Lip(1) function, then the random variable $\int_0^1 \varphi(\Xi(t)) dt$ belongs to GaussLip(1).

Proof. We assume that $(\Omega, P) = (\mathbb{R}^{\infty}, \gamma^{\infty})$ and $G = (\mathbb{R}^{\infty}, \gamma^{\infty})^*$ (otherwise, use a measure preserving map...). By 22c3 it is sufficient to prove that $\int \varphi(\Xi(t)) dt$ is a Lip(1) function on $(\mathbb{R}^{\infty}, \gamma^{\infty})$.

Each element g of $G = l_2$, being a linear functional on $(\mathbb{R}^{\infty}, \gamma^{\infty})$, is $\operatorname{Lip}(||g||)$. In particular, $\Xi(t) \in \operatorname{Lip}(1)$ for all $t \in [0, 1]$; that is, $|\Xi(t)(\cdot + a) - \Xi(t)(\cdot)| \leq ||a||$ a.s. (the null set may depend on a and t). In terms of a jointly measurable modification ξ of the process Ξ ,

 $|\xi(x+a)(t) - \xi(x)(t)| \le ||a|| \quad \text{for almost all } (t,x) \in [0,1] \times (\mathbb{R}^{\infty}, \gamma^{\infty}).$

Therefore

$$\left| \int \varphi(\xi(x+a)(t)) \, \mathrm{d}t - \int \varphi(\xi(x)(t)) \, \mathrm{d}t \right| \leq \\ \leq \int \left| \varphi(\xi(x+a)(t)) - \varphi(\xi(x)(t)) \right| \, \mathrm{d}t \leq \\ \leq \int \left| \xi(x+a)(t) - \xi(x)(t) \right| \, \mathrm{d}t \leq ||a||$$

for almost all $x \in (\mathbb{R}^{\infty}, \gamma^{\infty})$.

22e Hints to exercises

22a6: $|f_1(\omega_1)|^2 \leq \int |f(\omega_1, \omega_2)|^2 P_2(d\omega_2).$ 22a7: try $\int (\int \dots P_2(d\omega_2)) P_1(d\omega_1).$ 22b1: (a) On a set of small measure, L_1 norm is much less than L_2 norm. 22c2: (22a8), and Fubini. 22c3: 22c2, and 22a4. 22c4: consider $\xi_M = \operatorname{mid}(-M, \xi, M).$ 22d3: $\xi_n(t, \omega) = \xi(\frac{k}{n}, \omega)$ for $\frac{k}{n} \leq t < \frac{k+1}{n}.$

Index

admissible shifts, 14	$\mathcal{F}_n \uparrow \mathcal{F}, 11$
conditional expectation, 11	$f_k, 16 \\ q_k, 16$
jointly measurable random function, 17	$\operatorname{Lip}(\sigma), 14$
measurable process, 16	$S_a, 13$