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22a Functions of infinitely many random variables

Recall that R∞ is equipped with the σ-field F generated by the coordinates.
Denoting by Fn the sub-σ-field generated by the first n coordinates we have
Fn ↑ F (that is, F is the least sub-σ-field containing all Fn).

We’ll consider the relation Fn ↑ F∞ in general.

22a1 Exercise. Let (Ω,F , P ) be a probability space, and F1 ⊂ F2 ⊂ · · · ⊂
F sub-σ-fields. Consider all A ∈ F such that there exist A1 ∈ F1, A2 ∈
F2, . . . satisfying1 P (A4An)→ 0. Prove that all such A are a sub-σ-field.

22a2 Corollary. Let (Ω,F , P ) be a probability space, and F1 ⊂ F2 ⊂ · · · ⊂
F∞ ⊂ F sub-σ-fields such that Fn ↑ F∞. Then for every A ∈ F∞ there exist
A1 ∈ F1, A2 ∈ F2, . . . satisfying P (A4An)→ 0.

22a3 Lemma. Let (Ω,F , P ) be a probability space, and F1 ⊂ F2 ⊂ · · · ⊂
F∞ ⊂ F sub-σ-fields such that Fn ↑ F∞. Then2

L2(Fn) ↑ L2(F∞)

(that is, L2(F∞) is the least (closed linear) subspace containing all L2(Fn)).

Proof. Clearly, L2(Fn) ↑ H ⊂ L2(F∞); we have to prove that H = L2(F∞).
By 22a2, 1A ∈ H for every A ∈ F∞. Linear combinations of such indicators
approximate every f ∈ L2(F∞).

The orthogonal projection L2(F)→ L2(Fn) is, by definition, the operator
of conditional expectation, X 7→ E

(
X
∣∣Fn). It follows from 22a3 that

(22a4) E
(
X
∣∣Fn)→ E

(
X
∣∣F∞) in L2 as n→∞

1Here A4B = (A \B) ∪ (B \A).
2Here L2(Fn) = L2(Ω,Fn, P |Fn

).
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for every X ∈ L2(F).1 In particular, E
(
X
∣∣Fn) → X for X ∈ L2(F∞), and

P
(
A
∣∣Fn)→ 1A for A ∈ F∞. In this sense, a random event occurs gradually!

Conditioning is simple on the product (Ω,F , P ) = (Ω1,F1, P1)×(Ω2,F2, P2)
of two probability spaces. We have two independent sub-σ-fields F̃1, F̃2 ⊂ F ,

F̃1 = {A× Ω2 : A ∈ F1} , F̃2 = {Ω1 ×B : B ∈ F2} .

We’ll see that

(22a5) E
(
f
∣∣F1

)
(ω1, ω2) =

∫
Ω2

f(ω1, ω
′
2)P2(dω′2)

for all f ∈ L2(Ω,F , P ). Denote f1(ω1) =
∫

Ω2
f(ω1, ω2)P2(dω2).

22a6 Exercise. Prove that f1 ∈ L2(Ω1, P1) and ‖f1‖ ≤ ‖f‖.

For every g ∈ L2(Ω1, P1) we introduce g̃ ∈ L2(Ω, P ) by g̃(ω1, ω2) = g(ω1).

22a7 Exercise. Prove that 〈f, g̃〉 = 〈f1, g〉 for all g ∈ L2(Ω, P1).

Now we are in position to minimize ‖f − g̃‖ in g:

‖f − g̃‖2 = ‖f‖2 − 2〈f, g̃〉+ ‖g̃‖2 =

= ‖f‖2 − 2〈f1, g〉+ ‖g‖2 = ‖f‖2 + ‖g − f1‖2 − ‖f1‖2 ;

this value is minimal when g = f1. It means that E
(
f
∣∣F1

)
= f̃1, which

proves (22a5).
The probability space (R∞, γ∞) is isomorphic to (Rn, γn)× (R∞, γ∞). By

(22a5),

(22a8) E
(
f
∣∣Fn)(ω1, ω2, . . . ) =

=

∫
R∞

f(ω1, . . . , ωn, ω
′
n+1, ω

′
n+2, . . . ) γ

∞(dω′n+1dω′n+2 . . . )

for all f ∈ L2(R∞, γ∞). Basically,

E
(
f
∣∣Fn)(ω1, . . . , ωn) =

∫
f(ω1, ω2, . . . ) γ

∞(dωn+1dωn+2 . . . ) .

1In fact, almost sure convergence also holds (the martingale convergence. . . ).
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22b The Cameron-Martin formula

The shift Sa : R→ R, Sa(x) = x+ a, sends γ1 to a measure Sa[γ
1] with the

density x 7→ 1√
2π

e−(x−a)2/2 = eax−a
2/2 · 1√

2π
e−x

2/2; thus,

dSa[γ
1]

dγ1
(x) = eax−a

2/2 .

The corresponding finite-dimensional formula is

dSa[γ
d]

dγd
(x) = e〈a,x〉−|a|

2/2 .

That is, ∫
Rd

f(x+ a)γd(dx) =

∫
Rd

f(x)e〈a,x〉−|a|
2/2 γd(dx)

for every bounded measurable f : Rd → R. What about infinite dimension?

22b1 Exercise. Let (Ω,F , P ) be a probability space, f, fn ∈ L2(Ω, P ),
fn → f in probability, and supn ‖fn‖L2 <∞.

(a) Prove that fn → f in L1.
(b) Show by example that convergence in L2 need not hold.
(c) Assuming only f ∈ L0(Ω, P ) prove that f ∈ L2(Ω, P ).

22b2 Exercise. Let a ∈ l2, g(x) = 〈a, x〉 − ‖a‖2/2 and gn(x) = a1x1 + · · ·+
anxn − (a2

1 + · · ·+ a2
n)/2. Prove that egn → eg in L1(R∞, γ∞).

Thus, ∫
e〈a,x〉−‖a‖

2/2 γ∞(dx) = 1 for all a ∈ l2 .

22b3 Proposition. For every a ∈ l2,

dSa[γ
∞]

dγ∞
(x) = e〈a,x〉−‖a‖

2/2 ;

that is, ∫
R∞

f(x+ a) γ∞(dx) =

∫
R∞

f(x)e〈a,x〉−‖a‖
2/2 γ∞(dx)

for every bounded measurable f : R∞ → R.

Proof. For f(x1, x2, . . . ) = 1[u1,v1](x1) . . .1[un,vn](xn) we have on one hand∫
f(x+ a) γ∞(dx) =

∫
1[u1−a1,v1−a1](x1) . . .1[un−an,vn−an](xn) γ∞(dx) =

= γ1
(
[u1 − a1, v1 − a1]

)
. . . γ1

(
[un − an, vn − an]

)
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and on the other hand,∫
f(x)e〈a,x〉−‖a‖

2/2 γ∞(dx) =

=

∫
1[u1,v1](x1) . . .1[un,vn](xn)ea1x1+···+anxn−(a21+···+a2n)/2 γn(dx)·

·
∫

ean+1xn+1+an+2xn+2+···−(a2n+1+a2n+2+... )/2 γ∞(dxn+1dxn+2 . . . ) =

=

(∫ v1

u1

ea1x1−a
2
1/2 γ1(dx1)

)
. . .

(∫ vn

un

eanxn−a
2
n/2 γ1(dxn)

)
· 1 ,

which is the same. Thus, the two measures coincide on a generating algebra
of sets.

We see that the shifted measure Sa[γ
∞] is equivalent (that is, mutually

absolutely continuous) to γ∞, provided that a ∈ l2.1 In this sense, vectors of
l2 are admissible shifts for γ∞.

22b4 Exercise. If E ⊂ (R∞, γ∞) is a linear subspace2 of full measure3 then
E ⊃ l2.4

Prove it.

22c Lipschitz functions

22c1 Definition. A Lip(σ) function on (R∞, γ∞) (for a given σ ∈ [0,∞)) is
ξ ∈ L0(R∞, γ∞) such that for every a ∈ l2,5

|ξ(x+ a)− ξ(x)| ≤ σ‖a‖ for almost all x .

Note that the null set of bad x may depend on a.
Clearly, linear functions x 7→ 〈a, x〉 for a ∈ l2 are Lip(‖a‖). If ξ1, ξ2, · · · ∈

Lip(σ) and supn ξn = ξ <∞ a.s. then ξ ∈ Lip(σ).
It may seem that 22c1 is ridiculously weak. Even a much stronger condi-

tion ∀a ∈ l2 ∀x ∈ R∞ ξ(x+ a)− ξ(x) = 0 is satisfied by many nonconstant
functions! However, w.r.t. γ∞ they all are either nonmeasurable or constant
almost everywhere.

1In fact, for a /∈ l2 these two measures are singular.
2Just linear, not required to be closed in some topology.
3That is, γ∞(E) = 1; E need not be Borel, rather, it must contain a Borel set of full

measure.
4In fact, l2 is exactly the intersection of all such E. (Think about E = {x :∑
akxk converges } where a runs over l2.)
5In fact, this condition may be checked only for a dense subset of the unit ball of l2.
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Similarly to 22c1 we may define the Lip(σ) property for an equivalence
class ξ ∈ L0(Rn) as follows: for every a ∈ Rn,

|ξ(x+ a)− ξ(x)| ≤ σ|a| for almost all x ∈ Rn .

We’ll see that such equivalence class contains a Lip(σ) function. Consider
first the one-dimensional case.

Given f ∈ L2(R) and ε > 0, we define fε : R→ R by

fε(x) =
1

ε

∫ x+ε

x

f(t) dt .

Note that fε is continuous, and ‖fε‖L2 ≤ ‖f‖L2 .
1 We have

‖fε − f‖ → 0 as ε→ 0

for all f ∈ L2(R), since the set of such f is closed in L2(R) (think, why) and
contains all compactly supported Lipschitz functions.

If an equivalence class f ∈ L2(R) satisfies Lip(σ) then for every ε the
function fε satisfies Lip(σ). It follows (via Cauchy sequences) that fε con-
verge uniformly as ε→ 0 (think, why); their limit is a Lip(σ) function in the
equivalence class f .

The same holds for Lip(σ) functions of L0.
A similar argument works in Rn. In this sense, the two definitions of

Lip(σ) conform in finite dimension. It follows that Theorem 1a2 applies to
every ξ ∈ L2(Rn, γn) satisfying Lip(σ); it gives ξ[γn] = f [γ1] for an increasing
f : R→ R, f ∈ Lip(σ); that is, ξ ∈ GaussLip(σ) as defined in Sect. 11b.

22c2 Exercise. If ξ ∈ L2(R∞, γ∞) satisfies Lip(σ) then for every n, ξn ∈
L2(Rn, γn) defined by E

(
ξ
∣∣Fn)(x1, x2, . . . ) = ξn(x1, . . . , xn) satisfies Lip(σ)

and therefore belongs to GaussLip(σ).
Prove it.

22c3 Exercise. Every ξ ∈ L2(R∞, γ∞) satisfying Lip(σ) belongs to GaussLip(σ).
Prove it.

22c4 Exercise. Generalize 22c3 to ξ ∈ L0(R∞, γ∞).

1Since |fε(x)|2 ≤ 1
ε

∫ x+ε

x
|f(t)|2 dt.
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22d A special case

In this section, 11d3 is generalized to all mean-square continuous stationary
Gaussian processes (even those having no sample continuous modification).

Let Ξ : [0, 1] → G ⊂ L2(Ω, P ) be a Gaussian process. Assume that Ξ
is measurable (as a map [0, 1] → G;1 mean-square continuity is evidently
sufficient but not necessary2). Assume also that dimG = ∞; otherwise the
matter becomes trivial. Choosing an orthonormal basis (g1, g2, . . . ) of G we
get

Ξ(t) = f1(t)g1 + f2(t)g2 + . . .

where fk(t) = 〈Ξ(t), gk〉 (they are measurable); the series converges in L2(Ω, P )
for each t ∈ [0, 1].

Here is a general fact.

22d1 Lemma. Let (Ω, P ) = (Ω1, P1)× (Ω2, P2) be the product of two prob-
ability spaces, and fn : Ω→ R measurable functions. If the sequence of func-
tions (fn(ω1, ·))n on Ω2 converges in probability for almost all ω1 ∈ Ω1 then
there exists a measurable function f : Ω → R such that fn(ω1, ·) → f(ω1, ·)
in probability for almost all ω1 ∈ Ω1.

Remark. Do not think that the convergence itself ensures measurability
of f . Such f may be changed on any set A of the form ∪ω1∈Ω1

(
{ω1} × Aω1

)
where each Aω1 ⊂ Ω2 is a null set. Such A is a null set (by Fubini) provided
that it is measurable; however, it need not be measurable!

Proof. We assume that fn : Ω→ (−1, 1) (otherwise take 2
π

arctan fn).
The function ω1 7→ ‖ limn fn(ω1, ·)‖L1(Ω2) is measurable (on Ω1), since it

is equal to limn ‖fn(ω1, ·)‖L1(Ω2). Similarly, functions

gn(ω1) = ‖fn(ω1, ·)− lim
k
fk(ω1, ·)‖L1(Ω2)

are measurable. Also, gn → 0 a.s.
We assume that

∑
n ‖gn‖L1(Ω1) <∞ (otherwise choose a subsequence).

We have ‖fn−fm‖L1(Ω) ≤ ‖gn‖L1(Ω1)+‖gm‖L1(Ω1) (Fubini, and the triangle
inequality). Thus

∑
n ‖fn+1 − fn‖L1(Ω) < ∞, which ensures convergence:

fn → f a.s. on Ω (for some f). Finally, for almost every ω1 ∈ Ω1 we get
fn(ω1, ·)→ f(ω1, ·) a.s. on Ω2.

Returning to the Gaussian process, we apply Lemma 22d1 to the sequence
of functions Ξn(t, ω) = f1(t)g1(ω) + · · · + fn(t)gn(ω) on [0, 1] × Ω and get a

1Weakly or strongly, it is all the same. . .
2In fact, for stationary Gaussian processes it is also necessary.
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measurable function Ξ̃ : [0, 1]×Ω→ R such that Ξn(t, ·)→ Ξ̃(t, ·) in L2(Ω, P )
for each t ∈ [0, 1] (not only in probability for almost all t, since convergence
in L2 is given for all t, and we may change Ξ̃ on the null set of bad t).

Note that we did not find “the right modification” of Ξ. Indeed, Ξ̃ may
be changed on a measurable set A of the form ∪t∈[0,1]

(
{t} × At

)
where each

At ⊂ Ω is a null set. Measurability of A does not imply that ∪tAt is a
null set. Not all modifications are jointly measurable (as defined below),
but many of them are. A jointly measurable modification of a measurable
Gaussian process exists,1 but usually is highly non-unique.

22d2 Definition. A random function ξ : Ω→ R[0,1] is jointly measurable, if
the function (t, ω) 7→ ξ(ω)(t) is measurable on [0, 1]× Ω.

Note that sample functions of such ξ are measurable on [0, 1] (which is
not sufficient, however).

22d3 Exercise. A sample continuous random function on R is jointly mea-
surable.

Prove it.

22d4 Exercise. Let ξ1, ξ2 be two jointly measurable modifications of the
same random process. Then almost all ω satisfy

ξ1(ω)(·) = ξ2(ω)(·) almost everywhere on [0, 1] .

Prove it.

We did not upgrade Ξ to “the right random function”, but we did upgrade
it to “the right random element of L0([0, 1])”.

Given a bounded continuous (or just Borel) function ϕ : R→ R, we may
consider the random variable∫ 1

0

ϕ
(
ξ(·, t)

)
dt ∈ L0(Ω) ;

it does not depend on the choice of a jointly measurable modification ξ of
the process Ξ, thus, it does not harm to write∫ 1

0

ϕ
(
Ξ(t)

)
dt ∈ L0(Ω) .

1In fact, this existence holds for arbitrary (not just Gaussian) measurable processes,
and for arbitrary measure spaces in place of [0, 1]. Also, existence of a jointly measurable
modification implies measurability of Ξ (try Fubini. . . ).
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22d5 Proposition. If a measurable Gaussian process Ξ on [0, 1] satisfies
‖Ξ(t)‖ ≤ 1 for almost all t ∈ [0, 1], and ϕ : R→ R is a Lip(1) function, then

the random variable
∫ 1

0
ϕ
(
Ξ(t)

)
dt belongs to GaussLip(1).

Proof. We assume that (Ω, P ) = (R∞, γ∞) and G = (R∞, γ∞)∗ (otherwise,
use a measure preserving map. . . ). By 22c3 it is sufficient to prove that∫
ϕ
(
Ξ(t)

)
dt is a Lip(1) function on (R∞, γ∞).

Each element g of G = l2, being a linear functional on (R∞, γ∞), is
Lip(‖g‖). In particular, Ξ(t) ∈ Lip(1) for all t ∈ [0, 1]; that is, |Ξ(t)(·+ a)−
Ξ(t)(·)| ≤ ‖a‖ a.s. (the null set may depend on a and t). In terms of a jointly
measurable modification ξ of the process Ξ,

|ξ(x+ a)(t)− ξ(x)(t)| ≤ ‖a‖ for almost all (t, x) ∈ [0, 1]× (R∞, γ∞) .

Therefore∣∣∣ ∫ ϕ
(
ξ(x+ a)(t)

)
dt−

∫
ϕ
(
ξ(x)(t)

)
dt
∣∣∣ ≤

≤
∫ ∣∣ϕ(ξ(x+ a)(t)

)
− ϕ

(
ξ(x)(t)

)∣∣ dt ≤
≤
∫
|ξ(x+ a)(t)− ξ(x)(t)| dt ≤ ‖a‖

for almost all x ∈ (R∞, γ∞).

22e Hints to exercises

22a6: |f1(ω1)|2 ≤
∫
|f(ω1, ω2)|2 P2(dω2).

22a7: try
∫ (∫

. . . P2(dω2)
)
P1(dω1).

22b1: (a) On a set of small measure, L1 norm is much less than L2 norm.

22c2: (22a8), and Fubini.

22c3: 22c2, and 22a4.

22c4: consider ξM = mid(−M, ξ,M).

22d3: ξn(t, ω) = ξ
(
k
n
, ω
)

for k
n
≤ t < k+1

n
.
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