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22a Functions of infinitely many random variables

Recall that R* is equipped with the o-field F generated by the coordinates.
Denoting by F,, the sub-o-field generated by the first n coordinates we have
Fo T F (that is, F is the least sub-o-field containing all F,,).

We’ll consider the relation F,, T F, in general.

22al Exercise. Let (2, F, P) be a probability space, and F; C Fo C -+ C
F sub-o-fields. Consider all A € F such that there exist A, € Fi, Ay €
Fa, ... satisfying! P(AAA,) — 0. Prove that all such A are a sub-o-field.

22a2 Corollary. Let (2, F, P) be a probability space, and F; C Fo C -+ C
Foo C F sub-o-fields such that F,, 1 F. Then for every A € F,, there exist
Ay € Fi, Ay € Fo, ... satistying P(AAA,) — 0.

22a3 Lemma. Let (2, F, P) be a probability space, and F; C Fo C -+ C
Fs C F sub-o-fields such that F,, 1 Fa. Then?

L2(]:n) T L2('FOO)
(that is, La(Fw) is the least (closed linear) subspace containing all Lo(F,,)).

Proof. Clearly, Lo(F,) T H C La(Fs); we have to prove that H = Ly(Fy).
By 14 € H for every A € F,,. Linear combinations of such indicators
approximate every f € Lo(Fy)- ]

The orthogonal projection Lo(F) — Lo(F,) is, by definition, the operator
of conditional expectation, X — E (X | ]-'n). It follows from that

(22a4) E(X|F.,) 2 E(X|Fx) inLyasn— oo

'Here AAB = (A\ B)U (B\ A).
*Here Lo(F,) = La2(Q2, Fo, Pl 7,)-
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for every X € Ly(F).! In particular, E(X|F,) — X for X € Ly(F), and

(A ‘ Fn ) — 14 for A € F. In this sense, a random event occurs gradually!
Conditioning is simple on the product (Q, F,P) = (S, F1, P1)x(Qy, Fa, P»)

of two probability spaces. We have two independent sub-o-fields Fy, F» C F,

Fi={AxW:AcF}, F={0xB:Bck}.

We'll see that

(22ab) E(f]F1)(wi,we) = o flwr, wy) Pa(dws)

for all f € Ly(Q2, F, P). Denote fi(wr) fﬂ (w1, ws) Py(dws).
22a6 Exercise. Prove that fi € Ly(, P) and || f1]| < || f]]-

For every g € Ly(€2, Py) we introduce g € Lo(Q2, P) by §(w1, ws) = g(w1).
22a7 Exercise. Prove that (f,g) = (f1,g) for all g € Ly(Q2, P,).

Now we are in position to minimize [|f — g|| in ¢:

1F = 3lI7 = IA1P = 2(7,3) + 1lgll” =
= 1P = 2081, 9) + llgl> = £+ llg = Al = A1

this value is minimal when g = f;. It means that E(f‘]—"l) — f,, which

proves (22a5).

The probability space (R>,~v*°) is isomorphic to (R™,~") x (R*,v*>°). By
).

(22a8) E(f|Fn)(wi,ws,...) =

= flwis oo Wy W, W gy ) Y (dw) dw) o .. )
Roo

for all f € Ly(R*,v*°). Basically,

E(f}fn)(wl,...,wn) = /f(wl,wQ,...)Voo(dwnJrldwnH...).

n fact, almost sure convergence also holds (the martingale convergence. .. ).
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22b The Cameron-Martin formula

The shift S, : R = R, S,(z) = x + a, sends 7' to a measure S,[y'] with the
density x \/%e’(x’afﬂ = ear—a®/2 \/%e’ﬁﬂ; thus,

ds, ['71]
d~1

((L’) _ eam—a2/2 ]

The corresponding finite-dimensional formula is

dSa [’Vd]

2
(.’L‘) — e(aﬂx)ila' /2 .
d~?

That is,
fz +a)y(de) = f( Jelt 172 Al (dy)

Rd
for every bounded measurable f : Rd — R. What about infinite dimension?
22b1 Exercise. Let (2, F, P) be a probability space, f,f, € L2(Q, P),
fn — f in probability, and sup,, || f,||z, < 0.
(a) Prove that f, — f in L;.
(b) Show by example that convergence in Ly need not hold.
(c) Assuming only f € Ly(2, P) prove that f € Ly(2, P).

22b2 Exercise. Let a € Iy, g(z) = (a,x) — ||a]|*/2 and g,(x) = a1x1 + -+
UnTy — (@2 + -+ -+ a2)/2. Prove that eI — 9 in L;(R>,~v>).

Thus,
/ elam)=lalP/2 2o(4g) = 1 for all a € L.

22b3 Proposition. For every a € [,

dSa[v], | _ aw)—lal/2.
) = ’
that is,
flr+a)y=(de) = [ fla)elon Il 2 y2(dg)
Roo Ree

for every bounded measurable f : R* — R.

Proof. For f(x1,%2,...) = 1,0 (21) - - - 1ju, 0] (2n) we have on one hand

/f($ +a) / [u1—a1,v1—a1] (z1) .. 1[un7an,vn7an]<$n) 7> (dz) =

=" ([ = an,vn = ]} 7 ([ v~ )
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and on the other hand,

a,xr)—|la 2 [ee]
/f(x)e< )=l /2 150 () —
— / 1[u1,1}1]<x1) o 1[un7vn] (xn)eal$1+"'+(lna7n_(a%+"'+a%)/2 fy"(dx).

2 2
. /ean“”“+“"+2x”+2+"‘_(an+1+an+2+”')/2 Y(drp1drpie ... ) =

U1 Un
- (/ i 2 vl(dxl)) o (/ gt e vl(dfrn>) 1
Ul Un

which is the same. Thus, the two measures coincide on a generating algebra
of sets. ]

We see that the shifted measure S,[7*] is equivalent (that is, mutually
absolutely continuous) to 4°°, provided that a € l,.! In this sense, vectors of
[y are admissible shifts for v°°.

22b4 Exercise. If E C (R*,7>) is a linear subspace? of full measure® then
ED !
Prove it.

22c Lipschitz functions

22c1 Definition. A Lip(o) function on (R*, ) (for a given o € [0, 00)) is
£ € Ly(R>,~*>) such that for every a € Iy,

|&(z +a) — &(x)| < ola]]  for almost all z.

Note that the null set of bad x may depend on a.

Clearly, linear functions z — (a, z) for a € ly are Lip(||al|). If &, &, - €
Lip(o) and sup,, &, = £ < oo a.s. then & € Lip(o).

It may seem that is ridiculously weak. Even a much stronger condi-
tion VYa € Iy Vo € R™® &(z+a) — £(x) = 0 is satisfied by many nonconstant
functions! However, w.r.t. v they all are either nonmeasurable or constant
almost everywhere.

n fact, for a ¢ Iy these two measures are singular.

2Just linear, not required to be closed in some topology.

3That is, v>°(E) = 1; E need not be Borel, rather, it must contain a Borel set of full
measure.

4In fact, Iy is exactly the intersection of all such E. (Think about £ = {z :
> agxy, converges } where a runs over [s.)

5In fact, this condition may be checked only for a dense subset of the unit ball of I5.
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Similarly to we may define the Lip(c) property for an equivalence
class £ € Lo(R") as follows: for every a € R",

|£(x 4+ a) — &(x)] < ola|] for almost all z € R™.

We'll see that such equivalence class contains a Lip(co) function. Consider
first the one-dimensional case.
Given f € Ly(R) and € > 0, we define f. : R — R by

1 Tr+e
fo(z) = g/ f(t)dt.
Note that f. is continuous, and || f.||z, < ||f]lz,.} We have

lfe—fll—0 ase—0

for all f € Ly(R), since the set of such f is closed in Lo(R) (think, why) and
contains all compactly supported Lipschitz functions.

If an equivalence class f € Lo(R) satisfies Lip(o) then for every e the
function f. satisfies Lip(c). It follows (via Cauchy sequences) that f. con-
verge uniformly as ¢ — 0 (think, why); their limit is a Lip(o) function in the
equivalence class f.

The same holds for Lip(o) functions of L.

A similar argument works in R™. In this sense, the two definitions of
Lip(o) conform in finite dimension. It follows that Theorem 1a2 applies to
every & € Lo(R™,y™) satisfying Lip(c); it gives £[y"] = f[y'] for an increasing
f:R—= R, f € Lip(o); that is, £ € GaussLip(o) as defined in Sect. 11b.

22c2 Exercise. If £ € Ly(R>®,~*) satisfies Lip(o) then for every n, §, €
Ly(R",~4™) defined by E (¢|F,) (w1, 22, ...) = & (21, ..., x,) satisfies Lip(o)
and therefore belongs to GaussLip(o).

Prove it.

22c3 Exercise. Every £ € Ly(R*, v*) satisfying Lip(o) belongs to GaussLip(o).
Prove it.

22c4 Exercise. Generalize to & € Lo(R>,~v>).

Since |f.(z)]? < L f;+5 |f(£)|? dt.
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22d A special case

In this section, 11d3 is generalized to all mean-square continuous stationary
Gaussian processes (even those having no sample continuous modification).

Let 2 :[0,1] - G C Lo(2, P) be a Gaussian process. Assume that =
is measurable (as a map [0,1] — G;! mean-square continuity is evidently
sufficient but not necessary?). Assume also that dim G = oo; otherwise the
matter becomes trivial. Choosing an orthonormal basis (g1, gs,...) of G we
get

E(t) = filt)gr + fo(t)g2 + ...

where fi(t) = (2(t), gx) (they are measurable); the series converges in Ly(€2, P)
for each ¢ € [0, 1].
Here is a general fact.

22d1 Lemma. Let (Q, P) = (Q, P1) X (22, P,) be the product of two prob-
ability spaces, and f,, : 2 — R measurable functions. If the sequence of func-
tions (f,(w1,))n on Q converges in probability for almost all wy € ; then
there exists a measurable function f : 2 — R such that f,(wi,-) = f(wi,-)
in probability for almost all w, € €.

Remark. Do not think that the convergence itself ensures measurability
of f. Such f may be changed on any set A of the form U, cq, ({wl} X Awl)
where each A,, C 5 is a null set. Such A is a null set (by Fubini) provided
that it is measurable; however, it need not be measurable!

Proof. We assume that f, : Q — (—1,1) (otherwise take 2 arctan f,).
The function wy — || limy, fo(wi, )| £, (,) is measurable (on ), since it
is equal to lim,, || fn (w1, )| £, (). Similarly, functions

n(wr) = [[falwr, ) =lim fi(wr, )20

are measurable. Also, g, — 0 a.s.
We assume that Y ||gn|lL, (@, < 0o (otherwise choose a subsequence).
We have || fr.— finll 2, @) < |90l 21 00) F11gml 2101y (Fubini, and the triangle
inequality). Thus > ||fo+1 — fallzi@) < oo, which ensures convergence:
fa — f as. on Q (for some f). Finally, for almost every w; € Q; we get
folwi, ) = fwy,-) a.s. on Q. O

Returning to the Gaussian process, we apply Lemma to the sequence
of functions Z,,(t,w) = fi(t)g1(w) + -+ + fu(t)gn(w) on [0,1] x @ and get a

"'Weakly or strongly, it is all the same. ..
2In fact, for stationary Gaussian processes it is also necessary.
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measurable function = : [0, 1] xQ — R such that Z,,(t,-) — Z(t,-) in Ly(Q, P)
for each t € [0, 1] (not only in probability for almost all ¢, since convergence
in L is given for all ¢, and we may change = on the null set of bad t).

Note that we did not find “the right modification” of =. Indeed, = may
be changed on a measurable set A of the form Useoqj({t} x A;) where each
A, C Q is a null set. Measurability of A does not imply that U;A; is a
null set. Not all modifications are jointly measurable (as defined below),
but many of them are. A jointly measurable modification of a measurable
Gaussian process exists,! but usually is highly non-unique.

22d2 Definition. A random function ¢ : Q — R is jointly measurable, if
the function (¢,w) — &(w)(t) is measurable on [0, 1] x Q.

Note that sample functions of such ¢ are measurable on [0,1] (which is
not sufficient, however).

22d3 Exercise. A sample continuous random function on R is jointly mea-
surable.
Prove it.

22d4 Exercise. Let &1,& be two jointly measurable modifications of the
same random process. Then almost all w satisfy

& (w)(+) = &(w)(-) almost everywhere on [0, 1].
Prove it.

We did not upgrade = to “the right random function”, but we did upgrade
it to “the right random element of Ly([0,1])”.

Given a bounded continuous (or just Borel) function ¢ : R — R, we may
consider the random variable

/0 S(6C,1) dt € Lo(Q)

it does not depend on the choice of a jointly measurable modification £ of
the process =, thus, it does not harm to write

/O S(2(1)) dt € Lo(€).

n fact, this existence holds for arbitrary (not just Gaussian) measurable processes,
and for arbitrary measure spaces in place of [0, 1]. Also, existence of a jointly measurable
modification implies measurability of = (try Fubini... ).
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22d5 Proposition. If a measurable Gaussian process = on [0, 1] satisfies
|I=(t)|| <1 for almost all ¢ € [0, 1], and ¢ : R — R is a Lip(1) function, then
the random variable fol ¢(Z(t)) dt belongs to GaussLip(1).

Proof. We assume that (€2, P) = (R*,7*) and G = (R*,*)* (otherwise,
use a measure preserving map...). By it is sufficient to prove that
[ ©(E(t)) dt is a Lip(1) function on (R>,~>).

Each element g of G = Iy, being a linear functional on (R* ~*), is
Lip(|lg|]). In particular, =(¢) € Lip(1) for all ¢ € [0, 1]; that is, |Z(¢)(- + a) —

—_

E(t)(-)| < |la]| a.s. (the null set may depend on a and ¢). In terms of a jointly
measurable modification & of the process =,

|€(z +a)(t) — &(x)(t)| < ||la]] for almost all (¢,z) € [0,1] x (R, ~).

Therefore

‘/@(S(era)(t) )dt — [ p(e(x)(t)) dt’ <
/|9055”+“ ) — @(&(x) (1)) | dt <
< [lete +a)0) - €)@ at < o]

for almost all z € (R, y*). O

22e Hints to exercises

R2a6} [ f1(wi)]” < [ [f(wr,w2)]? Po(dws).
22a7; try [([ ... Pa(dws)) Pi(dw).
22b1; (a) On a set of small measure, Ly norm is much less than Ly norm.
: , and Fubini.
[22c3} 22¢2] and [22ad]
22cdk consider &y = mid(—M, &, M).
En(t,w) zﬁ(g,w) for % <t < Bl

Index
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