
Tel Aviv University, 2010 Gaussian measures : infinite dimension 1

21 Gaussian spaces and processes

21a Gaussian spaces: finite dimension . . . . . . . . . 1

21b Toward Gaussian random processes . . . . . . . 2

21c Random processes versus random functions . . 3

21d Gaussian spaces: infinite dimension . . . . . . . 5

21e Stationary Gaussian processes . . . . . . . . . . . 8

21f Hints to exercises . . . . . . . . . . . . . . . . . . 10

21a Gaussian spaces: finite dimension

21a1 Definition. 1 A (closed linear) subspace G of the (real) Hilbert space
L2(Ω,F , P ) over a probability space (Ω,F , P ) is called a Gaussian Hilbert
space if each g ∈ G satisfying ‖g‖ = 1 is distributed γ1 (in other words, is a
standard normal random variable).

I often abbreviate it to just “Gaussian space”.
Clearly, a subspace of a Gaussian space is again a Gaussian space.

21a2 Example. Let G = (Rd)∗ ⊂ L2(Rd, γd) be the d-dimensional space
of all linear functions2 Rd → R. Then G is a Gaussian space. Each point
ω ∈ Ω = Rd may be thought of as a linear function on G.

Let µ, ν be two probability measures on Rd such that f [µ] = f [ν] for
every linear function f : Rd → R. Then µ = ν. (Fourier transform. . .
“Characteristic function”. . . ) Use this fact in the following exercise.

21a3 Exercise. Let G be a Gaussian space and g1, . . . , gn ∈ G orthonormal
vectors. Then g1, . . . , gn are (not only standard normal but also) independent
random variables; in other words, the map3

(Ω, P )→ (Rn, γn) , ω 7→
(
g1(ω), . . . , gn(ω)

)
is measure preserving.

Prove it.

1Not a widespread definition, but see the book “Gaussian Hilbert spaces” by Svante
Janson.

2More exactly: their equivalence classes.
3More exactly: equivalence class of maps.
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Every measure preserving map1 α : (Ω1, P1) → (Ω2, P2) leads to a linear
isometric embedding α̃ : L2(Ω2, P2) → L2(Ω1, P1). But do not think that
α̃ is just an arbitrary linear isometry. No, it is very special: it preserves
distributions! (Also joint distributions.) Therefore α̃ sends every Gaussian
space G2 ⊂ L2(Ω2, P2) into a Gaussian space G1 ⊂ L2(Ω1, P1); in this sense,
G1 is a copy of G2.

By 21a3, every d-dimensional Gaussian space is a copy of the canonical
one, (Rd, γd)∗, given in 21a2. The freedom in the choice of an orthonormal
basis in G is exactly the freedom in the choice of a linear isometry G→ (Rd)∗.

21b Toward Gaussian random processes

Let G ⊂ L2(Ω, P ) be a d-dimensional Gaussian space, g1, . . . , gn ∈ G some
vectors that span G.2 As we know, there exists a measure preserving map
α : (Ω, P )→ (Rd, γd) such that α̃ establishes a linear isometry of (Rd)∗ onto
G. Taking f1, . . . , fn ∈ (Rd)∗ such that α̃(f1) = g1, . . . , α̃(fn) = gn we see
that the joint distribution of f1, . . . , fn is equal to the joint distribution of
g1, . . . , gn. In this sense, (g1, . . . , gn) is a copy of (f1, . . . , fn).

The freedom in the choice of a linear isometry between G and (Rd)∗ is
exactly the freedom in the choice of (f1, . . . , fn) isometric to (g1, . . . , gn) in
the sense that3

(21b1) 〈fi, fj〉 = 〈gi, gj〉 for all i, j ∈ {1, . . . , n} .

Indeed, having such f1, . . . , fn we may take α̃(c1f1 + · · · + cnfn) = c1g1 +
· · · + cngn for all c1, . . . , cn ∈ R. We see that two Gaussian random vectors
are isometric if and only if they are identically distributed.

All said above holds for arbitrary families (gi)i∈I , (fi)i∈I , gi ∈ G, fi ∈
(Rd)∗. (Note that I may be infinite, but d is still finite.) If they are isometric
then gi = α̃(fi), that is,

(21b2) ∀i ∈ I gi(ω) = fi(α(ω))

for some measure preserving α : (Ω, P ) → (Rd, γd). By “identically dis-
tributed” we mean here that (fi1 , . . . , fin) and (fi1 , . . . , fin) are identically
distributed for all n and i1, . . . , in ∈ I.

1Once again, more exactly: equivalence class of maps.
2Note that n may exceed d. Moreover, a bit later n will become infinite, and even a

continuum.
3Usually, “isometric” means rather |fi − fj | = |gi − gj |. Then, (21b1) means that

(0, f1, . . . , fn) is isometric to (0, g1, . . . , gn). The two interpretations of “isometric” coincide
in the special case |fi| = 1, |gi| = 1, since in this case |fi − fj |2 = 2− 2〈fi, fj〉.
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21b3 Example. Take I = R, and (using t ∈ R instead of i ∈ I and 2N
instead of d) define ft ∈ (R2N)∗ by

ft(x1, . . . , x2N) =
N∑
k=1

akRe
(
(x2k−1 + ix2k)e

iλkt
)

=

=
N∑
k=1

ak(x2k−1 cosλkt− x2k sinλkt)

where ak and λk are as in Sect. 2. Then 〈fs, ft〉 = 〈f0, ft−s〉 (stationarity),
and

〈f0, ft〉 = E (f0ft) =

∫
R2N

f0ft dγ2N =
N∑
k=1

a2
k cosλkt .

The random function t 7→ ft(x), where x runs over the probability space
(R2N , γ2N), is just the random trigonometric sum examined in Sect. 2 (and
11–13).

21c Random processes versus random functions

21c1 Example. Assume that G ⊂ L2(Ω, P ) is a 2N -dimensional Gaussian
space, and (gt)t∈R a family of gt ∈ G such that 〈gs, gt〉 = 〈g0, gt−s〉 and

〈g0, gt〉 =
N∑
k=1

a2
k cosλkt .

Then there exists a measure preserving α : (Ω, P ) → (R2N , γ2N) such that
α̃(ft) = gt for all t. Does it mean that results of Sect. 2 hold for the random
function t 7→ gt(ω), since it is a copy of the random trigonometric sum of
Sect. 2?

Do not answer in hurry “yes” or “no”; look closely at the question. It is
a nonsense! There is no function t 7→ gt(ω), since each gt is an equivalence
class, not a function. Roughly speaking, gt(ω) is undefined on a set At ⊂ Ω
negligible in the sense that P (At) = 0; thus the whole function t 7→ gt(ω) is
undefined on the set ∪t∈RAt that need not be negligible.

Regretfully, there is no universally agreed definition of a random process.
Surely, a random process on a set I is either a function X : I × Ω → R
such that X(i, ·) is measurable for each i ∈ I, or an equivalence class of
such functions. However, two very different equivalence relations suggest
themselves; one is

X ∼ Y ⇐⇒ ∀i ∈ I P
(
{ω ∈ Ω : X(i, ω) = Y (i, ω)}

)
= 1 ,
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the other is

X ∼ Y ⇐⇒ P
(
{ω ∈ Ω : ∀i ∈ I X(i, ω) = Y (i, ω)}

)
= 1 .

Let us call their equivalence classes “broad” and “narrow” respectively. Also,
let us call a broad equivalence class a random process, and a narrow equiva-
lence class — a random function.

In other words, a random process is a map Ξ : I → L0(Ω, P ) (from I to
equivalence classes of measurable functions on Ω), while a random function
is an equivalence class of maps ξ : Ω → RI (from Ω to functions on I) such
that ξ(·)(i) is measurable for each i ∈ I; here equivalence is just a.s. equality
(of functions on I),

ξ1 ∼ ξ2 ⇐⇒ P
(
ξ1 = ξ2

)
= P

(
{ω ∈ Ω : ξ1(ω) = ξ2(ω)}

)
=

= P
(
{ω ∈ Ω : ∀i ∈ I ξ1(ω)(i) = ξ2(ω)(i)}

)
= 1 .

We say that a random function ξ is a modification of a random process
Ξ if the narrow equivalence class of ξ is contained in the broad equivalence
class of Ξ. In other words: if for each i ∈ I the function ξ(·)(i) belongs to
the equivalence class Ξ(i).1

21c2 Exercise. (a) Every random process has a modification (at least one).
(b) If Ω is (finite or) countable then every random process has only one

modification.
(c) If I is (finite or) countable then every random process has only one

modification.
(d) If I is of cardinality continuum and (Ω, P ) is a (complete) nonatomic

probability space of cardinality continuum, then every random process has
more than one modification.
Prove it.

Returning to 21c1 we see now that (gt)t∈R is a random process, not
a random function. In contrast, 21b3 gives not only a random process
(ft)t∈R but also its modification, a random function f : (R2N , γ2N) → RR,
f(x1, . . . , x2N)(t) = ft(x1, . . . , x2N).

21c3 Exercise. Some modification g of the random process (gt)t∈R of 21c1
is a copy of the random function f of 21b3. In other words, there exists a
measure preserving map α : (Ω, P ) → (R2N , γ2N) such that for almost all
ω ∈ Ω,

∀t ∈ R g(ω)(t) = f
(
α(ω)

)
(t) .

Prove it.
1Can we say “the function ξ(·)(i)”? Yes, it is harmless (think, why) in this context,

and in all reasonable contexts.
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Thus, results of Sect. 2 hold for some modification of the random process
of 21c1.

Continuity of a random function ξ : Ω→ RI can be defined when I = R
or, more generally, I = (I, ρ) is a metric space. Namely, ξ is called (sample)
continuous, if for almost all ω, ξ(ω) is a continuous function (on I).

21c4 Exercise. A random process on R has no more than one continuous
modification.

Prove it.

The same holds for every separable metric space (I, ρ).1

Now we see that “some modification” in 21c3 may be replaced with “the
continuous modification”. By the way: many random processes (martin-
gales, processes with independent increments etc.) have (among others) the
right-continuous modification and the left-continuous modification (generally
different), which is not the case for (centered) Gaussian processes.

Sample continuity should not be confused with continuity in probability.2

A random process Ξ : R → L0(Ω, P ) is called continuous in probability, if
Ξ(tn) → Ξ(t) in probability whenever tn → t. Likewise, Ξ : R → L2(Ω, P )
is called mean-square continuous, if Ξ(tn) → Ξ(t) in L2 whenever tn → t.
(Any metric space may be used here instead of R.) For a Gaussian process
Ξ : R→ G ⊂ L2(Ω, P ) continuity in probability is equivalent to mean-square
continuity (think, why).

21c5 Exercise. Let (Ω, P ) = (R, γ1). Define a process Ξ : R → L2(Ω, p)
by Ξ(s)(t) = sgn(t− s). Prove that Ξ is mean-square continuous but has no
sample continuous modification.

21c6 Exercise. Let G ⊂ L2(Ω, P ) be a finite-dimensional Gaussian space,
and Ξ : R→ G. Then Ξ is sample continuous if and only if it is mean-square
continuous.

Prove it.

21d Gaussian spaces: infinite dimension

If Xn → X in L2(Ω, P ) (or just in probability) then Xn → X in distribution,
that is,

E f(Xn)→ E f(X) for every bounded continuous f : R→ R .
1If I is just a set, not a metric space, we may seek a modification continuous w.r.t. some

(at least one) separable metric. Surprisingly, still, there is at most one such modification,
— so-called natural modification (B. Tsirelson 1976).

2They could be called just “continuity of a modification” and “continuity of a process”.
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Therefore the set of all X ∈ L2(Ω, P ) distributed γ1 is closed. It follows
easily that if a non-closed linear subset G0 ⊂ L2(Ω, P ) satisfies 21a1 then its
closure also satisfies it and so, is a Gaussian space.

Thus, every sequence g1, g2, . . . of independent standard normal random
variables spans a Gaussian space.

Such a sequence exists even in L2(0, 1) (tricks with binary digits. . . ). The
map

(0, 1)→ R∞ , ω 7→
(
g1(ω), g2(ω), . . .

)
sends the Lebesgue measure on (0, 1) to the so-called standard Gaussian mea-
sure γ∞ on the space R∞ of all sequences of reals (with the σ-field generated
by the coordinates). It is the infinite product,

γ∞ = γ1 × γ1 × . . .

The linear space R∞ is dual to the linear space R∞ of all finitely supported
sequences of reals:

〈c, x〉 =
∞∑
k=1

ckxk for c ∈ R∞, x ∈ R∞ .

Thus, c ∈ R∞ may be thought of as a measurable linear functional on
(R∞, γ∞), whose norm is equal to the l2 norm of c,∫

R∞
(c1x1 + c2x2 + . . . )2 γ∞(dx) = c2

1 + c2
2 + . . . for c ∈ R∞ .

Such functionals are a non-closed linear subset of L2(R∞, γ∞) satisfying 21a1;
therefore its closure is an infinite-dimensional Gaussian space (R∞, γ∞)∗. Its
elements are called measurable linear functionals on (R∞, γ∞). Treating R∞
as a non-closed linear subset of l2 we have a linear isometric embedding
R∞ → (R∞, γ∞)∗; it extends by continuity to a linear isometric map l2 →
(R∞, γ∞)∗; this map is onto; thus, roughly speaking,

(R∞, γ∞)∗ = l2 .

That is, the general form of a measurable linear functional f on (R∞, γ∞) is

f(x1, x2, . . . ) = lim
n→∞

(c1x1 + · · ·+ cnxn) ,

the limit being taken in L2(R∞, γ∞).1

1In fact, the series converges almost surely.
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In contrast to the finite-dimensional case we have γ∞(l2) = 0; points
of (R∞, γ∞) cannot be thought of as linear functionals on l2. In this sense
(R∞, γ∞)∗ = l2, but l∗2 6= (R∞, γ∞).

Given a Gaussian spaceG ⊂ L2(Ω, P ) and an orthonormal basis g1, g2, · · · ∈
G, we get a measure preserving map

α : (Ω, P )→ (R∞, γ∞) , α(ω) =
(
g1(ω), g2(ω), . . .

)
and the corresponding isometric embedding α̃ : L2(R∞, γ∞) → L2(Ω, P )
maps (R∞, γ∞)∗ onto G. In this sense G is a copy of (R∞, γ∞)∗.

Similarly to Sect. 21b, every Gaussian random process Ξ : I → G ⊂
L2(Ω, P ) is a copy of a Gaussian random process Ξ0 : I → (R∞, γ∞)∗ ⊂
L2(R∞, γ∞), provided that G is separable.1 It is necessary and sufficient
that they are isometric,

EΞ(i1)Ξ(i2) = EΞ0(i1)Ξ0(i2) for all i1, i2 ∈ I .

All infinite-dimensional separable Hilbert spaces are linearly isometric to
each other. Thus we may start with an arbitrary map Ψ : I → H from an
arbitrary set I to an arbitrary separable Hilbert space H, and use a linear
isometry between H and a Gaussian space G for constructing a Gaussian
process Ξ : I → G isometric to Ψ in the sense that

EΞ(i1)Ξ(i2) = 〈Ψ(i1),Ψ(i2)〉 .

Such Ψ is sometimes called a model of Ξ.

21d1 Example. H = L2(0,∞), I = [0,∞), Ψ(t) = 1(0,t); the corresponding
Ξ is the Brownian motion B,

EB(s)B(t) = s whenever 0 ≤ s ≤ t <∞ .

It has a continuous modification, but this fact is not trivial.2

21d2 Example. I = H and Ψ(x) = x; the corresponding Ξ is the so-called
isonormal process,

EΞ(x)Ξ(y) = 〈x, y〉 for all x, y ∈ H .

It is mean-square continuous, but has no continuous modification.3

1Usually, L2(Ω, P ) is separable, and therefore G is.
2Interestingly, sample functions of this continuous modification are nowhere differen-

tiable, which is far from being trivial.
3It has a linear modification. It has a Borel (measurable) modification. But these two

properties are incompatible. In some sense it has no “right” modification (E. Glasner,
B. Tsirelson, B. Weiss 2005).
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The isonormal process is the mother of all Gaussian processes; they are
basically its restrictions to various subsets of H. In particular, B(t) =
Ξ(1(0,t)).

21d3 Example. Let H = L2(R), I = R, Ψ(t)(s) = e−(t−0.5s) for 0.5s < t,
otherwise 0. The corresponding Ξ is the so-called Ornstein-Uhlenbeck process
U ,

EU(s)U(t) = e−|s−t| for s, t ∈ R .

21d4 Exercise. Let B be the Brownian motion, and X(t) = e−tB(e2t) for
t ∈ R; then X is (isometric to) the Ornstein-Uhlenbeck process.

Check it.

21e Stationary Gaussian processes

21e1 Definition. A Gaussian process Ξ : R → G ⊂ L2(Ω, P ) is called
stationary, if

∀s, t ∈ R EΞ(s)Ξ(t) = EΞ(0)Ξ(t− s) .

In other words, the shifted process is isometric to the original process.
Its model is a vector-function Ψ : R → H (H being a Hilbert space)

satisfying
∀s, t ∈ R 〈Ψ(s),Ψ(t)〉 = 〈Ψ(0),Ψ(t− s)〉 .

Clearly, ‖Ψ(t)‖ = const; excluding the trivial case ‖Ψ(t)‖ = 0, we always
normalize stationary Gaussian processes:

‖Ψ(t)‖ = 1 ; EΞ2(t) = 1 .

Such Ψ is determined up to isometry by the corresponding bounded shift-
invariant metric on R,

ρΨ(s, t) = ‖Ψ(s)−Ψ(t)‖ =
√

2
(
1− r(s− t)

)
,

where r(t) = EΞ(0)Ξ(t) is the correlation function. But do not think that
every bounded shift-invariant metric is some ρΨ, For example, the metric
ρ(s, t) = min(1, |s− t|) is not.

The Ornstein-Uhlenbeck process is stationary; the corresponding metric
is ρ(s, t) = 2

(
1− e−|s−t|

)
.

The correlation function of a stationary process is positive definite (in
other words, of positive type); it means that∑

i,j

zizjr(ti − tj) ≥ 0
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for all n = 1, 2, . . . , all t1, . . . , tn ∈ R and all z1, . . . , zn ∈ C. The proof is
immediate: E |

∑
ziΞ(ti)|2 =

∑
zizjr(ti − tj).

21e2 Exercise. The following three conditions on a stationary Gaussian
process Ξ are equivalent:

(a) Ξ is mean-square continuous;
(b) the correlation function t 7→ EΞ(0)Ξ(t) is continuous;
(c) the metric (s, t) 7→ ‖Ξ(s)− Ξ(t)‖ is continuous.

Prove it.

The general form of a continuous positive definite function r : R → C is
given by Bochner’s theorem:

r(t) =

∫
eiλt µ(dλ)

for some (positive, finite) measure µ on R. In our case r is real-valued, thus
µ is symmetric; r(0) = 1, thus µ is a probability measure; it is called the
spectral measure;

EΞ(0)Ξ(t) = r(t) =

∫
cosλt µ(dλ)

for every mean-square continuous stationary Gaussian process Ξ. Recall
Sect. 2a; there r(t) =

∑
a2
k cosλkt, thus µ =

∑
a2
k

1
2
(δλk + δ−λk), as in (11c5).

The spectral measure gives us a model Ψ of the process Ξ:1

Ψ : R→ L2(µ) , Ψ(t)(λ) = eiλt .

Sample continuity of a (mean-square continuous) stationary Gaussian
process is a highly nontrivial matter. Here is a necessary and sufficient con-
dition (without proof):2∫ 1

0

√
ln

1

v(ε)
dε <∞ ,

where v(ε) is the Lebesgue measure of {t ∈ [0, 1] : ‖Ξ(t)− Ξ(0)‖ < ε} .

If this condition is violated then for every modification the sample functions
are unbounded (from above and below) on every interval.3

1It is a model in a complex Hilbert space, but all needed scalar products are real, thus
we may take the real part of the scalar product and treat C as a two-dimensional real
space. . .

2R.M. Dudley 1967 (sufficiency), X. Fernique 1975 (necessity).
3Yu.K. Belyaev 1960. I wonder whether the no-go result of E. Glasner, B. Tsirelson

and B. Weiss (2005) has a counterpart for this situation.
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21f Hints to exercises

21c2(d): find At such that P (At) = 0 but ∪tAt = Ω.

21c4: take a dense countable subset of R.

21c5: again, take a dense countable subset of R.
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