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14a Variance and gradient; proving (3a4)

14al Exercise. (“Gaussian integration by parts”) Prove that

[art@)rtan) = [ )

for every continuously differentiable, compactly supported f : R — R.

14a2 Exercise. Prove that
/ / f(z cos p+ysin g, —z sin p+y cos ) 7' (dz)y! (dy) = / / f(z,y) v (dz)y' (dy)

for all bounded continuous f : R? — R and ¢ € R.

14a3 Exercise. Prove that
// f(z,y)g(x cos o — ysinp, xsinp + ycos p) v' (dz)y' (dy) =
= // f(zcosp+ysing, —zsing +ycosp)g(z,y) v (dz)y' (dy)

for all bounded continuous f,g: R*> — R and ¢ € R.

14a4 Exercise. Prove that

L[] s@iatecosip ysing) et an) =
= —siny // f'(2)g (z cos p — ysin )y (dz)y' (dy)

for all continuously differentiable, compactly supported f,g : R — R and
p e R
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14a5 Exercise. Prove that

/ [ 1@t riady) =~ [ [ @) )7} o)

for all continuously differentiable, compactly supported f,g : R — R and
€ (0,00).

14a6 Exercise. Prove that

/fgdvl— (/fdvl)(/gdv / dte‘t//f y) i (dedy)

for all continuously differentiable, compactly supported f,g: R — R.

14a7 Exercise. (Generalization of to x € R?)

[ vi@an) = [ap@) i)

for every continuously differentiable, compactly supported f : R? — R. That

/ 5l @)7d) = [ (o) 7o)

for k=1,.
Prove 1t.

14a8 Exercise. Generalize to x,y € R%

14a9 Exercise. (Generalization of to RY)
d : 1 1
i f(x)g(xcosp —ysing)y (dz)y (dy) =
——sing [ [(V4(0), V(o cosio - ysing)) ' (de)(dy

for all continuously differentiable, compactly supported f,g : R? — R and
v eR.
Prove it.

Similarly to [14a5] we get
(1a10) 5 [ [ f@gw)idady) = e [ [ (9100, Vo) siandy
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and finally,
(14all)

/fgdv ([ravt)([oard) = [ ate [[ (05, Vatm)aiiaaas.

which may also be thought of as [[(V f, Vg) dv where v = [ e dt.
If f,g are Lip(1) functions then |[(Vf,Vg)| < 1 and so, | [ fgdy? —

(f fdv") ([ gdy?)| < 1. In particular,
(14a12) /f2 dy? — </fd7d>2 <1 for f € Lip(1).

14a13 Exercise. Deduce ((14a12)) from Theorem la2.

Moreover,

| [[91@). Vi) vianay)| <
< ([ wr@ritanan)”( [[195wrama)" =

~ [197Pat:
in combination with (14all)) (for f = g) it gives

(14al4) /devd— (/fd7d>2 < /|Vf|2d7d,

the Poincare inequality! for Gaussian measure. It is evidently stronger than
(14a12]).

We cannot just apply to f=g=2¢&, &(x) = maxea(x,a), since £
is neither continuously differentiable nor compactly supported. However, the
needed generalizations are easy. First, holds for a piecewise continuously
differentiable Lipschitz function f : R — R (think, why).? Second,
holds for f = &, since the restriction of ¢ to a straight line is the maximum
of finitely many linear functions. Thus, applies to f = g = &; taking
into account that V& = a we get (3a4).

!The simplest classical Poincare inequality: fo fAz)dz — ( fol f(z)dz)? <

7r2 fo f"?(x) da; the equality holds for f(z) = cosm.
2Wider generahzatlon is possible, but we do not need it.
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14b Proving Lemma 3a2
14b1 Exercise. Prove that

/ Sz, y, @ cos + ysing, —zsing + ycos ) v (dz)y' (dy) =
= / fzcosp —ysinp, zsing +ycosp, z,y)v' (dz)y' (dy)

for all bounded continuous f : R* — R and ¢ € R.

But do not think that
/ f(z,y,xcosp — ysing, xsing + ycosp) v (dz)y' (dy) =
= / fzcos o —ysing, zsing 4y cos ¢, z,y) 7' (dz)y' (dy)

this is generally wrong (think, why).

14b2 Exercise. The measure 7} is symmetric. That is,

/ fa, y)v (dady) = / f(y, 2)7; (dedy)

for all bounded continuous f : R? — R and ¢ € [0, 00).
Prove it.

Thus,
/ / f(z, etz 4+ V1 — e 2u) 4 (dz)y! (du) =
= / fle™ty + V1 —e v, y) 7' (dz)y' (dv).

14b3 Lemma. For every bounded continuous f : R — R and ¢ € [0, co),

//f 2) 7k (dadz) / /f ety + V1 —e Zu)y (du)) H(dy) .
Proof

b= [ ([ ety + Vimem @)’ @) =

= [[] ety VI ety + VI 01 o) (du)y' o)
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for every v we have
] sty VImeT ety + VT o) 3 )y ) =
= [[ @) (e et + VT= o) + VI= e T0) (e ()
thus,
I = / / / (dv)y' (dw) f(e > x+e V1 — e 2tw+V1 — e 2ty) =
_/ da) (o )/ Hdu) fe e + VI = o u) = I,

since e (1l —e ) +1—e 2 =1—e" O

The same holds for v¢, and we get

/ / f()f(y) v4(dxdy) > 0

for every bounded continuous f : R? — R. By approximation it holds for all
f € La(y%), which proves a half of Lemma 3a2.
The same holds for vector-functions (think, why). In particular,

/ / (VF(2), V() 78 (dzdy) > 0

Whenever [V f?dy? < oo

By (14al0), [[ f(z)f(y)~(dzdy) decreases in ¢ for good functions f.
By approxunatlon it holds for all f € Ly(y?), which completes the proof of
Lemma 3a2.!

14c Proving Theorem 3a3

Correction. Item (a) of Theorem 3a3 should be: assumption Dsy,> implies
assumption F,.

The function
o(t) = E (a(X), a(Xy))

'In fact, Lemma 3a2 is not “Gaussian”; it holds for every time-symmetric Markov
process. Here is its translation into the language of functional analysis. Let (U;)¢>0 be a
one-parameter semigroup of Hermitian operators in a Hilbert space, satisfying ||U|| < 1
for all ¢. Then the function ¢t — (U, ¢) is nonnegative and decreasing on [0, co) for every
vector ¢ of the Hilbert space. (The proof is quite simple.)
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satisfies

vVt 0 < 1,
(14c1) plt) <
¢ is decreasing on [0, 00)
(think, why).
14c2 Exercise. For every ¢ satisfying (14clf) and every x € (0, 00),

@ [ teltd <ot o)
) (o) < & / S el

Prove it.
By (3ad), [;~ e fo(t) dt = Var(§). Thus Dy,2 means [ e o(t)dt < 5
and implies ¢(1/n) < 11//: oy = e;;" < L for n > 2, which proves 3a3( )

On the other hand, Es, means ¢(5-) < 5 and implies [e p(t)dt <
% + % = %, which is D,; 3a3(b) is thus proved.

14d Hints to exercises
[[4a3} this is a generalization of [I4a2], and nevertheless, it is a special case of
[4a2l
[[4ad} [ f(xcosp+ysinp)yy'(dy) =sing [ f/(z cos ¢ + ysinp) y*(dy).
[14a5} e~* = cos c,p
[14a13t 3 [f|f(x) = )] p(da)u(dy) = [ f2du— ([ fdp)?.

this is, again, a generahzation of and nevertheless, a special
case of [4a2l

apply [[361 to f(x, y, u,v) = g(x, u).
: fooo _ for + fxoo
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