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14a Variance and gradient; proving (3a4)

14a1 Exercise. (“Gaussian integration by parts”) Prove that∫
xf(x) γ1(dx) =

∫
f ′(x) γ1(dx)

for every continuously differentiable, compactly supported f : R→ R.

14a2 Exercise. Prove that∫∫
f(x cosϕ+y sinϕ,−x sinϕ+y cosϕ) γ1(dx)γ1(dy) =

∫∫
f(x, y) γ1(dx)γ1(dy)

for all bounded continuous f : R2 → R and ϕ ∈ R.

14a3 Exercise. Prove that∫∫
f(x, y)g(x cosϕ− y sinϕ, x sinϕ+ y cosϕ) γ1(dx)γ1(dy) =

=

∫∫
f(x cosϕ+ y sinϕ,−x sinϕ+ y cosϕ)g(x, y) γ1(dx)γ1(dy)

for all bounded continuous f, g : R2 → R and ϕ ∈ R.

14a4 Exercise. Prove that

d

dϕ

∫∫
f(x)g(x cosϕ− y sinϕ) γ1(dx)γ1(dy) =

= − sinϕ

∫∫
f ′(x)g′(x cosϕ− y sinϕ) γ1(dx)γ1(dy)

for all continuously differentiable, compactly supported f, g : R → R and
ϕ ∈ R.
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14a5 Exercise. Prove that

d

dt

∫∫
f(x)g(y) γ1t (dxdy) = −e−t

∫∫
f ′(x)g′(y) γ1t (dxdy)

for all continuously differentiable, compactly supported f, g : R → R and
t ∈ (0,∞).

14a6 Exercise. Prove that∫
fg dγ1 −

(∫
f dγ1

)(∫
g dγ1

)
=

∫ ∞
0

dt e−t
∫∫

f ′(x)g′(y) γ1t (dxdy)

for all continuously differentiable, compactly supported f, g : R→ R.

14a7 Exercise. (Generalization of 14a1 to x ∈ Rd)∫
∇f(x) γd(dx) =

∫
xf(x) γd(dx)

for every continuously differentiable, compactly supported f : Rd → R. That
is, ∫

∂

∂xk
f(x) γd(dx) =

∫
xkf(x) γd(dx)

for k = 1, . . . , d.
Prove it.

14a8 Exercise. Generalize 14a3 to x, y ∈ Rd.

14a9 Exercise. (Generalization of 14a4 to Rd)

d

dϕ

∫∫
f(x)g(x cosϕ− y sinϕ) γ1(dx)γ1(dy) =

= − sinϕ

∫∫
〈∇f(x),∇g(x cosϕ− y sinϕ)〉 γd(dx)γd(dy)

for all continuously differentiable, compactly supported f, g : Rd → R and
ϕ ∈ R.

Prove it.

Similarly to 14a5, 14a6 we get

(14a10)
d

dt

∫∫
f(x)g(y) γdt (dxdy) = −e−t

∫∫
〈∇f(x),∇g(y)〉 γdt (dxdy)
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and finally,
(14a11)∫

fg dγd−
(∫

f dγd
)(∫

g dγd
)

=

∫ ∞
0

dt e−t
∫∫
〈∇f(x),∇g(y)〉 γdt (dxdy) ,

which may also be thought of as
∫∫
〈∇f,∇g〉 dν where ν =

∫
e−tγdt dt.

If f, g are Lip(1) functions then |〈∇f,∇g〉| ≤ 1 and so, |
∫
fg dγd −(∫

f dγd
)(∫

g dγd
)
| ≤ 1. In particular,

(14a12)

∫
f 2 dγd −

(∫
f dγd

)2
≤ 1 for f ∈ Lip(1) .

14a13 Exercise. Deduce (14a12) from Theorem 1a2.

Moreover,∣∣∣ ∫∫ 〈∇f(x),∇f(y)〉 γdt (dxdy)
∣∣∣ ≤

≤
(∫∫

|∇f(x)|2 γdt (dxdy)
)1/2(∫∫

|∇f(y)|2 γdt (dxdy)
)1/2

=

=

∫
|∇f |2 dγd ;

in combination with (14a11) (for f = g) it gives

(14a14)

∫
f 2 dγd −

(∫
f dγd

)2
≤
∫
|∇f |2 dγd ,

the Poincare inequality1 for Gaussian measure. It is evidently stronger than
(14a12).

We cannot just apply (14a11) to f = g = ξ, ξ(x) = maxa∈A〈x, a〉, since ξ
is neither continuously differentiable nor compactly supported. However, the
needed generalizations are easy. First, 14a1 holds for a piecewise continuously
differentiable Lipschitz function f : R → R (think, why).2 Second, 14a7
holds for f = ξ, since the restriction of ξ to a straight line is the maximum
of finitely many linear functions. Thus, 14a11 applies to f = g = ξ; taking
into account that ∇ξ = α we get (3a4).

1The simplest classical Poincare inequality:
∫ 1

0
f2(x) dx −

(∫ 1

0
f(x) dx

)
2 ≤

1
π2

∫ 1

0
f ′2(x) dx; the equality holds for f(x) = cosπx.

2Wider generalization is possible, but we do not need it.
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14b Proving Lemma 3a2

14b1 Exercise. Prove that∫∫
f(x, y, x cosϕ+ y sinϕ,−x sinϕ+ y cosϕ) γ1(dx)γ1(dy) =

=

∫∫
f(x cosϕ− y sinϕ, x sinϕ+ y cosϕ, x, y) γ1(dx)γ1(dy)

for all bounded continuous f : R4 → R and ϕ ∈ R.

But do not think that∫∫
f(x, y, x cosϕ− y sinϕ, x sinϕ+ y cosϕ) γ1(dx)γ1(dy) =

=

∫∫
f(x cosϕ− y sinϕ, x sinϕ+ y cosϕ, x, y) γ1(dx)γ1(dy) ,

this is generally wrong (think, why).

14b2 Exercise. The measure γ1t is symmetric. That is,∫∫
f(x, y)γ1t (dxdy) =

∫∫
f(y, x)γ1t (dxdy)

for all bounded continuous f : R2 → R and t ∈ [0,∞).
Prove it.

Thus,∫∫
f(x, e−tx+

√
1− e−2tu) γ1(dx)γ1(du) =

=

∫∫
f(e−ty +

√
1− e−2tv, y) γ1(dx)γ1(dv) .

14b3 Lemma. For every bounded continuous f : R→ R and t ∈ [0,∞),∫∫
f(x)f(z) γ12t(dxdz) =

∫ (∫
f(e−ty +

√
1− e−2tu) γ1(du)

)2
γ1(dy) .

Proof.

I2 =

∫ (∫
f(e−ty +

√
1− e−2tu) γ1(du)

)2
γ1(dy) =

=

∫∫∫
f(e−ty +

√
1− e−2tu)f(e−ty +

√
1− e−2tv) γ1(dy)γ1(du)γ1(dv) ;
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for every v we have∫∫
f(e−ty +

√
1− e−2tu)f(e−ty +

√
1− e−2tv) γ1(dy)γ1(du) =

=

∫∫
f(x)f

(
e−t(e−tx+

√
1− e−2tw) +

√
1− e−2tv

)
γ1(dx)γ1(dw) ;

thus,

I2 =

∫
γ1(dx)f(x)

∫∫
γ1(dv)γ1(dw)f(e−2tx+e−t

√
1− e−2tw+

√
1− e−2tv) =

=

∫
γ1(dx)f(x)

∫
γ1(du)f(e−2tx+

√
1− e−4tu) = I1 ,

since e−2t(1− e−2t) + 1− e−2t = 1− e−4t.

The same holds for γd, and we get∫∫
f(x)f(y) γdt (dxdy) ≥ 0

for every bounded continuous f : Rd → R. By approximation it holds for all
f ∈ L2(γ

d), which proves a half of Lemma 3a2.
The same holds for vector-functions (think, why). In particular,∫∫

〈∇f(x),∇f(y)〉 γdt (dxdy) ≥ 0

whenever
∫
|∇f |2 dγd <∞.

By (14a10),
∫∫

f(x)f(y) γdt (dxdy) decreases in t for good functions f .
By approximation it holds for all f ∈ L2(γ

d), which completes the proof of
Lemma 3a2.1

14c Proving Theorem 3a3

Correction. Item (a) of Theorem 3a3 should be: assumption D2n2 implies
assumption En.

The function
ϕ(t) = E 〈α(X), α(Xt)〉

1In fact, Lemma 3a2 is not “Gaussian”; it holds for every time-symmetric Markov
process. Here is its translation into the language of functional analysis. Let (Ut)t≥0 be a
one-parameter semigroup of Hermitian operators in a Hilbert space, satisfying ‖Ut‖ ≤ 1
for all t. Then the function t 7→ 〈Utψ,ψ〉 is nonnegative and decreasing on [0,∞) for every
vector ψ of the Hilbert space. (The proof is quite simple.)
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satisfies

(14c1)
∀t 0 ≤ ϕ(t) ≤ 1 ,

ϕ is decreasing on [0,∞)

(think, why).

14c2 Exercise. For every ϕ satisfying (14c1) and every x ∈ (0,∞),

(a)

∫ ∞
0

e−tϕ(t) dt ≤ x+ ϕ(x);

(b) ϕ(x) ≤ ex

x

∫ ∞
0

e−tϕ(t) dt.

Prove it.

By (3a4),
∫∞
0

e−tϕ(t) dt = Var(ξ). Thus, D2n2 means
∫

e−tϕ(t) dt ≤ 1
2n2

and implies ϕ(1/n) ≤ e1/n

1/n
· 1
2n2 = e1/n

2n
≤ 1

n
for n ≥ 2, which proves 3a3(a).

On the other hand, E2n means ϕ( 1
2n

) ≤ 1
2n

and implies
∫

e−tϕ(t) dt ≤
1
2n

+ 1
2n

= 1
n
, which is Dn; 3a3(b) is thus proved.

14d Hints to exercises

14a3: this is a generalization of 14a2, and nevertheless, it is a special case of
14a2!

14a4:
∫
f(x cosϕ+ y sinϕ)y γ1(dy) = sinϕ

∫
f ′(x cosϕ+ y sinϕ) γ1(dy).

14a5: e−t = cosϕ.

14a13: 1
2

∫∫
|f(x)− f(y)|2 µ(dx)µ(dy) =

∫
f 2 dµ−

(∫
f dµ

)
2.

14b1: this is, again, a generalization of 14a2, and nevertheless, a special
case of 14a2!

14b2: apply 14b1 to f(x, y, u, v) = g(x, u).

14c2:
∫∞
0

=
∫ x

0
+
∫∞
x

.
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