14 Sensitivity and superconcentration

14a Variance and gradient; proving (3a4)

24

14b Proving Lemma 3a2 27
14c Proving Theorem 3a3 28
14d Hints to exercises 29

14a Variance and gradient; proving (3a4)

14a1 Exercise. ("Gaussian integration by parts") Prove that

$$
\int x f(x) \gamma^{1}(\mathrm{~d} x)=\int f^{\prime}(x) \gamma^{1}(\mathrm{~d} x)
$$

for every continuously differentiable, compactly supported $f: \mathbb{R} \rightarrow \mathbb{R}$.
14a2 Exercise. Prove that
$\iint f(x \cos \varphi+y \sin \varphi,-x \sin \varphi+y \cos \varphi) \gamma^{1}(\mathrm{~d} x) \gamma^{1}(\mathrm{~d} y)=\iint f(x, y) \gamma^{1}(\mathrm{~d} x) \gamma^{1}(\mathrm{~d} y)$
for all bounded continuous $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and $\varphi \in \mathbb{R}$.
14a3 Exercise. Prove that

$$
\begin{aligned}
& \iint f(x, y) g(x \cos \varphi-y \sin \varphi, x \sin \varphi+y \cos \varphi) \gamma^{1}(\mathrm{~d} x) \gamma^{1}(\mathrm{~d} y)= \\
& \quad=\iint f(x \cos \varphi+y \sin \varphi,-x \sin \varphi+y \cos \varphi) g(x, y) \gamma^{1}(\mathrm{~d} x) \gamma^{1}(\mathrm{~d} y)
\end{aligned}
$$

for all bounded continuous $f, g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and $\varphi \in \mathbb{R}$.
14a4 Exercise. Prove that

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} \varphi} \iint f(x) g(x \cos \varphi & -y \sin \varphi) \gamma^{1}(\mathrm{~d} x) \gamma^{1}(\mathrm{~d} y)= \\
& =-\sin \varphi \iint f^{\prime}(x) g^{\prime}(x \cos \varphi-y \sin \varphi) \gamma^{1}(\mathrm{~d} x) \gamma^{1}(\mathrm{~d} y)
\end{aligned}
$$

for all continuously differentiable, compactly supported $f, g: \mathbb{R} \rightarrow \mathbb{R}$ and $\varphi \in \mathbb{R}$.

14a5 Exercise. Prove that

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \iint f(x) g(y) \gamma_{t}^{1}(\mathrm{~d} x \mathrm{~d} y)=-\mathrm{e}^{-t} \iint f^{\prime}(x) g^{\prime}(y) \gamma_{t}^{1}(\mathrm{~d} x \mathrm{~d} y)
$$

for all continuously differentiable, compactly supported $f, g: \mathbb{R} \rightarrow \mathbb{R}$ and $t \in(0, \infty)$.

14a6 Exercise. Prove that

$$
\int f g \mathrm{~d} \gamma^{1}-\left(\int f \mathrm{~d} \gamma^{1}\right)\left(\int g \mathrm{~d} \gamma^{1}\right)=\int_{0}^{\infty} \mathrm{d} t \mathrm{e}^{-t} \iint f^{\prime}(x) g^{\prime}(y) \gamma_{t}^{1}(\mathrm{~d} x \mathrm{~d} y)
$$

for all continuously differentiable, compactly supported $f, g: \mathbb{R} \rightarrow \mathbb{R}$.
14a7 Exercise. (Generalization of 14 a 1 to $x \in \mathbb{R}^{d}$)

$$
\int \nabla f(x) \gamma^{d}(\mathrm{~d} x)=\int x f(x) \gamma^{d}(\mathrm{~d} x)
$$

for every continuously differentiable, compactly supported $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$. That is,

$$
\int \frac{\partial}{\partial x_{k}} f(x) \gamma^{d}(\mathrm{~d} x)=\int x_{k} f(x) \gamma^{d}(\mathrm{~d} x)
$$

for $k=1, \ldots, d$.
Prove it.
14a8 Exercise. Generalize 14 a 3 to $x, y \in \mathbb{R}^{d}$.
14a9 Exercise. (Generalization of 14 a 4 to \mathbb{R}^{d})

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} \varphi} \iint f(x) g & (x \cos \varphi-y \sin \varphi) \gamma^{1}(\mathrm{~d} x) \gamma^{1}(\mathrm{~d} y)= \\
& =-\sin \varphi \iint\langle\nabla f(x), \nabla g(x \cos \varphi-y \sin \varphi)\rangle \gamma^{d}(\mathrm{~d} x) \gamma^{d}(\mathrm{~d} y)
\end{aligned}
$$

for all continuously differentiable, compactly supported $f, g: \mathbb{R}^{d} \rightarrow \mathbb{R}$ and $\varphi \in \mathbb{R}$.

Prove it.
Similarly to 14a5, 14a6 we get
(14a10) $\frac{\mathrm{d}}{\mathrm{d} t} \iint f(x) g(y) \gamma_{t}^{d}(\mathrm{~d} x \mathrm{~d} y)=-\mathrm{e}^{-t} \iint\langle\nabla f(x), \nabla g(y)\rangle \gamma_{t}^{d}(\mathrm{~d} x \mathrm{~d} y)$
and finally,
(14a11)
$\int f g \mathrm{~d} \gamma^{d}-\left(\int f \mathrm{~d} \gamma^{d}\right)\left(\int g \mathrm{~d} \gamma^{d}\right)=\int_{0}^{\infty} \mathrm{d} t \mathrm{e}^{-t} \iint\langle\nabla f(x), \nabla g(y)\rangle \gamma_{t}^{d}(\mathrm{~d} x \mathrm{~d} y)$,
which may also be thought of as $\iint\langle\nabla f, \nabla g\rangle \mathrm{d} \nu$ where $\nu=\int \mathrm{e}^{-t} \gamma_{t}^{d} \mathrm{~d} t$.
If f, g are $\operatorname{Lip}(1)$ functions then $|\langle\nabla f, \nabla g\rangle| \leq 1$ and so, $\mid \int f g \mathrm{~d} \gamma^{d}-$ $\left(\int f \mathrm{~d} \gamma^{d}\right)\left(\int g \mathrm{~d} \gamma^{d}\right) \mid \leq 1$. In particular,

$$
\begin{equation*}
\int f^{2} \mathrm{~d} \gamma^{d}-\left(\int f \mathrm{~d} \gamma^{d}\right)^{2} \leq 1 \quad \text { for } f \in \operatorname{Lip}(1) \tag{14a12}
\end{equation*}
$$

14a13 Exercise. Deduce 14a12 from Theorem 1a2.
Moreover,

$$
\begin{aligned}
& \left|\iint\langle\nabla f(x), \nabla f(y)\rangle \gamma_{t}^{d}(\mathrm{~d} x \mathrm{~d} y)\right| \leq \\
& \qquad \begin{aligned}
& \leq\left(\iint|\nabla f(x)|^{2} \gamma_{t}^{d}(\mathrm{~d} x \mathrm{~d} y)\right)^{1 / 2}\left(\iint|\nabla f(y)|^{2} \gamma_{t}^{d}(\mathrm{~d} x \mathrm{~d} y)\right)^{1 / 2}= \\
&=\int|\nabla f|^{2} \mathrm{~d} \gamma^{d}
\end{aligned}
\end{aligned}
$$

in combination with 14a11) (for $f=g$) it gives

$$
\begin{equation*}
\int f^{2} \mathrm{~d} \gamma^{d}-\left(\int f \mathrm{~d} \gamma^{d}\right)^{2} \leq \int|\nabla f|^{2} \mathrm{~d} \gamma^{d} \tag{14a14}
\end{equation*}
$$

the Poincare inequality ${ }^{1}$ for Gaussian measure. It is evidently stronger than (14a12).

We cannot just apply (14a11) to $f=g=\xi, \xi(x)=\max _{a \in A}\langle x, a\rangle$, since ξ is neither continuously differentiable nor compactly supported. However, the needed generalizations are easy. First, 14a1 holds for a piecewise continuously differentiable Lipschitz function $f: \mathbb{R} \rightarrow \mathbb{R}$ (think, why). ${ }^{2}$ Second, 14a7 holds for $f=\xi$, since the restriction of ξ to a straight line is the maximum of finitely many linear functions. Thus, 14a11 applies to $f=g=\xi$; taking into account that $\nabla \xi=\alpha$ we get (3a4).

[^0]
14b Proving Lemma 3a2

14b1 Exercise. Prove that

$$
\begin{aligned}
& \iint f(x, y, x \cos \varphi+y \sin \varphi,-x \sin \varphi+y \cos \varphi) \gamma^{1}(\mathrm{~d} x) \gamma^{1}(\mathrm{~d} y)= \\
& \quad=\iint f(x \cos \varphi-y \sin \varphi, x \sin \varphi+y \cos \varphi, x, y) \gamma^{1}(\mathrm{~d} x) \gamma^{1}(\mathrm{~d} y)
\end{aligned}
$$

for all bounded continuous $f: \mathbb{R}^{4} \rightarrow \mathbb{R}$ and $\varphi \in \mathbb{R}$.
But do not think that

$$
\begin{aligned}
& \iint f(x, y, x \cos \varphi-y \sin \varphi, x \sin \varphi+y \cos \varphi) \gamma^{1}(\mathrm{~d} x) \gamma^{1}(\mathrm{~d} y)= \\
& \quad=\iint f(x \cos \varphi-y \sin \varphi, x \sin \varphi+y \cos \varphi, x, y) \gamma^{1}(\mathrm{~d} x) \gamma^{1}(\mathrm{~d} y)
\end{aligned}
$$

this is generally wrong (think, why).
14b2 Exercise. The measure γ_{t}^{1} is symmetric. That is,

$$
\iint f(x, y) \gamma_{t}^{1}(\mathrm{~d} x \mathrm{~d} y)=\iint f(y, x) \gamma_{t}^{1}(\mathrm{~d} x \mathrm{~d} y)
$$

for all bounded continuous $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and $t \in[0, \infty)$.
Prove it.
Thus,

$$
\begin{aligned}
& \iint f\left(x, \mathrm{e}^{-t} x+\sqrt{1-\mathrm{e}^{-2 t}} u\right) \gamma^{1}(\mathrm{~d} x) \gamma^{1}(\mathrm{~d} u)= \\
&=\iint f\left(\mathrm{e}^{-t} y+\sqrt{1-\mathrm{e}^{-2 t}} v, y\right) \gamma^{1}(\mathrm{~d} x) \gamma^{1}(\mathrm{~d} v)
\end{aligned}
$$

14b3 Lemma. For every bounded continuous $f: \mathbb{R} \rightarrow \mathbb{R}$ and $t \in[0, \infty)$,

$$
\iint f(x) f(z) \gamma_{2 t}^{1}(\mathrm{~d} x \mathrm{~d} z)=\int\left(\int f\left(\mathrm{e}^{-t} y+\sqrt{1-\mathrm{e}^{-2 t}} u\right) \gamma^{1}(\mathrm{~d} u)\right)^{2} \gamma^{1}(\mathrm{~d} y) .
$$

Proof.

$$
\begin{aligned}
& I_{2}=\int\left(\int f\left(\mathrm{e}^{-t} y+\sqrt{1-\mathrm{e}^{-2 t}} u\right) \gamma^{1}(\mathrm{~d} u)\right)^{2} \gamma^{1}(\mathrm{~d} y)= \\
& =\iiint f\left(\mathrm{e}^{-t} y+\sqrt{1-\mathrm{e}^{-2 t}} u\right) f\left(\mathrm{e}^{-t} y+\sqrt{1-\mathrm{e}^{-2 t}} v\right) \gamma^{1}(\mathrm{~d} y) \gamma^{1}(\mathrm{~d} u) \gamma^{1}(\mathrm{~d} v)
\end{aligned}
$$

for every v we have

$$
\begin{aligned}
& \iint f\left(\mathrm{e}^{-t} y+\sqrt{1-\mathrm{e}^{-2 t}} u\right) f\left(\mathrm{e}^{-t} y+\sqrt{1-\mathrm{e}^{-2 t}} v\right) \gamma^{1}(\mathrm{~d} y) \gamma^{1}(\mathrm{~d} u)= \\
& \quad=\iint f(x) f\left(\mathrm{e}^{-t}\left(\mathrm{e}^{-t} x+\sqrt{1-\mathrm{e}^{-2 t}} w\right)+\sqrt{1-\mathrm{e}^{-2 t}} v\right) \gamma^{1}(\mathrm{~d} x) \gamma^{1}(\mathrm{~d} w)
\end{aligned}
$$

thus,

$$
\begin{gathered}
I_{2}=\int \gamma^{1}(\mathrm{~d} x) f(x) \iint \gamma^{1}(\mathrm{~d} v) \gamma^{1}(\mathrm{~d} w) f\left(\mathrm{e}^{-2 t} x+\mathrm{e}^{-t} \sqrt{1-\mathrm{e}^{-2 t}} w+\sqrt{1-\mathrm{e}^{-2 t}} v\right)= \\
=\int \gamma^{1}(\mathrm{~d} x) f(x) \int \gamma^{1}(\mathrm{~d} u) f\left(\mathrm{e}^{-2 t} x+\sqrt{1-\mathrm{e}^{-4 t}} u\right)=I_{1}
\end{gathered}
$$

since $\mathrm{e}^{-2 t}\left(1-\mathrm{e}^{-2 t}\right)+1-\mathrm{e}^{-2 t}=1-\mathrm{e}^{-4 t}$.
The same holds for γ^{d}, and we get

$$
\iint f(x) f(y) \gamma_{t}^{d}(\mathrm{~d} x \mathrm{~d} y) \geq 0
$$

for every bounded continuous $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$. By approximation it holds for all $f \in L_{2}\left(\gamma^{d}\right)$, which proves a half of Lemma 3a2.

The same holds for vector-functions (think, why). In particular,

$$
\iint\langle\nabla f(x), \nabla f(y)\rangle \gamma_{t}^{d}(\mathrm{~d} x \mathrm{~d} y) \geq 0
$$

whenever $\int|\nabla f|^{2} \mathrm{~d} \gamma^{d}<\infty$.
By (14a10), $\iint f(x) f(y) \gamma_{t}^{d}(\mathrm{~d} x \mathrm{~d} y)$ decreases in t for good functions f. By approximation it holds for all $f \in L_{2}\left(\gamma^{d}\right)$, which completes the proof of Lemma 3a2. ${ }^{1}$

14c Proving Theorem 3a3

Correction. Item (a) of Theorem 3a3 should be: assumption $D_{2 n^{2}}$ implies assumption E_{n}.

The function

$$
\varphi(t)=\mathbb{E}\left\langle\alpha(X), \alpha\left(X_{t}\right)\right\rangle
$$

[^1]satisfies
\[

$$
\begin{equation*}
\forall t \quad 0 \leq \varphi(t) \leq 1, \tag{14c1}
\end{equation*}
$$

\]

φ is decreasing on $[0, \infty)$
(think, why).
14c2 Exercise. For every φ satisfying (14c1) and every $x \in(0, \infty)$,
(a) $\int_{0}^{\infty} \mathrm{e}^{-t} \varphi(t) \mathrm{d} t \leq x+\varphi(x)$;
(b) $\varphi(x) \leq \frac{\mathrm{e}^{x}}{x} \int_{0}^{\infty} \mathrm{e}^{-t} \varphi(t) \mathrm{d} t$.

Prove it.
By (3a4), $\int_{0}^{\infty} \mathrm{e}^{-t} \varphi(t) \mathrm{d} t=\operatorname{Var}(\xi)$. Thus, $D_{2 n^{2}}$ means $\int \mathrm{e}^{-t} \varphi(t) \mathrm{d} t \leq \frac{1}{2 n^{2}}$ and implies $\varphi(1 / n) \leq \frac{\mathrm{e}^{1 / n}}{1 / n} \cdot \frac{1}{2 n^{2}}=\frac{\mathrm{e}^{1 / n}}{2 n} \leq \frac{1}{n}$ for $n \geq 2$, which proves 3a3(a).

On the other hand, $E_{2 n}$ means $\varphi\left(\frac{1}{2 n}\right) \leq \frac{1}{2 n}$ and implies $\int \mathrm{e}^{-t} \varphi(t) \mathrm{d} t \leq$ $\frac{1}{2 n}+\frac{1}{2 n}=\frac{1}{n}$, which is $D_{n} ; 3 \mathrm{a} 3(\mathrm{~b})$ is thus proved.

14d Hints to exercises

14a3. this is a generalization of 14a2, and nevertheless, it is a special case of 14a2.

14at $\int f(x \cos \varphi+y \sin \varphi) y \gamma^{1}(\mathrm{~d} y)=\sin \varphi \int f^{\prime}(x \cos \varphi+y \sin \varphi) \gamma^{1}(\mathrm{~d} y)$.
14a5: $\mathrm{e}^{-t}=\cos \varphi$.
14a13: $\frac{1}{2} \iint|f(x)-f(y)|^{2} \mu(\mathrm{~d} x) \mu(\mathrm{d} y)=\int f^{2} \mathrm{~d} \mu-\left(\int f \mathrm{~d} \mu\right)^{2}$.
14b1: this is, again, a generalization of 14a2, and nevertheless, a special case of 14a2.

14b2; apply 14b1 to $f(x, y, u, v)=g(x, u)$.
14c2. $\int_{0}^{\infty}=\int_{0}^{x}+\int_{x}^{\infty}$.

[^0]: ${ }^{1}$ The simplest classical Poincare inequality: $\int_{0}^{1} f^{2}(x) \mathrm{d} x-\left(\int_{0}^{1} f(x) \mathrm{d} x\right)^{2} \leq$ $\frac{1}{\pi^{2}} \int_{0}^{1} f^{\prime 2}(x) \mathrm{d} x$; the equality holds for $f(x)=\cos \pi x$.
 ${ }^{2}$ Wider generalization is possible, but we do not need it.

[^1]: ${ }^{1}$ In fact, Lemma 3a2 is not "Gaussian"; it holds for every time-symmetric Markov process. Here is its translation into the language of functional analysis. Let $\left(U_{t}\right)_{t \geq 0}$ be a one-parameter semigroup of Hermitian operators in a Hilbert space, satisfying $\left\|\bar{U}_{t}\right\| \leq 1$ for all t. Then the function $t \mapsto\left\langle U_{t} \psi, \psi\right\rangle$ is nonnegative and decreasing on $[0, \infty)$ for every vector ψ of the Hilbert space. (The proof is quite simple.)

