13 Random real zeroes: two derivatives

13a Restricting the class of functions 14
13b Getting rid of randomness 18
13c Estimating the error 20
13d Hints to exercises 22

13a Restricting the class of functions

Let X satisfy assumption $C_{M, n, L}$.
We have

$$
\begin{aligned}
\mathbb{E} X^{\prime}(0) X(t)=\mathbb{E}\left(\left.\frac{\mathrm{d}}{\mathrm{~d} u}\right|_{u=0} X(u)\right) X(t)=\left.\mathbb{E} \frac{\mathrm{d}}{\mathrm{~d} u}\right|_{u=0} & (X(u) X(t))= \\
& =\left.\frac{\mathrm{d}}{\mathrm{~d} u}\right|_{u=0} \mathbb{E}(X(u) X(t)),
\end{aligned}
$$

since for $u \in(-1,1)$,

$$
\left|\frac{X(u)-X(0)}{u} X(t)\right| \leq \max _{[-1,1]}\left|X^{\prime}(\cdot)\right| \cdot|X(t)|,
$$

the majorant being integrable. By stationarity,

$$
\mathbb{E} X^{\prime}(0) X(t)=\left.\frac{\mathrm{d}}{\mathrm{~d} u}\right|_{u=0} \mathbb{E} X(0) X(t-u)=-\frac{\mathrm{d}}{\mathrm{~d} t} \mathbb{E} X(0) X(t)=-\mathbb{E} X(0) X^{\prime}(t)
$$

Similarly,

$$
\mathbb{E} X^{\prime}(0) X^{\prime}(t)=\frac{\mathrm{d}}{\mathrm{~d} t} \mathbb{E} X^{\prime}(0) X(t)=-\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}} \mathbb{E} X(0) X(t)=-\mathbb{E} X(0) X^{\prime \prime}(t)
$$

In particular,

$$
\mathbb{E} X(0) X^{\prime \prime}(0)=-\mathbb{E}\left|X^{\prime}(0)\right|^{2}=-1
$$

therefore (think, why)

$$
\mathbb{E}\left|X^{\prime \prime}(0)\right|^{2} \geq 1
$$

and $M \geq 1$ (otherwise assumption $C_{M, n, L}$ is never satisfied). Further,

$$
\mathbb{E} X^{\prime}(0) X^{\prime}(t)=-\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}} \sum_{k=1}^{N}\left|a_{k}\right|^{2} \cos \lambda_{k} t=\sum_{k=1}^{N}\left|\lambda_{k} a_{k}\right|^{2} \cos \lambda_{k} t
$$

as well as

$$
\mathbb{E} X^{\prime \prime}(0) X^{\prime \prime}(t)=\sum_{k=1}^{N}\left|\lambda_{k}^{2} a_{k}\right|^{2} \cos \lambda_{k} t
$$

We have $\mathbb{E}\left|X^{\prime \prime}(0)\right|^{2}=\sigma^{2}$ for some $\sigma \in[1, \sqrt{M}]$. Taking into account that $\lambda_{k}^{4} \leq\left(1+\lambda_{k}^{2}\right)^{2}$ and $\sigma \geq 1$ we see that assumption $C_{M, n, L}$ for X implies assumption $A_{n, L}$ for $\frac{1}{\sigma} X^{\prime \prime}$.

For the two-dimensional process ($X^{\prime}, X^{\prime \prime}$) we get

$$
\begin{aligned}
& \mathbb{E}\left\langle\left(X^{\prime}(0), X^{\prime \prime}(0)\right),\left(X^{\prime}(t), X^{\prime \prime}(t)\right)\right\rangle=\mathbb{E}\left(X^{\prime}(0) X^{\prime}(t)+X^{\prime \prime}(0) X^{\prime \prime}(t)\right)= \\
&= \sum_{k}\left(\lambda_{k}^{2}+\lambda_{k}^{4}\right) a_{k}^{2} \cos \lambda_{k} t
\end{aligned}
$$

Taking into account that $\lambda_{k}^{2}+\lambda_{k}^{4} \leq\left(1+\lambda_{k}^{2}\right)^{2}$ and $\sigma \geq 1$ we see that assumption $C_{M, n, L}$ for X implies assumption $A_{n, L}$ for ($X^{\prime}, \frac{1}{\sigma} X^{\prime \prime}$).

Applying 11c1-11c2 to $X^{\prime \prime}$ we get

$$
\frac{1}{L} \int_{0}^{L}\left|X^{\prime \prime}(t)\right|^{2} \mathrm{~d} t \leq \frac{C}{n}\left(X_{1}^{2}+\cdots+X_{2 N}^{2}\right)
$$

for some absolute constant C.
13a1 Exercise. Prove that

$$
\mathbb{P}\left(\frac{1}{L} \int_{0}^{L}\left|X^{\prime \prime}(t)\right|^{2} \mathrm{~d} t>2 M\right) \leq C_{M} \mathrm{e}^{-c_{M} n}
$$

for some $c_{M}>0, C_{M}<\infty$ (dependent on M only).
In this sense,

$$
\frac{1}{L} \int_{0}^{L}\left|X^{\prime \prime}(t)\right|^{2} \mathrm{~d} t \leq 2 M \quad \text { very probably. }
$$

Applying Theorem 2 a 2 (or rather, its two-dimensional generalization) to the two-dimensional process ($X^{\prime}, \frac{1}{\sigma} X^{\prime \prime}$) we get for any a.e. continuous $\varphi: \mathbb{R}^{2} \rightarrow \mathbb{R}$ of linear growth,

$$
\frac{1}{L} \int_{0}^{L} \varphi\left(X^{\prime}(t), \frac{1}{\sigma} X^{\prime \prime}(t)\right) \mathrm{d} t \in \operatorname{ExpConInt}(n)
$$

Using also Lemma 2 a1 (or rather, its two-dimensional generalization) we get for every $\varepsilon>0$,

$$
\frac{1}{L} \int_{0}^{L} \varphi\left(X^{\prime}(t), \frac{1}{\sigma} X^{\prime \prime}(t)\right) \mathrm{d} t \leq \int \varphi \mathrm{d} \gamma^{2}+\varepsilon \quad \text { very probably. }
$$

In particular,
$\mathbb{E} \frac{1}{L} \int_{0}^{L} \frac{1}{\sigma}\left|X^{\prime \prime}(t)\right| \mathbf{1}_{[A, \infty)}\left(\left|X^{\prime}(t)\right|\right) \mathrm{d} t=\left(\int|u| \gamma^{1}(\mathrm{~d} u)\right) \cdot 2 \gamma^{1}([A, \infty)) \leq C \mathrm{e}^{-A^{2} / 2}$,
therefore for every $A>0$ (separately),

$$
\frac{1}{L} \int_{0}^{L}\left|X^{\prime \prime}(t)\right| \mathbf{1}_{[A, \infty)}\left(\left|X^{\prime}(t)\right|\right) \mathrm{d} t \leq C \sqrt{M} \mathrm{e}^{-A^{2} / 2} \quad \text { very probably, }
$$

where C is an absolute constant. ${ }^{1}$ Similarly,

$$
\frac{1}{L} \int_{0}^{L}\left|X^{\prime \prime}(t)\right| \mathbf{1}_{[-a, a]}\left(X^{\prime}(t)\right) \mathrm{d} t \leq C \sqrt{M} a \quad \text { very probably. }
$$

Here is a non-probabilistic fact.
13a2 Lemma. Let $f:[0, L] \rightarrow \mathbb{R}$ be twice continuously differentiable, and $a>0$. Then

$$
\sum_{t \in[0, L], f(t)=0,0<\left|f^{\prime}(t)\right| \leq a}\left|f^{\prime}(t)\right| \leq \frac{1}{2} \int_{0}^{L}\left|f^{\prime \prime}(s)\right| \mathbf{1}_{[-2 a, 2 a]}\left(f^{\prime}(s)\right) \mathrm{d} s+2 a
$$

Proof. For each $t \in[0, L]$ such that $f(t)=0$ and $0<\left|f^{\prime}(t)\right| \leq a$ we consider the set $\left\{s \in[0, L]: 0<\left|f^{\prime}(s)\right|<2\left|f^{\prime}(t)\right|\right\}$ and its connected component I_{t} containing t. Clearly, I_{t} is an interval, f is strictly monotone on I_{t}, and such intervals are pairwise disjoint. If $I_{t} \subset(0, L)$ then

$$
\int_{I_{t}}\left|f^{\prime \prime}(s)\right| \mathrm{d} s \geq 2\left|f^{\prime}(t)\right|
$$

(think, why). Taking into account that $\left|f^{\prime}(\cdot)\right| \leq 2 a$ on I_{t} we have

$$
2 \sum\left|f^{\prime}(t)\right| \leq \sum \int_{I_{t}}\left|f^{\prime \prime}(s)\right| \mathrm{d} s \leq \int_{0}^{L}\left|f^{\prime \prime}(s)\right| \mathbf{1}_{[-2 a, 2 a]}\left(f^{\prime}(s)\right) \mathrm{d} s
$$

where the sum is taken over t such that $I_{t} \subset(0, L)$. Other t (at most two) contribute at most $2 a$.

The random variable

$$
\xi_{a}=\frac{1}{L} \sum_{t \in[0, L], X(t)=0,\left|X^{\prime}(t)\right| \leq a}\left|X^{\prime}(t)\right|
$$

is a special case of ξ of Theorem 2 c 1 , for $\varphi(x)=|x| \mathbf{1}_{[-a, a]}(x)$.

[^0]13a3 Exercise. For every $a>0$ (separately), $\xi_{a} \leq C \sqrt{M} a$ very probably; here C is an absolute constant.

Prove it.
13a4 Exercise. $\mathbb{E} \xi_{a} \leq \frac{1}{3 \pi} a^{3}$.
Prove it.
13a5 Exercise. It is sufficient to prove Theorem 2 c 1 for functions φ that vanish on a neighborhood ${ }^{1}$ of 0 .

Prove it.
13a6 Lemma. Let $f:[0, L] \rightarrow \mathbb{R}$ be twice continuously differentiable, and $A>2 \min _{[0, L]}\left|f^{\prime}(\cdot)\right|$. Then

$$
\sum_{t \in[0, L], f(t)=0,\left|f^{\prime}(t)\right| \geq A}\left|f^{\prime}(t)\right| \leq 2 \int_{0}^{L}\left|f^{\prime \prime}(s)\right| \mathbf{1}_{[A / 2, \infty)}\left(\left|f^{\prime}(s)\right|\right) \mathrm{d} s
$$

Proof. For each $t \in[0, L]$ such that $f(t)=0$ and $\left|f^{\prime}(t)\right| \geq A$ we consider the set $\left\{s \in[0, L]:\left|f^{\prime}(s)\right|>0.5\left|f^{\prime}(t)\right|\right\}$ and its connected component I_{t} containing t. Clearly, I_{t} is an interval, f is strictly monotone on I_{t}, and such intervals are pairwise disjoint. It cannot happen that $I_{t}=[0, L]$, since $\left|f^{\prime}(\cdot)\right| \geq 0.5 A$ on I_{t}. Thus,

$$
\int_{I_{t}}\left|f^{\prime \prime}(s)\right| \mathrm{d} s \geq \frac{1}{2}\left|f^{\prime}(t)\right|
$$

(think, why). We have

$$
\frac{1}{2} \sum\left|f^{\prime}(t)\right| \leq \sum \int_{I_{t}}\left|f^{\prime \prime}(s)\right| \mathrm{d} s \leq \int_{0}^{L}\left|f^{\prime \prime}(s)\right| \mathbf{1}_{[A / 2, \infty)}\left(\left|f^{\prime}(s)\right|\right) \mathrm{d} s
$$

Taking into account that

$$
\min _{[0, L]}\left|X^{\prime}(\cdot)\right| \leq\left(\frac{1}{L} \int_{0}^{L}\left|X^{\prime}(t)\right|^{2} \mathrm{~d} t\right)^{1 / 2}
$$

we see (similarly to 13a1) that

$$
\min _{[0, L]}\left|X^{\prime}(\cdot)\right| \leq 2 \quad \text { very probably. }
$$

[^1]Similarly to 13a3, for every $A>4$ (separately), the random variable

$$
\xi_{A}=\frac{1}{L} \sum_{t \in[0, L], X(t)=0,\left|X^{\prime}(t)\right| \geq A}\left|X^{\prime}(t)\right|
$$

satisfies

$$
\xi_{A} \leq C \sqrt{M} \mathrm{e}^{-A^{2} / 8} \quad \text { very probably, }
$$

as well as $\mathbb{E} \xi_{A} \leq C \sqrt{M} \mathrm{e}^{-A^{2} / 8}$. Here is the conclusion.
13a7 Proposition. It is sufficient to prove Theorem 2c1 for functions φ such that

$$
\exists a, A \in(0, \infty) \forall x \in \mathbb{R} \quad(\varphi(x) \neq 0 \quad \Longrightarrow \quad a<|x|<A)
$$

The condition $\sup (|\varphi(x)| /|x|)<\infty$ becomes just boundedness of φ.
13a8 Exercise. It is sufficient to prove Theorem 2c1 for Lipschitz functions φ (satisfying 13a7).

Prove it.

13b Getting rid of randomness

According to 13a8, we consider a function $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ satisfying 1

$$
\begin{gathered}
\forall x \in \mathbb{R} \quad|\varphi(x)| \leq 1 \\
\forall x, y \in \mathbb{R} \quad|\varphi(x)-\varphi(y)| \leq|x-y| \\
\forall x \in \mathbb{R} \quad(\varphi(x) \neq 0 \quad \Longrightarrow \quad|x|>a)
\end{gathered}
$$

We approximate the random variable of Theorem 2c1,

$$
\xi=\frac{1}{L} \sum_{t \in[0, L], X(t)=0} \varphi\left(X^{\prime}(t)\right),
$$

by another random variable (for $\varepsilon \rightarrow 0+$)

$$
\eta_{\varepsilon}=\frac{1}{2 \varepsilon L} \int_{0}^{L} \varphi\left(X^{\prime}(t)\right)\left|X^{\prime}(t)\right| \mathbf{1}_{(-\varepsilon, \varepsilon)}(X(t)) \mathrm{d} t
$$

We know that ${ }^{2}$

$$
\mathbb{E} \xi=\frac{1}{2 \pi} \int \varphi(y)|y| \mathrm{e}^{-y^{2} / 2} \mathrm{~d} y
$$

[^2]and ${ }^{1}$
\[

$$
\begin{aligned}
& \mathbb{E} \eta_{\varepsilon}=\frac{1}{2 \varepsilon} \iint \varphi(y)|y| \mathbf{1}_{(-\varepsilon, \varepsilon)}(x) \gamma^{2}(\mathrm{~d} x \mathrm{~d} y)= \\
& \quad=\left(\int \varphi(y)|y| \gamma^{1}(\mathrm{~d} y)\right) \frac{1}{2 \varepsilon} \gamma^{1}((-\varepsilon, \varepsilon)) \rightarrow \frac{1}{\sqrt{2 \pi}} \int \varphi(y)|y| \gamma^{1}(\mathrm{~d} y)
\end{aligned}
$$
\]

thus, $\left|\mathbb{E} \eta_{\varepsilon}-\mathbb{E} \xi\right| \rightarrow 0$ (as $\varepsilon \rightarrow 0+$). We also know that ${ }^{2}$

$$
\eta_{\varepsilon} \in \operatorname{ExpConInt}(n)
$$

for every ε (separately). In order to prove Theorem 2 c 1 we have to prove that

$$
\xi \in \operatorname{Exp} \operatorname{ConInt}(n) ;
$$

by the approximation lemma (11a9, 11a11) it is sufficient to prove that

$$
\left|\xi-\eta_{\varepsilon}\right| \leq \varepsilon_{0} \quad \text { very probably }
$$

if ε is small enough (for a given ε_{0}).
Here is a non-probabilistic fact, to be proved in Sect. 13 c
13b1 Proposition. Let a twice continuously differentiable function f : $[0, L] \rightarrow \mathbb{R}$ and a number $B>0$ satisfy

$$
\frac{1}{L} \int_{0}^{L}\left|f^{\prime \prime}(t)\right|^{2} \leq B^{2}
$$

and $B \varepsilon<\min \left(1, a^{3}\right)$. Then

$$
\begin{array}{r}
\left|\frac{1}{L} \sum_{t \in[0, L], f(t)=0, f^{\prime}(t) \neq 0} \varphi\left(f^{\prime}(t)\right)-\frac{1}{2 \varepsilon L} \int_{0}^{L} \varphi\left(f^{\prime}(t)\right)\right| f^{\prime}(t)\left|\mathbf{1}_{(-\varepsilon, \varepsilon)}(f(t)) \mathrm{d} t\right| \leq \\
\leq C\left(\frac{\varepsilon^{1 / 3} B^{4 / 3}}{a}+\frac{1}{L}\right)
\end{array}
$$

for some absolute constant C.
Note that n does not occur in 13b1, but L does.
13b2 Exercise. $L \geq c n-C$ for some absolute constants c, C.
Prove it.
Given $\varepsilon_{0}>0$, we choose ε such that $C \frac{\varepsilon^{1 / 3}}{a}(2 M)^{2 / 3} \leq \varepsilon_{0} / 2$ and $\varepsilon \sqrt{2 M}<$ $\min \left(1, a^{3}\right)$; then, assuming that $C / L \leq \varepsilon_{0} / 2$ (which holds for all n large enough) we get $\left|\xi-\eta_{\varepsilon}\right| \leq \varepsilon_{0}$ whenever $\frac{1}{L} \int_{0}^{L}\left|X^{\prime \prime}(t)\right|^{2} \mathrm{~d} t \leq 2 M$, which happens very probably. Thus, in order to prove Theorem 2c1 it is sufficient to prove Proposition 13b1.

[^3]
13c Estimating the error

Here we prove the non-probabilistic Proposition 13b1.
We consider the set $\left\{t \in[0, L]:|f(t)|<\varepsilon, f^{\prime}(t) \neq 0\right\}$ and its connected components I such that

$$
\sup _{I}\left|f^{\prime}(\cdot)\right|>a .
$$

Clearly, I is an interval, f is strictly monotone on I, and of course, such intervals are pairwise disjoint.

13c1 Exercise. The set \mathcal{I} of all these intervals I is finite.
Prove it.
Assume that $\delta \in(0, a)$ is given (it will be chosen later). We say that an interval $I \in \mathcal{I}$ is good, if

$$
\sup _{I} f^{\prime}(\cdot)-\inf _{I} f^{\prime}(\cdot) \leq \delta ;
$$

otherwise I is bad. Denote by $G \subset \mathcal{I}$ the set of all good intervals.
Denoting ${ }^{1}$
$\xi=\frac{1}{L} \sum_{t \in[0, L], f(t)=0, f^{\prime}(t) \neq 0} \varphi\left(f^{\prime}(t)\right), \quad \eta_{\varepsilon}=\frac{1}{2 \varepsilon L} \int_{0}^{L} \varphi\left(f^{\prime}(t)\right)\left|f^{\prime}(t)\right| \mathbf{1}_{(-\varepsilon, \varepsilon)}(f(t)) \mathrm{d} t$ we have

$$
\xi=\sum_{I \in \mathcal{I}} \underbrace{\frac{1}{L} \sum_{t \in I, f(t)=0} \varphi\left(f^{\prime}(t)\right)}_{\xi_{I}}, \quad \eta_{\varepsilon}=\sum_{I \in \mathcal{I}} \underbrace{\frac{1}{2 \varepsilon L} \int_{I} \varphi\left(f^{\prime}(t)\right)\left|f^{\prime}(t)\right| \mathrm{d} t}_{\eta_{I, \varepsilon}} .
$$

Taking into account that $|\varphi(\cdot)| \leq 1$ we get

$$
\forall I \in \mathcal{I} \quad\left|\xi_{I}\right| \leq \frac{1}{L}
$$

since the sum contains no more than one summand; and

$$
\forall I \in \mathcal{I} \quad\left|\eta_{I, \varepsilon}\right| \leq \frac{1}{L},
$$

since $\int_{I}\left|f^{\prime}(t)\right| \mathrm{d} t=|f(t)-f(s)|$ for $I=(s, t)$.
At most two $I \in \mathcal{I}$ may violate $I \subset(0, L)$; their contribution to $\left|\xi-\eta_{\varepsilon}\right|$ cannot exceed $4 / L$, that is harmless. From now on we assume that

$$
I \subset(0, L)
$$

for all considered $I \in \mathcal{I}$.

[^4]13 c 2 Lemma. For every good $I \subset(0, L)$,

$$
\left|\xi_{I}-\eta_{I, \varepsilon}\right| \leq \frac{\delta}{L}
$$

Proof. Let $I=(r, t)$. We have $\min _{I}\left|f^{\prime}(\cdot)\right| \geq a-\delta>0$, therefore either $f(r)=-\varepsilon, f(t)=\varepsilon$ or $f(r)=\varepsilon, f(t)=-\varepsilon$; in every case, $\int_{I}\left|f^{\prime}(u)\right| \mathrm{d} u=2 \varepsilon$. Define $s \in I$ by $f(s)=0$, then $\xi_{I}=\frac{1}{L} \varphi\left(f^{\prime}(s)\right)=\frac{1}{2 \varepsilon L} \int_{I} \varphi\left(f^{\prime}(s)\right)\left|f^{\prime}(u)\right| \mathrm{d} u$ and

$$
\begin{aligned}
\left.\left|\xi_{I}-\eta_{I, \varepsilon}\right| \leq \frac{1}{2 \varepsilon L} \int_{I} \right\rvert\, \varphi\left(f^{\prime}(s)\right)- & \varphi\left(f^{\prime}(u)\right)\left|\left|f^{\prime}(u)\right| \mathrm{d} u \leq\right. \\
& \left.\leq \frac{1}{2 \varepsilon L} \int_{I} \underbrace{\left|f^{\prime}(s)-f^{\prime}(u)\right|}_{\leq \delta}| | f^{\prime}(u) \right\rvert\, \mathrm{d} u=\frac{\delta}{L} .
\end{aligned}
$$

13c3 Exercise. Prove that

$$
\sum\left|f^{\prime}(t)\right| \leq \frac{1}{2} \int_{0}^{L}\left|f^{\prime \prime}(s)\right| \mathrm{d} s
$$

where the sum is taken over t such that $f(t)=0$ and $f^{\prime}(t) \neq 0$, except for the least and the greatest of these t.

We have $\frac{1}{L} \int_{0}^{L}\left|f^{\prime \prime}(t)\right| \mathrm{d} t \leq B$, thus,

$$
|G| \leq \frac{B L}{2 a}+2
$$

and so,

$$
\sum_{I \in G}\left|\xi_{I}-\eta_{I, \varepsilon}\right| \leq\left(\frac{B}{2 a}+\frac{2}{L}\right) \delta
$$

13c4 Lemma. For every bad interval $I \subset(0, L)$,

$$
\int_{I}\left|f^{\prime \prime}(t)\right|^{2} \mathrm{~d} t \geq \frac{a \delta^{2}}{16 \varepsilon}
$$

Proof. We take $s \in I$ such that $\left|f^{\prime}(s)\right|>a$, note that $\sup _{I}\left|f^{\prime}(\cdot)-f^{\prime}(s)\right|>\delta / 2$ and take the closest to s point $t \in I$ such that $\left|f^{\prime}(t)-f^{\prime}(s)\right|=\delta / 2$. Assume that $s<t$ (the case $t<s$ is similar). We have $\min _{[s, t]}\left|f^{\prime}(\cdot)\right| \geq a-\frac{\delta}{2} \geq \frac{a}{2}$
and $\int_{s}^{t}\left|f^{\prime}(u)\right| \mathrm{d} u=|f(t)-f(s)| \leq 2 \varepsilon$, thus $t-s \leq \frac{4 \varepsilon}{a}$. Also, $\int_{s}^{t}\left|f^{\prime \prime}(u)\right| \mathrm{d} u \geq$ $\left|f^{\prime}(t)-f^{\prime}(s)\right|=\delta / 2$. Thus,

$$
\begin{aligned}
\frac{\delta}{2} \leq \int_{s}^{t}\left|f^{\prime \prime}(u)\right| \mathrm{d} u \leq\left(\int_{s}^{t}\left|f^{\prime \prime}(u)\right|^{2} \mathrm{~d} u\right)^{1 / 2}\left(\int_{s}^{t} 1^{2} \mathrm{~d} u\right)^{1 / 2} ; \\
\int_{I}\left|f^{\prime \prime}(u)\right|^{2} \mathrm{~d} u \geq \int_{s}^{t}\left|f^{\prime \prime}(u)\right|^{2} \mathrm{~d} u \geq \frac{(\delta / 2)^{2}}{t-s} \geq \frac{a \delta^{2}}{16 \varepsilon}
\end{aligned}
$$

Thus, the number of bad intervals $I \subset(0, L)$ does not exceed

$$
\frac{16 \varepsilon B^{2} L}{a \delta^{2}}
$$

and so,

$$
\begin{gathered}
\sum_{I \in \mathcal{I} \backslash G, I \subset(0, L)}\left(\left|\xi_{I}\right|+\left|\eta_{I, \varepsilon}\right|\right) \leq \frac{16 \varepsilon B^{2} L}{a \delta^{2}}\left(\frac{1}{L}+\frac{1}{L}\right)=\frac{32 \varepsilon B^{2}}{a \delta^{2}} ; \\
\sum_{I \in \mathcal{I} \backslash G}\left|\xi_{I}-\eta_{I, \varepsilon}\right| \leq \frac{32 \varepsilon B^{2}}{a \delta^{2}}+\frac{4}{L} ; \\
\left|\xi-\eta_{\varepsilon}\right| \leq \sum_{I \in \mathcal{I}}\left|\xi_{I}-\eta_{I, \varepsilon}\right| \leq\left(\frac{B}{2 a}+\frac{2}{L}\right) \delta+\frac{32 \varepsilon B^{2}}{a \delta^{2}}+\frac{4}{L}
\end{gathered}
$$

Finally we choose

$$
\delta=(B \varepsilon)^{1 / 3}
$$

note that $\delta<a$ and $\delta<1$, and get

$$
\left|\xi-\eta_{\varepsilon}\right| \leq \frac{B}{2 a} \delta+\frac{32 \varepsilon B^{2}}{a \delta^{2}}+\frac{6}{L} \leq C\left(\frac{\varepsilon^{1 / 3} B^{4 / 3}}{a}+\frac{1}{L}\right)
$$

which completes the proof of Proposition 13b1 and ultimately, Theorem 2c1.

13d Hints to exercises

13a1. the random variable $\xi=\left(\frac{1}{L} \int_{0}^{L}\left|X^{\prime \prime}(t)\right|^{2} \mathrm{~d} t\right)^{1 / 2}$ belongs to $\operatorname{GaussLip}(C / \sqrt{n})$, and $\mathbb{E} \xi \leq\left(\mathbb{E} \xi^{2}\right)^{1 / 2} \leq \sqrt{M}$.

13a8 recall 11 d 4 and the paragraph after it.
13b2. $\int_{[0,2]}\left(1+\lambda^{2}\right) \mu(\mathrm{d} \lambda) \geq \mu([0,2]) \geq 3 / 4$.
13c3: Hint: similar to 13a2,

Index

bad, 20
good, 20
very probably, 15
a, 18
B, 19
$\varepsilon_{0}, 19$
$\eta_{\varepsilon}, 18,20$
$\eta_{I, \varepsilon}, 20$
G, 20
$I_{t}, 16$
$\mathcal{I}, 20$
$M, 14$
$\varphi, 18$
$\xi, 18,20$
$\xi_{I}, 20$

[^0]: ${ }^{1}$ Every $C>\sqrt{2 / \pi}$ fits.

[^1]: ${ }^{1}$ The neighborhood depends on φ, of course.

[^2]: ${ }^{1}$ The first two conditions can be enforced multiplying φ by a small number. The condition about $|x|<A$ is not needed.
 ${ }^{2}$ By Theorem 2b1.

[^3]: ${ }^{1}$ By the two-dimensional generalization of Lemma 2 a 1.
 ${ }^{2}$ By the two-dimensional generalization of Theorem 2a2.

[^4]: ${ }^{1}$ We thus redefine ξ and η_{ε}, which should not be too confusing since the probabilistic context is no more needed.

