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13a Restricting the class of functions

Let X satisfy assumption Chy, 1.

We have
EX'(0)X(t) = E (;—u uzoX(u))X(t) ~E %  (Xwx) =
= d% _E (X (u)X(t)),

since for u € (—1,1),

RE max [X'()]-|X ()]

the majorant being integrable. By stationarity,

d d

EX'(0)X(t) = ™ :OEX(O)X(t —u) = —EEX(O)X(t) =-EX(0)X'(t).
Similarly,
EX'(0)X'(t) = %EX’(O)X(t) = —j—;EX(O)X(t) =-EX(0)X"(t).

In particular,
EX(0)X"(0) = -E|X'(0)]* = -1,

therefore (think, why)
E[X"(0)* > 1,

and M > 1 (otherwise assumption C\y,, 1, is never satisfied). Further,

a2 N N
EX'(0)X'(t) = -0 D lar)* cos Mt = [Arak|® cos Axt
k=1 k=1
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as well as

N
EX"(0)X"(t) = > [Aax|” cos Axt .
k=1

We have E|X"(0)|?> = o2 for some o € [1,v/M]. Taking into account that
AL < (14 A2)?* and 0 > 1 we see that assumption Cyy,; for X implies
assumption A, j, for %X .

For the two-dimensional process (X', X”) we get

E ((X(0), X"(0)), (X"(t), X"(1))) = E (X"(0)X"(t) + X"(0)X"(t)) =
= Z()\i + Ad)az cos Agt .
K

Taking into account that A2+\} < (1+A7)? and o > 1 we see that assumption
Chrn,r for X implies assumption A, 1, for (X, %X”).
Applying 11cl-11¢2 to X" we get

1 L " 2 C 2 2
I X@Fd S T Xy

for some absolute constant C.

13al Exercise. Prove that

1 L
F (z/ [ X"(1) dt > 2M> < Cypecmm
0

for some ¢y > 0, Cpy < 0o (dependent on M only).
In this sense,

1 L
E/ |X"(t)]*dt < 2M very probably.

0
Applying Theorem 2a2 (or rather, its two-dimensional generalization) to the
two-dimensional process (X', £ X”) we get for any a.e. continuous ¢ : R* — R
of linear growth,

1 [r 1

— / go(X’(t), —X”(t)) dt € ExpConlnt(n).

L J, o

Using also Lemma 2al (or rather, its two-dimensional generalization) we get
for every € > 0,

1

L 1
_/ ¢<X’(t), —X”(t)) dt < /gpd'yQ +¢e very probably.
L J, o
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In particular,

E%/{) %\X"(t)‘l[m)<|x'(t)!)dt= (/|u!71(du))~2fyl([A, 50)) < Ce /2

therefore for every A > 0 (separately),

1 [* 2
Z/ | X" ()| 1ja00) (I1X'(1)]) dt < OV Me /2 very probably,
0

where C' is an absolute constant.! Similarly,

1 /L
- X"()]1_qq(X'(t))dt < CVMa very probably.
L [ 7]

0

Here is a non-probabilistic fact.

13a2 Lemma. Let f : [0, L] — R be twice continuously differentiable, and
a > 0. Then

> OIS [ IO () ds + 20,

te[0,L],f(t)=0,0<|f'(t)|<a

Proof. For each t € [0, L] such that f(¢) =0 and 0 < |f'(¢)| < a we consider
the set {s € [0,L] : 0 < |f'(s)| < 2|f'(t)|} and its connected component I;
containing t. Clearly, I; is an interval, f is strictly monotone on [;, and such
intervals are pairwise disjoint. If I; C (0, L) then

i () ds = 2[f'(2)]

(think, why). Taking into account that |f’(-)| < 2a on I; we have
L
23 1P 013 [ 176 ds < [ 176 1zman(7 () ds,
I 0

where the sum is taken over ¢t such that I, C (0, L). Other ¢ (at most two)
contribute at most 2a. O

The random variable

1
o= T [ X7(1)]
te[0,L],X (£)=0,| X" (t)|<a
is a special case of { of Theorem 2cl, for ¢(z) = |z|1_qq(2).

YEvery C > /2/ fits.




Tel Aviv University, 2010 Gaussian measures : proofs and more 17

13a3 Exercise. For every a > 0 (separately), {, < Cv/'Ma very probably;
here C' is an absolute constant.
Prove it.

13a4 Exercise. E¢, < -a®.
Prove it.

13a5 Exercise. It is sufficient to prove Theorem 2c1 for functions ¢ that
vanish on a neighborhood! of 0.
Prove it.

13a6 Lemma. Let f : [0, L] — R be twice continuously differentiable, and
A > 2ming ) |f'()]. Then

L
3 ()] <2 / F(5) Ly (1F/(5)]) ds
te[0,L],£(1)=0,|f'(t)|>A 0

Proof. For each t € [0, L] such that f(¢) = 0 and |f'(t)] > A we consider
the set {s € [0,L] : |f'(s)| > 0.5|f'(t)|} and its connected component I;
containing t. Clearly, [; is an interval, f is strictly monotone on [;, and
such intervals are pairwise disjoint. It cannot happen that I, = [0, L], since

|f'(-)] > 0.54 on I;. Thus,
" 1 ,
[/ (s)lds = S| f'(2)]
Iy
(think, Why). We have
L
0

0O Y [ 1@as < [ @ (17 ds.

Taking into account that

min | X'(+)] <

1 L 1/2
— [ 1X'(¢)) at
in X0 < (7 [ Ivopa)
we see (similarly to [13al]) that

r[J(f)nLr]l | X'(-)] <2 very probably.

!The neighborhood depends on ¢, of course.
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Similarly to for every A > 4 (separately), the random variable
1 /
b=t Y X0
te[0,L],X (£)=0,| X' (£)|> A

satisfies
Ea<CV Me /8 very probably,

as well as E&4 < C Me=4*/8 Here is the conclusion.

13a7 Proposition. It is sufficient to prove Theorem 2cl for functions ¢
such that

Ja, A€ (0,00) Vz €R (p(z) #£0 = a<|z|<A).
The condition sup(|e(z)|/|z]) < oo becomes just boundedness of ¢.

13a8 Exercise. It is sufficient to prove Theorem 2c1 for Lipschitz functions

¢ (satisfying [13a7]).
Prove it.
13b Getting rid of randomness
According to [13a8, we consider a function ¢ : R — R satisfying!

VeeR (@) <1,

v,y e R o(r) —oy)] <[z —yl,
VieR (p(z)#0 = |z|>a).

We approximate the random variable of Theorem 2cl,

E=— Y eX'),

te[0,L],X (t)=0

by another random variable (for e — 0+)

1 L
e = —— X' NIX' ()| 1—cay(X(t)) dt.
1 %L0¢<<m ()L (e (X (1))
We know that? .
E¢=— g
3 %/@@wm y

IThe first two conditions can be enforced multiplying ¢ by a small number. The
condition about |z| < A is not needed.
2By Theorem 2b1.
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and?

E7. = —// DY) (2) ¥ (dady) =
= ([ ewlan) o -een + <= [ o).

thus, [En. —E&| — 0 (as ¢ = 0+). We also know that2
ne € ExpConlnt(n)

for every € (separately). In order to prove Theorem 2cl we have to prove
that
¢ € ExpConlnt(n) ;

by the approximation lemma (11a9, 11all) it is sufficient to prove that
|€ —ne| <ep very probably

if ¢ is small enough (for a given ).
Here is a non-probabilistic fact, to be proved in Sect. [13d

13b1l Proposition. Let a twice continuously differentiable function f :
[0,L] - R and a number B > 0 satisfy

1 L
1| rer < B

and Be < min(1,a*). Then
]' !/ 1 L !/ ! <
Y - [ el OO @) <

tG[O,L},f(t)ZO,f’(t);ﬁO
c1/3pas q
<C|{———+ =
< ( B, L)
for some absolute constant C'.
Note that n does not occur in but L does.

13b2 Exercise. L > cn — C for some absolute constants ¢, C.
Prove it.

Given g9 > 0, we choose € such that C#(QM)W?’ < g¢/2 and ev/2M <
min(1,a®); then, assuming that C/L < o /2 (which holds for all n large
enough) we get |£ —n.| < g9 whenever + fo | X" ()|* dt < 2M, which happens
very probably. Thus, in order to prove Theorem 2c1 it is sufficient to prove
Proposition [13b1}

!By the two-dimensional generalization of Lemma 2al.
2By the two-dimensional generalization of Theorem 2a2.
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13c Estimating the error

Here we prove the non-probabilistic Proposition
We consider the set {t € [0,L] : [f(t)| < ¢, f'(t) # 0} and its connected
components I such that

sup |f'(1)] > a.
I

Clearly, I is an interval, f is strictly monotone on I, and of course, such
intervals are pairwise disjoint.

13c1 Exercise. The set Z of all these intervals I is finite.
Prove it.

Assume that § € (0,a) is given (it will be chosen later). We say that an
interval I € 7 is good, if

sup f'() —inf f7() <6

otherwise I is bad. Denote by G C Z the set of all good intervals.
Denoting?

D O L Ol R

te [OvL] 7f(t):0»f/ (t)7é0

we have

=3+ > A - 2“/ ol

IeI tel, f(t)=

7]1 €
51

Taking into account that |p(-)] < 1 we get
1

Viel |§]|§E,

since the sum contains no more than one summand; and

1
VI GZ ‘7]175‘ S Z,

since [, |f/(t)|dt = |f(t) — f(s)] for I = (s,t).
At most two I € T may violate I C (0, L); their contribution to [{ — .|
cannot exceed 4/L, that is harmless. From now on we assume that

Ic(0,L)
for all considered I € 7.

'We thus redefine ¢ and 7., which should not be too confusing since the probabilistic
context is no more needed.
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13c2 Lemma. For every good I C (0, L),
)
&1 —nrel <+

Proof. Let I = (r,t). We have min; |f'(-)] > a — ¢ > 0, therefore either
f(r)y=—¢, f(t)=cor f(r)=e¢, f(t) = —¢;in every case I; |f’ )|du = 2¢.

Define s € I by f(s) = 0, then & = 1o(f'(s)) = 57 fl | f' ()] du
and
= md < 527 [ 1) = e @) ] du <
S%L/!f 1) 1) =
O

13c3 Exercise. Prove that

! ]‘ L "
i< [ e,

where the sum is taken over ¢ such that f(¢) = 0 and f'(t) # 0, except for
the least and the greatest of these ¢.

We have LfO |f"(t)|dt < B, thus,

BL
Gl < 52 +2,

and so,

Z &1 — 1| < (2% + %)5

IeG
13c4 Lemma. For every bad interval I C (0, L),
62
"t th > CL_
JACIR

Proof. We take s € I such that |f'(s)| > a, note that sup, | f'(-)—f'(s)| > /2
and take the closest to s point t € [ such that |f'(t) — f'(s)| = §/2. Assume
that s < t (the case ¢t < s is similar). We have ming [f'(-) > a—§ > ¢
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and [* /()] du = |f(t) — f(s)] < 2, thus £ — s < 2. Also, [*[/"(u)] du >
|f/(t) — f'(s)| = §/2. Thus,

52
/|f// |2du>/ |f// |2du>(/) _Cll6€.

Thus, the number of bad intervals I C (0, L) does not exceed

16e B2L
ad?

and so,

16eB%L /1 1 32 B2
S (bl +Imel) < = <—+_> el

ad? L L ad?
Ie7I\G,IC(0,L)
32¢B?> 4
Dl = < =+
1e7\G
B 2 32¢B%? 4
— e < - e < |\ — 0 T
SR mel < (5 4 7)I+ Tos 7

Finally we choose

6 = (Be)'?,
note that 6 < a and 6 < 1, and get

|€ 77£|—_5+ + <

ad? L~

32:B2 6 o el/3B43 1
a L)’

which completes the proof of Proposition and ultimately, Theorem 2c1.

13d Hints to exercises

13al}  the random variable ¢ = (+ fo | X"(t)|*dt)*/? belongs to
GaussLip(C/y/n), and E¢ < (E€2)Y/2 < VM.
13a8; recall 11d4 and the paragraph after it.
55 Ju 1+ X)u(08) 2 002 23/4
[13c3l Hint: similar to [[3a2l
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