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13a Restricting the class of functions

Let X satisfy assumption CM,n,L.
We have

EX ′(0)X(t) = E
( d

du

∣∣∣
u=0

X(u)
)
X(t) = E

d

du

∣∣∣
u=0

(
X(u)X(t)

)
=

=
d

du

∣∣∣
u=0

E
(
X(u)X(t)

)
,

since for u ∈ (−1, 1),∣∣∣X(u)−X(0)

u
X(t)

∣∣∣ ≤ max
[−1,1]

|X ′(·)| · |X(t)| ,

the majorant being integrable. By stationarity,

EX ′(0)X(t) =
d

du

∣∣∣
u=0

EX(0)X(t− u) = − d

dt
EX(0)X(t) = −EX(0)X ′(t) .

Similarly,

EX ′(0)X ′(t) =
d

dt
EX ′(0)X(t) = − d2

dt2
EX(0)X(t) = −EX(0)X ′′(t) .

In particular,
EX(0)X ′′(0) = −E |X ′(0)|2 = −1 ,

therefore (think, why)
E |X ′′(0)|2 ≥ 1 ,

and M ≥ 1 (otherwise assumption CM,n,L is never satisfied). Further,

EX ′(0)X ′(t) = − d2

dt2

N∑
k=1

|ak|2 cosλkt =
N∑
k=1

|λkak|2 cosλkt
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as well as

EX ′′(0)X ′′(t) =
N∑
k=1

|λ2kak|2 cosλkt .

We have E |X ′′(0)|2 = σ2 for some σ ∈ [1,
√
M ]. Taking into account that

λ4k ≤ (1 + λ2k)
2 and σ ≥ 1 we see that assumption CM,n,L for X implies

assumption An,L for 1
σ
X ′′.

For the two-dimensional process (X ′, X ′′) we get

E 〈(X ′(0), X ′′(0)), (X ′(t), X ′′(t))〉 = E
(
X ′(0)X ′(t) +X ′′(0)X ′′(t)

)
=

=
∑
k

(λ2k + λ4k)a
2
k cosλkt .

Taking into account that λ2k+λ
4
k ≤ (1+λ2k)

2 and σ ≥ 1 we see that assumption
CM,n,L for X implies assumption An,L for (X ′, 1

σ
X ′′).

Applying 11c1-11c2 to X ′′ we get

1

L

∫ L

0

|X ′′(t)|2 dt ≤ C

n
(X2

1 + · · ·+X2
2N)

for some absolute constant C.

13a1 Exercise. Prove that

P
( 1

L

∫ L

0

|X ′′(t)|2 dt > 2M
)
≤ CMe−cMn

for some cM > 0, CM <∞ (dependent on M only).

In this sense,

1

L

∫ L

0

|X ′′(t)|2 dt ≤ 2M very probably.

Applying Theorem 2a2 (or rather, its two-dimensional generalization) to the
two-dimensional process (X ′, 1

σ
X ′′) we get for any a.e. continuous ϕ : R2 → R

of linear growth,

1

L

∫ L

0

ϕ
(
X ′(t),

1

σ
X ′′(t)

)
dt ∈ ExpConInt(n) .

Using also Lemma 2a1 (or rather, its two-dimensional generalization) we get
for every ε > 0,

1

L

∫ L

0

ϕ
(
X ′(t),

1

σ
X ′′(t)

)
dt ≤

∫
ϕ dγ2 + ε very probably.
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In particular,

E
1

L

∫ L

0

1

σ
|X ′′(t)|1[A,∞)(|X ′(t)|) dt =

(∫
|u| γ1(du)

)
·2γ1([A,∞)) ≤ Ce−A

2/2 ,

therefore for every A > 0 (separately),

1

L

∫ L

0

|X ′′(t)|1[A,∞)(|X ′(t)|) dt ≤ C
√
Me−A

2/2 very probably,

where C is an absolute constant.1 Similarly,

1

L

∫ L

0

|X ′′(t)|1[−a,a](X
′(t)) dt ≤ C

√
Ma very probably.

Here is a non-probabilistic fact.

13a2 Lemma. Let f : [0, L] → R be twice continuously differentiable, and
a > 0. Then ∑

t∈[0,L],f(t)=0,0<|f ′(t)|≤a

|f ′(t)| ≤ 1

2

∫ L

0

|f ′′(s)|1[−2a,2a](f
′(s)) ds+ 2a .

Proof. For each t ∈ [0, L] such that f(t) = 0 and 0 < |f ′(t)| ≤ a we consider
the set {s ∈ [0, L] : 0 < |f ′(s)| < 2|f ′(t)|} and its connected component It
containing t. Clearly, It is an interval, f is strictly monotone on It, and such
intervals are pairwise disjoint. If It ⊂ (0, L) then∫

It

|f ′′(s)| ds ≥ 2|f ′(t)|

(think, why). Taking into account that |f ′(·)| ≤ 2a on It we have

2
∑
|f ′(t)| ≤

∑∫
It

|f ′′(s)| ds ≤
∫ L

0

|f ′′(s)|1[−2a,2a](f
′(s)) ds ,

where the sum is taken over t such that It ⊂ (0, L). Other t (at most two)
contribute at most 2a.

The random variable

ξa =
1

L

∑
t∈[0,L],X(t)=0,|X′(t)|≤a

|X ′(t)|

is a special case of ξ of Theorem 2c1, for ϕ(x) = |x|1[−a,a](x).

1Every C >
√

2/π fits.
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13a3 Exercise. For every a > 0 (separately), ξa ≤ C
√
Ma very probably;

here C is an absolute constant.
Prove it.

13a4 Exercise. E ξa ≤ 1
3π
a3.

Prove it.

13a5 Exercise. It is sufficient to prove Theorem 2c1 for functions ϕ that
vanish on a neighborhood1 of 0.

Prove it.

13a6 Lemma. Let f : [0, L] → R be twice continuously differentiable, and
A > 2 min[0,L] |f ′(·)|. Then

∑
t∈[0,L],f(t)=0,|f ′(t)|≥A

|f ′(t)| ≤ 2

∫ L

0

|f ′′(s)|1[A/2,∞)(|f ′(s)|) ds .

Proof. For each t ∈ [0, L] such that f(t) = 0 and |f ′(t)| ≥ A we consider
the set {s ∈ [0, L] : |f ′(s)| > 0.5|f ′(t)|} and its connected component It
containing t. Clearly, It is an interval, f is strictly monotone on It, and
such intervals are pairwise disjoint. It cannot happen that It = [0, L], since
|f ′(·)| ≥ 0.5A on It. Thus,∫

It

|f ′′(s)| ds ≥ 1

2
|f ′(t)|

(think, why). We have

1

2

∑
|f ′(t)| ≤

∑∫
It

|f ′′(s)| ds ≤
∫ L

0

|f ′′(s)|1[A/2,∞)(|f ′(s)|) ds .

Taking into account that

min
[0,L]
|X ′(·)| ≤

(
1

L

∫ L

0

|X ′(t)|2 dt

)1/2

we see (similarly to 13a1) that

min
[0,L]
|X ′(·)| ≤ 2 very probably.

1The neighborhood depends on ϕ, of course.
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Similarly to 13a3, for every A > 4 (separately), the random variable

ξA =
1

L

∑
t∈[0,L],X(t)=0,|X′(t)|≥A

|X ′(t)|

satisfies
ξA ≤ C

√
Me−A

2/8 very probably,

as well as E ξA ≤ C
√
Me−A

2/8. Here is the conclusion.

13a7 Proposition. It is sufficient to prove Theorem 2c1 for functions ϕ
such that

∃a,A ∈ (0,∞) ∀x ∈ R
(
ϕ(x) 6= 0 =⇒ a < |x| < A

)
.

The condition sup(|ϕ(x)|/|x|) <∞ becomes just boundedness of ϕ.

13a8 Exercise. It is sufficient to prove Theorem 2c1 for Lipschitz functions
ϕ (satisfying 13a7).

Prove it.

13b Getting rid of randomness

According to 13a8, we consider a function ϕ : R→ R satisfying1

∀x ∈ R |ϕ(x)| ≤ 1 ,

∀x, y ∈ R |ϕ(x)− ϕ(y)| ≤ |x− y| ,
∀x ∈ R

(
ϕ(x) 6= 0 =⇒ |x| > a

)
.

We approximate the random variable of Theorem 2c1,

ξ =
1

L

∑
t∈[0,L],X(t)=0

ϕ(X ′(t)) ,

by another random variable (for ε→ 0+)

ηε =
1

2εL

∫ L

0

ϕ(X ′(t))|X ′(t)|1(−ε,ε)(X(t)) dt .

We know that2

E ξ =
1

2π

∫
ϕ(y)|y|e−y2/2 dy

1The first two conditions can be enforced multiplying ϕ by a small number. The
condition about |x| < A is not needed.

2By Theorem 2b1.
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and1

E ηε =
1

2ε

∫∫
ϕ(y)|y|1(−ε,ε)(x) γ2(dxdy) =

=

(∫
ϕ(y)|y| γ1(dy)

)
1

2ε
γ1((−ε, ε))→ 1√

2π

∫
ϕ(y)|y| γ1(dy) ,

thus, |E ηε − E ξ| → 0 (as ε→ 0+). We also know that2

ηε ∈ ExpConInt(n)

for every ε (separately). In order to prove Theorem 2c1 we have to prove
that

ξ ∈ ExpConInt(n) ;

by the approximation lemma (11a9, 11a11) it is sufficient to prove that

|ξ − ηε| ≤ ε0 very probably

if ε is small enough (for a given ε0).
Here is a non-probabilistic fact, to be proved in Sect. 13c.

13b1 Proposition. Let a twice continuously differentiable function f :
[0, L]→ R and a number B > 0 satisfy

1

L

∫ L

0

|f ′′(t)|2 ≤ B2

and Bε < min(1, a3). Then∣∣∣∣ 1L ∑
t∈[0,L],f(t)=0,f ′(t)6=0

ϕ(f ′(t))− 1

2εL

∫ L

0

ϕ(f ′(t))|f ′(t)|1(−ε,ε)(f(t)) dt

∣∣∣∣ ≤
≤ C

(
ε1/3B4/3

a
+

1

L

)
for some absolute constant C.

Note that n does not occur in 13b1, but L does.

13b2 Exercise. L ≥ cn− C for some absolute constants c, C.
Prove it.

Given ε0 > 0, we choose ε such that C ε1/3

a
(2M)2/3 ≤ ε0/2 and ε

√
2M <

min(1, a3); then, assuming that C/L ≤ ε0/2 (which holds for all n large

enough) we get |ξ−ηε| ≤ ε0 whenever 1
L

∫ L
0
|X ′′(t)|2 dt ≤ 2M , which happens

very probably. Thus, in order to prove Theorem 2c1 it is sufficient to prove
Proposition 13b1.

1By the two-dimensional generalization of Lemma 2a1.
2By the two-dimensional generalization of Theorem 2a2.



Tel Aviv University, 2010 Gaussian measures : proofs and more 20

13c Estimating the error

Here we prove the non-probabilistic Proposition 13b1.
We consider the set {t ∈ [0, L] : |f(t)| < ε, f ′(t) 6= 0} and its connected

components I such that
sup
I
|f ′(·)| > a .

Clearly, I is an interval, f is strictly monotone on I, and of course, such
intervals are pairwise disjoint.

13c1 Exercise. The set I of all these intervals I is finite.
Prove it.

Assume that δ ∈ (0, a) is given (it will be chosen later). We say that an
interval I ∈ I is good, if

sup
I
f ′(·)− inf

I
f ′(·) ≤ δ ;

otherwise I is bad. Denote by G ⊂ I the set of all good intervals.
Denoting1

ξ =
1

L

∑
t∈[0,L],f(t)=0,f ′(t)6=0

ϕ(f ′(t)) , ηε =
1

2εL

∫ L

0

ϕ(f ′(t))|f ′(t)|1(−ε,ε)(f(t)) dt

we have

ξ =
∑
I∈I

1

L

∑
t∈I,f(t)=0

ϕ(f ′(t))︸ ︷︷ ︸
ξI

, ηε =
∑
I∈I

1

2εL

∫
I

ϕ(f ′(t))|f ′(t)| dt︸ ︷︷ ︸
ηI,ε

.

Taking into account that |ϕ(·)| ≤ 1 we get

∀I ∈ I |ξI | ≤
1

L
,

since the sum contains no more than one summand; and

∀I ∈ I |ηI,ε| ≤
1

L
,

since
∫
I
|f ′(t)| dt = |f(t)− f(s)| for I = (s, t).

At most two I ∈ I may violate I ⊂ (0, L); their contribution to |ξ − ηε|
cannot exceed 4/L, that is harmless. From now on we assume that

I ⊂ (0, L)

for all considered I ∈ I.
1We thus redefine ξ and ηε, which should not be too confusing since the probabilistic

context is no more needed.
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13c2 Lemma. For every good I ⊂ (0, L),

|ξI − ηI,ε| ≤
δ

L
.

Proof. Let I = (r, t). We have minI |f ′(·)| ≥ a − δ > 0, therefore either
f(r) = −ε, f(t) = ε or f(r) = ε, f(t) = −ε; in every case,

∫
I
|f ′(u)| du = 2ε.

Define s ∈ I by f(s) = 0, then ξI = 1
L
ϕ(f ′(s)) = 1

2εL

∫
I
ϕ(f ′(s))|f ′(u)| du

and

|ξI − ηI,ε| ≤
1

2εL

∫
I

|ϕ(f ′(s))− ϕ(f ′(u))||f ′(u)| du ≤

≤ 1

2εL

∫
I

|f ′(s)− f ′(u)|︸ ︷︷ ︸
≤δ

||f ′(u)| du =
δ

L
.

13c3 Exercise. Prove that∑
|f ′(t)| ≤ 1

2

∫ L

0

|f ′′(s)| ds ,

where the sum is taken over t such that f(t) = 0 and f ′(t) 6= 0, except for
the least and the greatest of these t.

We have 1
L

∫ L
0
|f ′′(t)| dt ≤ B, thus,

|G| ≤ BL

2a
+ 2 ,

and so, ∑
I∈G

|ξI − ηI,ε| ≤
(B

2a
+

2

L

)
δ .

13c4 Lemma. For every bad interval I ⊂ (0, L),∫
I

|f ′′(t)|2 dt ≥ aδ2

16ε
.

Proof. We take s ∈ I such that |f ′(s)| > a, note that supI |f ′(·)−f ′(s)| > δ/2
and take the closest to s point t ∈ I such that |f ′(t)− f ′(s)| = δ/2. Assume
that s < t (the case t < s is similar). We have min[s,t] |f ′(·)| ≥ a − δ

2
≥ a

2



Tel Aviv University, 2010 Gaussian measures : proofs and more 22

and
∫ t
s
|f ′(u)| du = |f(t)− f(s)| ≤ 2ε, thus t− s ≤ 4ε

a
. Also,

∫ t
s
|f ′′(u)| du ≥

|f ′(t)− f ′(s)| = δ/2. Thus,

δ

2
≤
∫ t

s

|f ′′(u)| du ≤
(∫ t

s

|f ′′(u)|2 du

)1/2(∫ t

s

12 du

)1/2

;∫
I

|f ′′(u)|2 du ≥
∫ t

s

|f ′′(u)|2 du ≥ (δ/2)2

t− s
≥ aδ2

16ε
.

Thus, the number of bad intervals I ⊂ (0, L) does not exceed

16εB2L

aδ2
,

and so, ∑
I∈I\G,I⊂(0,L)

(
|ξI |+ |ηI,ε|

)
≤ 16εB2L

aδ2

( 1

L
+

1

L

)
=

32εB2

aδ2
;

∑
I∈I\G

|ξI − ηI,ε| ≤
32εB2

aδ2
+

4

L
;

|ξ − ηε| ≤
∑
I∈I

|ξI − ηI,ε| ≤
(B

2a
+

2

L

)
δ +

32εB2

aδ2
+

4

L
.

Finally we choose
δ = (Bε)1/3 ,

note that δ < a and δ < 1, and get

|ξ − ηε| ≤
B

2a
δ +

32εB2

aδ2
+

6

L
≤ C

(
ε1/3B4/3

a
+

1

L

)
,

which completes the proof of Proposition 13b1 and ultimately, Theorem 2c1.

13d Hints to exercises

13a1: the random variable ξ =
(
1
L

∫ L
0
|X ′′(t)|2 dt

)
1/2 belongs to

GaussLip(C/
√
n), and E ξ ≤ (E ξ2)1/2 ≤

√
M .

13a8: recall 11d4 and the paragraph after it.

13b2:
∫
[0,2]

(1 + λ2)µ(dλ) ≥ µ([0, 2]) ≥ 3/4.

13c3: Hint: similar to 13a2.



Tel Aviv University, 2010 Gaussian measures : proofs and more 23

Index

bad, 20

good, 20

very probably, 15

a, 18
B, 19
ε0, 19

ηε, 18, 20
ηI,ε, 20
G, 20
It, 16
I, 20
M , 14
ϕ, 18
ξ, 18, 20
ξI , 20


	Random real zeroes: two derivatives
	Restricting the class of functions
	Getting rid of randomness
	Estimating the error
	Hints to exercises

	Index

