12 Random real zeroes: one derivative

```
12a Proving Theorem 2b1 . . . . . . . . . . . . . . . . 11
```


12a Proving Theorem 2b1

For now, X satisfies just assumption A.
12a1 Lemma. Let $u \in \mathbb{R}$. Almost surely, no $t \in \mathbb{R}$ satisfies both $X(t)=u$ and $X^{\prime}(t)=0$.
12a2 Exercise. Assume the opposite: $\mathbb{P}\left(\exists t \in \mathbb{R}\left(X(t)=u, X^{\prime}(t)=0\right)\right)>$ 0 . Then

$$
\mathbb{P}\left(\exists t \in[0,1]\left(X(t)=u, X^{\prime}(t)=0\right) \text { and } \forall t \in[0,1]\left|X^{\prime \prime}(t)\right| \leq A\right)>0
$$

for some $A<\infty$.
Prove it.
12a3 Exercise.

$$
\mathbb{E} \int_{0}^{1} \mathbf{1}_{(u-\varepsilon, u+\varepsilon)}(X(t)) \mathrm{d} t \geq p \min \left(1, \sqrt{\frac{2 \varepsilon}{A}}\right)
$$

where $p=\mathbb{P}\left(\exists t \in[0,1]\left(X(t)=u, X^{\prime}(t)=0\right)\right.$ and $\left.\forall t \in[0,1]\left|X^{\prime \prime}(t)\right| \leq A\right)$.
Prove it.
On the other hand, by Lemma 2 a 4 applied to $\varphi=\mathbf{1}_{(u-\varepsilon, u+\varepsilon)}$,

$$
\mathbb{E} \int_{0}^{1} \mathbf{1}_{(u-\varepsilon, u+\varepsilon)}(X(t)) \mathrm{d} t=O(\varepsilon) .
$$

Thus, p must vanish, and so, Lemma $12 a 1$ is proved. It means that a given number has no chance to be a critical value of $X(\cdot)$. Then, $\{t \in[0,1]$: $X(t)=u\}$ is a finite set ${ }^{1}$ and

$$
\xi_{v}=\sum_{t \in[0,1], X(t)=v} \varphi\left(X^{\prime}(t)\right)
$$

treated as a function of v for a given $X(\cdot)$ is continuous at u. However, we cannot conclude that $\mathbb{E} \xi_{v}$ is continuous in v unless we have an integrable majorant for these ξ_{v}.

Now let X satisfy assumption B.

[^0]12a4 Exercise. Let $\varphi, \varphi_{1}, \varphi_{2}, \cdots: \mathbb{R} \rightarrow[0, \infty)$ be Borel functions such that either $\varphi_{n} \downarrow \varphi$ pointwise and φ_{1} is bounded, or $\varphi_{n} \uparrow \varphi$ pointwise. If the equality

$$
\mathbb{E} \frac{1}{L} \sum_{t \in[0, L], X(t)=0} \psi\left(X^{\prime}(t)\right)=\frac{1}{2 \pi} \int \psi(y)|y| \mathrm{e}^{-y^{2} / 2} \mathrm{~d} y \in[0, \infty]
$$

holds for $\psi=\varphi_{1}, \varphi_{2}, \ldots$ then it holds for $\psi=\varphi$.
Prove it.
Therefore it is sufficient to prove Theorem 2b1 under additional assumptions on φ :

$$
\varphi: \mathbb{R} \rightarrow[0, \infty) \text { is continuous and bounded }
$$

$$
\begin{equation*}
\varphi(\cdot)=0 \text { on }[-a, a] \tag{12a5}
\end{equation*}
$$

for some $a>0$.
If $\forall t \in[0, L] \quad\left|X^{\prime \prime}(t)\right| \leq A$ then points $t \in[0, L]$ such that $X(t)=u$, $\left|X^{\prime}(t)\right| \geq a$ are far apart at least $2 a / A$ (think, why), and therefore the number of such points is at most $1+\frac{A L}{2 a}$. It follows that

$$
0 \leq \underbrace{\frac{1}{L} \sum_{t \in[0, L], X(t)=u} \varphi\left(X^{\prime}(t)\right)}_{\xi_{u}} \leq\left(\frac{1}{L}+\frac{1}{2 a} \max _{[0, L]}\left|X^{\prime \prime}(\cdot)\right|\right) \sup _{\mathbb{R}} \varphi(\cdot),
$$

which is an integrable majorant for the random variables ξ_{u}. Thus, convergence a.s. implies convergence of expectations, and we conclude that

$$
\mathbb{E} \xi_{u} \text { is continuous in } u .
$$

Now we note that

$$
\int_{u-\varepsilon}^{u+\varepsilon} \xi_{v} \mathrm{~d} v=\frac{1}{L} \int_{0}^{L}\left|X^{\prime}(t)\right| \varphi\left(X^{\prime}(t)\right) \mathbf{1}_{(u-\varepsilon, u+\varepsilon)}(X(t)) \mathrm{d} t
$$

(basically, $\mathrm{d} v=X^{\prime}(t) \mathrm{d} t$, and $X(\cdot)$ is piecewise monotone). Thus,

$$
\begin{aligned}
\frac{1}{2 \varepsilon} \int_{u-\varepsilon}^{u+\varepsilon} \mathbb{E} \xi_{v} \mathrm{~d} v= & \frac{1}{2 \varepsilon L} \int_{0}^{L}\left(\mathbb{E}\left|X^{\prime}(t)\right| \varphi\left(X^{\prime}(t)\right) \mathbf{1}_{(u-\varepsilon, u+\varepsilon)}(X(t))\right) \mathrm{d} t= \\
& =\frac{1}{L} \int_{0}^{L} \mathrm{~d} t\left(\int|y| \varphi(y) \gamma^{1}(\mathrm{~d} y)\right) \frac{1}{2 \varepsilon} \gamma^{1}((u-\varepsilon, u+\varepsilon)),
\end{aligned}
$$

since ${ }^{1}\left(X(t), X^{\prime}(t)\right) \sim \gamma^{2}$. The limit $\varepsilon \rightarrow 0$ gives

$$
\mathbb{E} \xi_{u}=\frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-u^{2} / 2} \int|y| \varphi(y) \gamma^{1}(\mathrm{~d} y)
$$

for all u. In particular,

$$
\mathbb{E} \xi_{0}=\frac{1}{\sqrt{2 \pi}} \int|y| \varphi(y) \gamma^{1}(\mathrm{~d} y)
$$

which proves Theorem 2b1 for φ satisfying (12a5), therefore, for all $\varphi .^{2}$

$$
\begin{aligned}
& { }^{1} 0=\frac{\mathrm{d}}{\mathrm{~d} t} \mathbb{E} X^{2}(t)=\mathbb{E} 2 X(t) X^{\prime}(t) . \\
& { }^{2} \text { And moreover, } \mathbb{E} \frac{1}{L} \sum_{t \in[0, L], X(t)=u} \psi\left(X^{\prime}(t)\right)=\mathrm{e}^{-u^{2} / 2} \frac{1}{2 \pi} \int \psi(y)|y| \mathrm{e}^{-y^{2} / 2} \mathrm{~d} y .
\end{aligned}
$$

[^0]: ${ }^{1}$ Which also follows from the polynomial form of $X(\cdot)$.

