11 Random real zeroes: no derivatives

11a Exponential concentration in general (1)
11b Exponential concentration over Gaussian mea- sures 4
11c Using assumption A_{n} 5
11d Proving Theorem 2a2 7
11e Proving Theorem 2a3 8
11f Dimension two, and higher 9
11 g Hints to exercises 10

11a Exponential concentration in general

11a1 Definition. ${ }^{1}$ (a) A sequence $\left(x_{n}\right)_{n}$ of real numbers is exponentially decaying, if

$$
\exists \delta>0, C<\infty \quad \forall n\left|x_{n}\right| \leq C \mathrm{e}^{-\delta n}
$$

(b) A sequence $\left(X_{n}\right)_{n}$ of random variables $X_{n}: \Omega_{n} \rightarrow \mathbb{R}$ is exponentially concentrated at zero, if for every $\varepsilon>0$ the sequence of numbers $\mathbb{P}\left(\left|X_{n}\right|>\varepsilon\right)$ is exponentially decaying.
(c) A sequence $\left(X_{n}\right)_{n}$ of random variables $X_{n}: \Omega_{n} \rightarrow \mathbb{R}$ is exponentially concentrated, if there exist $x_{n} \in \mathbb{R}$ such that $\left(X_{n}-x_{n}\right)_{n}$ is exponentially concentrated at zero.

Notation:

$$
\left(X_{n}\right)_{n} \in \text { ExpConZero } ; \quad\left(X_{n}\right)_{n} \in \text { ExpCon }
$$

Only the distributions of these X_{n} matter. For a sequence $\left(\mu_{n}\right)_{n}$ of probability measures on \mathbb{R} we define the relations $\left(\mu_{n}\right)_{n} \in \operatorname{ExpConZero}$ and $\left(\mu_{n}\right)_{n} \in$ ExpCon evidently, getting $\left(X_{n}\right)_{n} \in \operatorname{ExpConZero} \quad \Longleftrightarrow \quad\left(\mu_{n}\right)_{n} \in$ ExpConZero where μ_{n} is the distribution of X_{n}; and the same for ExpCon. However, the language of random variables is more appropriate in many cases below.

11a2 Exercise. (a) All exponentially decaying sequences of real numbers are a linear space.
(b) ExpConZero is a linear space (for given $\left.\left(\Omega_{n}\right)_{n}\right)$.

[^0](c) Let $\left(X_{n}\right)_{n} \in$ ExpConZero and $x_{n} \in \mathbb{R}$. Then $\left(X_{n}-x_{n}\right)_{n} \in$ ExpConZero if and only if $x_{n} \rightarrow 0$.
Prove it.
Thus, the condition $\left(X_{n}-x_{n}\right)_{n} \in$ ExpConZero determines $\left(x_{n}\right)_{n}$ up to $o(1)$.

Recall that a number x is called a median of a random variable X if

$$
\mathbb{P}(X<x) \leq \frac{1}{2} \leq \mathbb{P}(X \leq x)
$$

All medians of X are in general a compact nonempty interval (often a single point). Also, x is a median of X if and only if $(-x)$ is a median of $(-X)$.

11a3 Exercise. The following three conditions are equivalent for every sequence of random variables X_{n} :
(a) $\left(X_{n}\right)_{n} \in$ ExpCon;
(b) there exist medians x_{n} of X_{n} such that $\left(X_{n}-x_{n}\right)_{n} \in$ ExpConZero;
(c) all medians x_{n} of X_{n} satisfy $\left(X_{n}-x_{n}\right)_{n} \in$ ExpConZero.

Prove it.
In this sense,
$\left(X_{n}\right)_{n} \in$ ExpCon \quad if and only if $\quad\left(X_{n}-\operatorname{Me}\left(X_{n}\right)\right)_{n} \in$ ExpConZero .
The median interval of X_{n} is of length $o(1)$ whenever $\left(X_{n}\right)_{n} \in \operatorname{ExpCon}$.
Medians cannot be replaced with expectations...
11a4 Exercise. (a) ExpCon is a linear space (for given $\left.\left(\Omega_{n}\right)_{n}\right)$.
(b) Let $\left(X_{n}\right)_{n},\left(Y_{n}\right)_{n} \in$ ExpCon, then $\operatorname{Me}\left(X_{n}+Y_{n}\right)=\operatorname{Me}\left(X_{n}\right)+\operatorname{Me}\left(Y_{n}\right)+$ $o(1)$.
Formulate it accurately, and prove.
11a5 Exercise. ("Sandwich") Let random variables $Y_{n}: \Omega_{n} \rightarrow \mathbb{R}$ be such that for every $r>0$ there exist $X_{n}, Z_{n}: \Omega_{n} \rightarrow \mathbb{R}$ satisfying

$$
\begin{gathered}
\left(X_{n}\right)_{n},\left(Z_{n}\right)_{n} \in \text { ExpCon }, \\
\forall n\left(X_{n} \leq Y_{n} \leq Z_{n} \text { a.s. }\right), \\
\forall n \operatorname{Me}\left(Z_{n}\right)-\operatorname{Me}\left(X_{n}\right) \leq r .
\end{gathered}
$$

Then $\left(Y_{n}\right)_{n} \in$ ExpCon.
Prove it.

Gaussian concentration usually ensures $\mathbb{E}\left|X_{n}\right|<\infty$ (integrability) and $\operatorname{Me}\left(X_{n}\right)-\mathbb{E} X_{n} \rightarrow 0$. Thus, we define ExpConInt (for given Ω_{n}) as the set of all sequences $\left(X_{n}\right)_{n}$ where $X_{n}: \Omega_{n} \rightarrow \mathbb{R}$ are integrable, and

$$
\left(X_{n}-\mathbb{E} X_{n}\right)_{n} \in \text { ExpConZero }
$$

This is a linear space.
11a6 Lemma. Let random variables $Y_{n}: \Omega_{n} \rightarrow \mathbb{R}$ be such that for every $\varepsilon>0$ there exist $X_{n}, Z_{n}: \Omega_{n} \rightarrow \mathbb{R}$ satisfying

$$
\begin{aligned}
& \left(X_{n}\right)_{n},\left(Z_{n}\right)_{n} \in \text { ExpConInt } \\
& \forall n\left(X_{n} \leq Y_{n} \leq Z_{n} \text { a.s. }\right) \\
& \forall n \mathbb{E} Z_{n}-\mathbb{E} X_{n} \leq \varepsilon
\end{aligned}
$$

Then $\left(Y_{n}\right)_{n} \in$ ExpConInt.
It can be proved similarly to 11a5. However, we need a quantitative version.

First, we note that the relation $\left(X_{n}\right)_{n} \in$ ExpConInt may be reformulated as follows: there exist families $\left(\delta_{\varepsilon}\right)_{\varepsilon}$ and $\left(C_{\varepsilon}\right)_{\varepsilon}$ of numbers $\delta_{\varepsilon}>0, C_{\varepsilon}<\infty$ given for $\varepsilon>0$ such that for all n,

$$
\forall \varepsilon>0 \quad \mathbb{P}\left(\left|X_{n}-\mathbb{E} X_{n}\right|>\varepsilon\right) \leq C_{\varepsilon} \mathrm{e}^{-\delta_{\varepsilon} n}
$$

Second, in order to get $\mathbb{P}\left(\left|Y_{n}-\mathbb{E} Y_{n}\right|>\varepsilon\right) \leq C_{\varepsilon} \mathrm{e}^{-\delta_{\varepsilon} n}$ in the conclusion of "Sandwich", we require $\mathbb{P}\left(\left|X_{n}-\mathbb{E} X_{n}\right|>\varepsilon\right) \leq C_{r, \varepsilon} \mathrm{e}^{-\delta_{r, \varepsilon} n}$ (and the same for $\left.Z_{n}\right)$ in the assumption; here r is the parameter denoted by r in 11a5.

The lemma below constructs δ_{ε} and C_{ε} for given $\delta_{r, \varepsilon}$ and $C_{r, \varepsilon}$. The formulas are simple, but will not be used; rather, their existence will be used.

11a7 Lemma. ("Sandwich") Let positive numbers $\delta_{r, \varepsilon}$ and $C_{r, \varepsilon}$ be given for all positive r and ε. Let random variables $Y_{n}: \Omega_{n} \rightarrow \mathbb{R}$ be such that for every $r>0$ there exist $X_{n}, Z_{n}: \Omega_{n} \rightarrow \mathbb{R}$ satisfying

$$
\begin{aligned}
\forall n, \varepsilon & \mathbb{P}\left(\left|X_{n}-\mathbb{E} X_{n}\right|>\varepsilon\right) \leq C_{r, \varepsilon} \mathrm{e}^{-\delta_{r, \varepsilon} n}, \\
\forall n, \varepsilon & \mathbb{P}\left(\left|Z_{n}-\mathbb{E} Z_{n}\right|>\varepsilon\right) \leq C_{r, \varepsilon} \mathrm{e}^{-\delta_{r, \varepsilon} n}, \\
& \forall n\left(X_{n} \leq Y_{n} \leq Z_{n} \text { a.s. }\right), \\
& \forall n \mathbb{E} Z_{n}-\mathbb{E} X_{n} \leq r .
\end{aligned}
$$

Then

$$
\forall n, \varepsilon \quad \mathbb{P}\left(\left|Y_{n}-\mathbb{E} Y_{n}\right|>\varepsilon\right) \leq C_{\varepsilon} \mathrm{e}^{-\delta_{\varepsilon} n}
$$

where $\delta_{\varepsilon}=\delta_{\varepsilon / 2, \varepsilon / 2}$ and $C_{\varepsilon}=2 C_{\varepsilon / 2, \varepsilon / 2}$.

11a8 Exercise. Prove Lemma 11 a 7 .
11a9 Lemma. ("Approximation") Let integrable random variables X_{n} : $\Omega_{n} \rightarrow \mathbb{R}$ be such that for every $\varepsilon>0$ there exist $Y_{n}: \Omega_{n} \rightarrow \mathbb{R}$ satisfying

$$
\left(Y_{n}\right)_{n} \in \text { ExpConInt }
$$

the sequence of numbers $\mathbb{P}\left(\left|X_{n}-Y_{n}\right|>\varepsilon\right)$ is exponentially decaying,

$$
\forall n \quad\left|\mathbb{E} X_{n}-\mathbb{E} Y_{n}\right| \leq \varepsilon
$$

Then $\left(X_{n}\right)_{n} \in$ ExpConInt.
11a10 Exercise. Prove Lemma 11a9,
Here is a quantitative version. The assumption $\left(Y_{n}\right)_{n} \in \operatorname{ExpConInt}$ is weakened (to a single $\varepsilon \ldots$). The same $\delta_{\varepsilon}, C_{\varepsilon}$ are used in two assumptions, which is not a problem (just take the minimum of two δ_{ε} and the sum of two $\left.C_{\varepsilon}\right)$.

11a11 Lemma. ("Approximation") Let positive numbers δ_{ε} and C_{ε} be given for all positive ε. Let random variables $X_{n}: \Omega_{n} \rightarrow \mathbb{R}$ be such that for every $\varepsilon>0$ there exist $Y_{n}: \Omega_{n} \rightarrow \mathbb{R}$ satisfying

$$
\begin{array}{rl}
\forall n & \mathbb{P}\left(\left|Y_{n}-\mathbb{E} Y_{n}\right|>\varepsilon\right) \leq C_{\varepsilon} \mathrm{e}^{-\delta_{\varepsilon} n}, \\
\forall n & \mathbb{P}\left(\left|X_{n}-Y_{n}\right|>\varepsilon\right) \leq C_{\varepsilon} \mathrm{e}^{-\delta_{\varepsilon} n}, \\
& \forall n \quad\left|\mathbb{E} X_{n}-\mathbb{E} Y_{n}\right| \leq \varepsilon .
\end{array}
$$

Then

$$
\forall n, \varepsilon \quad \mathbb{P}\left(\left|X_{n}-\mathbb{E} X_{n}\right|>\varepsilon\right) \leq 2 C_{\varepsilon / 3} \mathrm{e}^{-\delta_{\varepsilon / 3} n}
$$

11a12 Exercise. Prove Lemma 11a11.

11b Exponential concentration over Gaussian measures

If a function $\xi: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is $\operatorname{Lip}(\sigma)$ for a given $\sigma>0$ then Theorem 1a2 gives $\xi\left[\gamma^{d}\right]=f\left[\gamma^{1}\right]$ for an increasing $f: \mathbb{R} \rightarrow \mathbb{R}, f \in \operatorname{Lip}(\sigma)$. Let us denote by $\operatorname{GaussLip}(\sigma)$ the set of all such random variables. Clearly, $f(0)$ is the only median of ξ, and ${ }^{1}$

$$
\begin{aligned}
\mathbb{P}(|\xi-\operatorname{Me}(\xi)|>\varepsilon)=\mathbb{P}(|f(\zeta)-f(0)| & >\varepsilon) \leq \\
& \leq \mathbb{P}(|\zeta|>\varepsilon / \sigma) \leq C \exp \left(-\frac{\varepsilon^{2}}{2 \sigma^{2}}\right)
\end{aligned}
$$

[^1]for some absolute constant $C .{ }^{1}$ Also, $|\operatorname{Me}(\xi)-\mathbb{E} \xi|=\left|f(0)-\int f \mathrm{~d} \gamma^{1}\right| \leq C \sigma$ for another absolute constant $C .{ }^{2}$ It follows easily that
\[

$$
\begin{equation*}
\mathbb{P}(|\xi-\mathbb{E} \xi|>\varepsilon) \leq C \exp \left(-c \frac{\varepsilon^{2}}{2 \sigma^{2}}\right) \tag{11b1}
\end{equation*}
$$

\]

for some absolute constants $c, C ;^{3}$ and, of course,

$$
\begin{equation*}
\mathbb{E}|\xi-\mathbb{E} \xi| \leq C \sigma \tag{11b2}
\end{equation*}
$$

for some absolute constant C.

11c Using assumption A_{n}

We consider the Gaussian random function $X(\cdot)$ introduced in Sect. 2a as a linear function of the independent $N(0,1)$ random variables $X_{1}, \ldots, X_{2 n}$ (via a_{1}, \ldots, a_{N} and $\lambda_{1}, \ldots, \lambda_{N}$) under the assumption A_{n} (also introduced in Sect. 2a). Here is a non-probabilistic property of the linear operator $\mathbb{R}^{2 n} \rightarrow$ $L_{2}[0,1] .{ }^{5}$

11c1 Proposition.

$$
\int_{0}^{1} X^{2}(t) \mathrm{d} t \leq \frac{C}{n}\left(X_{1}^{2}+\cdots+X_{2 N}^{2}\right)
$$

for some absolute constant C.
11c2 Remark. Assumption A_{n} requires also assumption A, namely $\sum_{k} a_{k}^{2}=$ 1 , but we do not need it here; we use only the assumption

$$
\forall \lambda \in[0, \infty) \quad \sum_{k: \lambda_{k} \in[\lambda, \lambda+1]} a_{k}^{2} \leq \frac{1}{n}
$$

Given $f \in L_{2}[0,1]$, we consider the random variable

$$
\langle f, X\rangle=\int_{0}^{1} f(t) X(t) \mathrm{d} t
$$

this is a linear combination of $X_{1}, \ldots, X_{2 n}$, thus $\langle f, X\rangle \sim N(0, \operatorname{Var}\langle f, X\rangle)$.

[^2]11c3 Exercise. Deduce 11c1 from the following claim (to be proved soon):

$$
\operatorname{Var}\langle f, X\rangle \leq \frac{C}{n}\|f\|^{2}
$$

11c4 Exercise. Prove that

$$
\operatorname{Var}\langle f, X\rangle=\sum_{k=1}^{N} a_{k}^{2}\left|g\left(\lambda_{k}\right)\right|^{2},
$$

where $g(\lambda)=\int_{0}^{1} \mathrm{e}^{\mathrm{i} \lambda t} f(t) \mathrm{d} t$.
It is well-known that $\|g\|_{2}^{2}=2 \pi\|f\|_{2}^{2}$. Thus, the claim in 11 c 3 boils down to ${ }^{1}$

$$
\sum a_{k}^{2}\left|g\left(\lambda_{k}\right)\right|^{2} \leq C\|g\|^{2} \sup _{\lambda} \sum_{k: \lambda_{k} \in[\lambda, \lambda+1]} a_{k}^{2},
$$

which may be rewritten as

$$
\begin{equation*}
\int|g|^{2} \mathrm{~d} \mu \leq C\left(\int|g|^{2} \mathrm{~d} m\right) \sup _{\lambda} \mu([\lambda, \lambda+1]) \tag{11c5}
\end{equation*}
$$

where $\mu=\sum_{k} a_{k}^{2} \delta_{\lambda_{k}}$ (a discrete measure), and m is the Lebesgue measure.
The idea is, roughly, that g cannot be nearly concentrated on a short interval, because f is concentrated on an interval of length 1 . The proof, given below, uses Fourier transform $(\varphi \mapsto \hat{\varphi})$ and convolution (*). If you are familiar with these, keep reading. Otherwise feel free to skip the rest of 11c.
11c6 Lemma. There exist even real-valued functions $\varphi \in L_{\infty}[-0.5,0.5] \subset$ $L_{1}(\mathbb{R})$ and $\psi \in L_{1}(\mathbb{R})$ such that $\hat{\varphi}(x) \hat{\psi}(x)=1$ for all $t \in[-1,1]$.
Proof. We take $\varphi(t)=$ const on $[-0.5,0.5]$ (and 0 outside), $\hat{\varphi}(t)=\frac{1}{t} \sin \frac{t}{2}$, note that $\hat{\varphi}(\cdot)$ does not vanish on $[-1,1], 1 / \hat{\varphi}(\cdot)$ is smooth on $[-1,1]$ and therefore can be extended to a smooth compactly supported function $\hat{\psi}(\cdot)$; its Fourier transform is integrable, since it decays fast enough.

Proof of the proposition. The function $|g(\cdot)|^{2}$ is the Fourier transform of a function supported on $[-1,1]$ and therefore invariant under multiplication by $\hat{\varphi} \hat{\psi}$. It means that $|g|^{2}=|g|^{2} * \varphi * \psi$. Thus,

$$
\begin{gathered}
\left.\int|g|^{2} \mathrm{~d} \mu=\left.\langle | g\right|^{2} * \psi, \mu * \varphi\right\rangle \leq\left\||g|^{2} * \psi\right\|_{1}\|\mu * \varphi\|_{\infty} \\
\left\||g|^{2} * \psi\right\|_{1} \leq\left\||g|^{2}\right\|_{1}\|\psi\|_{1}=\|g\|_{2}^{2}\|\psi\|_{1} \leq C\|g\|_{2}^{2} \\
\|\mu * \varphi\|_{\infty} \leq\|\varphi\|_{\infty} \sup _{\lambda} \mu([\lambda-0.5, \lambda+0.5]) \leq C \sup _{\lambda} \mu([\lambda, \lambda+1])
\end{gathered}
$$

which gives 11c5).

[^3]
11d Proving Theorem 2a2

If $\xi: L_{2}[0,1] \rightarrow \mathbb{R}$ is $\operatorname{Lip}(1)$ then $\xi(X)$, treated as a function of $X_{1}, \ldots, X_{2 N}$, is a $\operatorname{Lip}(C / \sqrt{n})$ function $\mathbb{R}^{2 N} \rightarrow \mathbb{R}($ by 11c1). Thus, $\xi(X) \in \operatorname{GaussLip}(C / \sqrt{n})$. By (11b1), ${ }^{1}$

$$
\begin{equation*}
\mathbb{P}(|\xi-\mathbb{E} \xi|>\varepsilon) \leq C \exp \left(-c \varepsilon^{2} n\right) \tag{11d1}
\end{equation*}
$$

for some absolute constants c, C. In this sense, abusing the language, we write (under assumption A_{n})

$$
\xi \in \operatorname{ExpConInt}(n)
$$

whenever ξ is $\operatorname{Lip}(1)$ on $L_{2}[0,1]$, or $\operatorname{Lip}(C)$ for some C not depending on n. Usually, a stronger condition will be satisfied: ξ is $\operatorname{Lip}(C)$ on $L_{1}[0,1]$.

11d2 Exercise. Prove Lemma 2a1.
11d3 Exercise. Let $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ be $\operatorname{Lip}(1)$. Then the function $\xi: L_{1}[0,1] \rightarrow$ \mathbb{R},

$$
\xi(x)=\int_{0}^{1} \varphi(x(t)) \mathrm{d} t
$$

is well-defined and $\operatorname{Lip}(1)$.
Prove it.
Thus, for such φ the random variable

$$
\xi=\int_{0}^{1} \varphi(X(t)) \mathrm{d} t
$$

satisfies

$$
\xi \in \operatorname{GaussLip}(C / \sqrt{n}) ; \quad \xi \in \operatorname{ExpConInt}(n)
$$

with absolute constants (as in 11d1)).
Now let φ be as in Theorem 2a2 (continuous a.e., of linear growth). We introduce for every k

$$
\varphi_{k}^{-}(x)=\inf _{y}(\varphi(y)+k|y-x|), \quad \varphi_{k}^{+}(x)=\sup _{y}(\varphi(y)-k|y-x|) .
$$

11d4 Exercise. (a) $\varphi_{k}^{-}, \varphi_{k}^{+}$are $\operatorname{Lip}(k)$ functions $\mathbb{R} \rightarrow \mathbb{R}$ for all k large enough; ${ }^{2}$
(b) $\varphi_{k}^{-} \uparrow \varphi$ and $\varphi_{k}^{+} \downarrow \varphi$ almost everywhere;

[^4](c) there exists C_{φ} such that for all k large enough and all x
$$
-C_{\varphi}(1+|x|) \leq \varphi_{k}^{-}(x) \leq \varphi_{k}^{+}(x) \leq C_{\varphi}(1+|x|) .
$$

Prove it.
It follows (using Fubini and the dominated convergence theorem) that $\mathbb{E} \xi_{k}^{-} \uparrow \mathbb{E} \xi$ and $\mathbb{E} \xi_{k}^{+} \downarrow \mathbb{E} \xi$ a.s., where $\xi_{k}^{ \pm}=\int_{0}^{1} \varphi_{k}^{ \pm}(X(t)) \mathrm{d} t$. We have a "sandwich"; and so, Theorem $2 a 2$ follows by 11a7. (The upper bound $2 \mathrm{e}^{-c_{\varepsilon, \varphi} n}$ is not stronger than $C_{\varepsilon, \varphi} \mathrm{e}^{-\varepsilon_{\varepsilon, \varphi} n}$ since $c_{\varepsilon, \varphi}$ can be made smaller.)

11e Proving Theorem 2a3

The function T was defined in Sect. 2a on $C[0,1]$, but the same definition works on $L_{1}[0,1]$ and evidently gives a $\operatorname{Lip}(1)$ function $T: L_{1}[0,1] \rightarrow[0, \infty)$. It follows that $T(X) \in \operatorname{ExpConInt}(n)$. However, Theorem 2 a 3 states that $T(X) \in \operatorname{ExpConZero}(n)$. Thus, it is sufficient to prove that $\mathbb{E} T(X) \leq \varepsilon_{n} \rightarrow$ 0.

We modify T as follows:

$$
T_{k}(f)=\inf _{g}\left\|\psi_{k}(f(\cdot))-\psi_{k}(g(\cdot))\right\|_{1}
$$

where g is as before (distributed γ^{1}), and $\psi_{k}(x)=\operatorname{mid}(-k, x, k)$, that is, $-k$ for $x \in(-\infty,-k] ; x$ for $x \in[-k, k]$; and k for $x \in[k, \infty)$. We have

$$
\begin{aligned}
\mathbb{E}\left|T_{k}(X(\cdot))-T(X(\cdot))\right| \leq \mathbb{E}\left\|\psi_{k}(X(\cdot))-X(\cdot)\right\|_{1}+\left\|\psi_{k}(g(\cdot))-g(\cdot)\right\|_{1} & = \\
=2 \int\left|\psi_{k}(x)-x\right| \gamma^{1}(\mathrm{~d} x) & \rightarrow 0
\end{aligned}
$$

as $k \rightarrow \infty$. It remains to prove that $\mathbb{E} T_{k}(X) \leq \varepsilon_{k, n} \rightarrow 0$ as $n \rightarrow \infty$.
11e1 Exercise. For every $f \in L_{1}[0,1]$ and every $\operatorname{Lip}(1)$ function $\varphi: \mathbb{R} \rightarrow \mathbb{R}$,

$$
\left|\int_{0}^{1} \varphi(f(t)) \mathrm{d} t-\int \varphi \mathrm{d} \gamma^{1}\right| \leq T(f)
$$

Prove it.
It is well-known that ${ }^{1}$

$$
\sup _{\varphi}\left|\int_{0}^{1} \varphi(f(t)) \mathrm{d} t-\int \varphi \mathrm{d} \gamma^{1}\right|=T(f),
$$

where the supremum is taken over all $\operatorname{Lip}(1)$ functions $\mathbb{R} \rightarrow \mathbb{R}$. (I use this fact without proof.) Clearly we may demand $\varphi(0)=0$.

[^5]11e2 Exercise. For every k and ε there exists a finite set of $\operatorname{Lip}(1)$ functions $\varphi_{1}, \ldots, \varphi_{N}:[-k, k] \rightarrow \mathbb{R}$ such that $\varphi_{1}(0)=0, \ldots, \varphi_{N}(0)=0$, and every $\operatorname{Lip}(1)$ function $\varphi:[-k, k] \rightarrow \mathbb{R}$ such that $\varphi(0)=0$ is ε-close to some φ_{i} uniformly on $[-k, k]$.

Prove it.
11e3 Exercise. Prove that

$$
T_{k}(f) \leq 2 \varepsilon+\max _{i=1, \ldots, N}\left|\int_{0}^{1} \varphi_{i}\left(\psi_{k}(f(t))\right) \mathrm{d} t-\int \varphi_{i}\left(\psi_{k}(\cdot)\right) \mathrm{d} \gamma^{1}\right| .
$$

The function $\varphi_{i}\left(\psi_{k}(\cdot)\right)$ is $\operatorname{Lip}(1)$, thus the random variable $\xi_{i, k}=$ $\int_{0}^{1} \varphi_{i}\left(\psi_{k}(X(t))\right) \mathrm{d} t$ belongs to $\operatorname{GaussLip}(C / \sqrt{n})$. By (11b2), $\mathbb{E}\left|\xi_{i, k}-\mathbb{E} \xi_{i, k}\right| \leq$ C / \sqrt{n}. Thus,

$$
\mathbb{E} T_{k}(X) \leq 2 \varepsilon+\mathbb{E} \max _{i=1, \ldots, N}\left|\xi_{i, k}-\mathbb{E} \xi_{i, k}\right| \leq 2 \varepsilon+N_{k, \varepsilon} \cdot \frac{C}{\sqrt{n}},
$$

which can be made small enough by choosing ε first and n afterwards. That is, $\mathbb{E} T_{k}(X) \leq \varepsilon_{k, n} \rightarrow 0$ as $n \rightarrow \infty$, which completes the proof. ${ }^{1}$

11f Dimension two, and higher

Returning to the definition of $X(\cdot)$ given in Sect. 2a via a_{1}, \ldots, a_{N} and $\lambda_{1}, \ldots, \lambda_{N}$, we replace the numbers $a_{1}, \ldots, a_{N}>0$ with vectors $a_{1}, \ldots, a_{N} \in$ \mathbb{R}^{2}, thus getting $X: \mathbb{R} \rightarrow \mathbb{R}^{2}$; we endow \mathbb{R}^{2} with the Euclidean norm $x \mapsto|x|$. Further, all occurrences of a_{k}^{2} (in assumptions A and A_{n}, and everywhere) turn into $\left|a_{k}\right|^{2}$, and all occurrences of $X^{2}(t)$ (in Prop. 11c1, and everywhere) into $|X(t)|^{2}$. We also replace the requirement $0<\lambda_{1}<\cdots<\lambda_{N}<\infty$ with a weaker requirement $0<\lambda_{1} \leq \cdots \leq \lambda_{N}<\infty$, thus allowing a single frequency to cover more than one dimension. ${ }^{2}$ The distribution of the process X fails to determine uniquely the vectors a_{k}, but still determines the measure $\sum_{k}\left|a_{k}\right|^{2} \delta_{\lambda_{k}}$, since

$$
\mathbb{E}\langle X(0), X(t)\rangle=\sum_{k=1}^{N}\left|a_{k}\right|^{2} \cos \lambda_{k} t
$$

[^6]Still, 11 c 3 and 11 c 4 hold, but $f \in L_{2}[0,1]$ turns into $f \in L_{2}\left([0,1] \rightarrow \mathbb{R}^{2}\right)$, and 11c4 becomes

$$
\operatorname{Var}\langle f, X\rangle=\sum_{k=1}^{N}\left|\left\langle a_{k}, g\left(\lambda_{k}\right)\right\rangle\right|^{2} \leq \sum_{k=1}^{N}\left|a_{k}\right|^{2}\left|g\left(\lambda_{k}\right)\right|^{2}
$$

Nothing changes in the rest of Sect. 11c (it is about the measure $\mu=$ $\left.\sum_{k}\left|a_{k}\right|^{2} \delta_{\lambda_{k}}\right) .{ }^{1}$

Thus, 11 c 1 gives us a linear operator $\mathbb{R}^{2 N} \rightarrow L_{2}\left([0,1] \rightarrow \mathbb{R}^{2}\right)$ of norm $\leq C / \sqrt{n}$. If $\xi: L_{2}\left([0,1] \rightarrow \mathbb{R}^{2}\right) \rightarrow \mathbb{R}$ is $\operatorname{Lip}(1)$ then $\xi(X) \in \operatorname{GaussLip}(C / \sqrt{n})$.

The function $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ in 2a1, 2a2, 11d3, 11d4 (as well as $\varphi_{k}^{ \pm}$in 11d44) turns into $\varphi: \mathbb{R}^{2} \rightarrow \mathbb{R} ; \gamma^{1}$ in 2 a1 turns into γ^{2}. And of course, $L_{1}[0,1]$ in 11d3 turns into $L_{1}\left([0,1] \rightarrow \mathbb{R}^{2}\right)$.

Theorem 2 a 2 is thus generalized.
About Theorem 2a3. The definition of $T(f)$ is generalized evidently (γ^{1} turns into γ^{2}); now T is a $\operatorname{Lip}(1)$ function $L_{1}\left([0,1] \rightarrow \mathbb{R}^{2}\right) \rightarrow[0, \infty)$. The functions $\psi_{k}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ may be defined by $\psi_{k}(x)=x$ if $|x| \leq k$, otherwise $\psi_{k}(x)=k x /|x|$. The Kantorovich-Rubinstein theorem holds for all metric spaces, in particular \mathbb{R}^{2}. Exercise 11 e 2 generalizes for a disk of \mathbb{R}^{2} (and in fact for every precompact metric space). Exercise 11 e 3 and the rest of the proof remain valid. ${ }^{2}$

Theorem 2a3 is thus generalized.
All said about \mathbb{R}^{2} holds equally well for $\mathbb{R}^{d}, d=3,4, \ldots$

11g Hints to exercises

11d2: Fubini.

Index

approximation lemma, 4
exponentially
concentrated, 1
at zero, 1
decaying, 1
median, 2
sandwich lemma, 2, 3
ExpConInt, 3
ExpConInt $(n), 7$
ExpConZero, 1
GaussLip, 4
$\operatorname{Lip}(\sigma), 4$
Me, 2
$\mu, 6$
$T, 8$
$T_{k}, 8$
$X(\cdot), 5$
ExpCon, 1
$X_{1}, \ldots, X_{2 n}, 5$

[^7]
[^0]: ${ }^{1}$ Not a standard definition.

[^1]: ${ }^{1} \zeta \sim \gamma^{1}$ as before.

[^2]: ${ }^{1} C=\sup _{t>0} \mathrm{e}^{t^{2} / 2} \cdot 2 \int_{t}^{\infty}(2 \pi)^{-1 / 2} \mathrm{e}^{-u^{2} / 2} \mathrm{~d} u=2 \sup _{t>0}(2 \pi)^{-1 / 2} \int_{0}^{\infty} \exp \left(-\frac{s^{2}}{2}-t s\right) \mathrm{d} s=1$.
 ${ }^{2} C=(2 \pi)^{-1 / 2} \int_{0}^{\infty} t \mathrm{e}^{-t^{2} / 2} \mathrm{~d} t=1 / \sqrt{2 \pi}$.
 ${ }^{3}$ Here and henceforth, constants c and C (possibly with indices) are positive. They may be different in different formulas.
 ${ }^{4}$ In fact, $c=1$ and $C=2$. Moreover, $\mathbb{P}(\xi-\mathbb{E} \xi>\varepsilon) \leq 2 \mathbb{P}(\sigma \zeta>\varepsilon)$ (Cirel'son, Ibragimov, Sudakov 1976), thus, $\mathbb{P}(\xi-\mathbb{E} \xi>\varepsilon) \leq \exp \left(-\frac{\varepsilon^{2}}{2 \sigma^{2}}\right)$.
 ${ }^{5}$ But under assumption A only, the operator need not be of small norm; just try $N=1$.

[^3]: ${ }^{1}$ Do not forget that C may be different in different formulas.

[^4]: ${ }^{1}$ I often write just ξ instead of $\xi(X)$.
 ${ }^{2}$ Do you understand why not just "for all k "?

[^5]: ${ }^{1}$ Kantorovich-Rubinstein theorem. This $T(f)$ is nothing but the transportation distance between γ^{1} and the distribution of f. This fact is evident when f is a step function. It extends to the whole $L_{1}[0,1]$ by continuity.

[^6]: ${ }^{1}$ In fact, $\mathbb{P}(T(X) \geq \varepsilon) \leq \exp \left(-c\left(\left(\varepsilon-\alpha_{n}\right)^{+}\right)^{2} n\right)$ for some absolute constant c and some $\alpha_{n} \rightarrow 0$ (depending on n only). It is like the large deviations principle with the rate function $I(\varepsilon) \geq c \varepsilon^{2}$.
 ${ }^{2}$ Think, what does it change in the one-dimensional case.

[^7]: ${ }^{1}$ And so, the absolute constant C in 11c1 remains intact.
 ${ }^{2}$ Still, $\mathbb{P}(T(X) \geq \varepsilon) \leq \exp \left(-c\left(\left(\varepsilon-\alpha_{n}\right)^{+}\right)^{2} n\right)$ for the same absolute constant c as in dimension one, and another (worse) sequence $\alpha_{n} \rightarrow 0$.

