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1 Functions of normal random variables

It is of course impossible to even think the word
Gaussian without immediately mentioning the
most important property of Gaussian processes,
that is concentration of measure.
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1a Gaussian isoperimetry and related inequalities

1a1 Definition. (a) The standard Gaussian measure γ1 on R, called also
the standard normal distribution N(0, 1), is the probability measure

γ1(A) =

∫
A

1√
2π

e−x
2/2 dx for Lebesgue measurable A ⊂ R .

(b) The standard Gaussian measure γn on Rn, called also the standard multi-
normal distribution, is the probability measure γ1 × · · · × γ1, that is,

γn(A) =

∫
A

(2π)−n/2e−|x|
2/2 dx for Lebesgue measurable A ⊂ Rn .

Here and below, | · | is the Euclidean norm.
A random vector (X1, . . . , Xn) = X : Ω → Rn is distributed γn if and

only if X1, . . . , Xn are independent N(0, 1) random variables.
Let µ be a nonatomic probability measure on R, and ν an arbitrary

probability measure on R. Then there exists an increasing f : R → R such
that f [µ] = ν, that is, f sends µ into ν. Such f is unique up to the values at
points of discontinuity; it is unique if the support of ν is connected, which
holds in all cases treated below.

In particular, for every random variable ξ : Ω → R there exists an in-
creasing f : R → R such that f(ζ) is distributed like ξ if ζ is distributed
N(0, 1).

1See page 189 of “Mean field model for spin glasses: a first course”, Lecture Notes in
Math. 1816 (2003), 181–285.
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1a2 Theorem. 1 Let a function ξ : Rn → R satisfy the Lipschitz condition
with constant 1:

ξ ∈ Lip(1) , that is,

∀x, y ∈ Rn |ξ(x)− ξ(y)| ≤ |x− y| .
Then ξ[γn] = f [γ1] for an increasing f : R→ R, f ∈ Lip(1).

The same holds for Lip(C) (by rescaling).
Note that both the supremum and the infimum of Lip(1) functions is a

Lip(1) function (if finite).

1a3 Theorem. 2 Let a function ξ : Rn → R be convex:

∀x, y ∈ Rn ∀c ∈ [0, 1] ξ(cx+ (1− c)y) ≤ cξ(x) + (1− c)ξ(y) .

Then ξ[γn] = f [γ1] for a convex increasing f : R→ R.

If ξ is Lip(C) and convex then f is (increasing and) Lip(C) and convex.
In particular, this holds for a (semi)norm:

ξ(x) = sup
y∈Y
|〈x, y〉|

for a bounded Y ⊂ Rn; in this case C = supy∈Y |y|. In addition, ∀x ∈
R f(x) ≥ Cx (for a seminorm).

However, for a seminorm ξ it is natural to introduce an increasing g :
(0,∞)→ (0,∞) such that ξ is distributed like g(|ζ|), ζ ∼ N(0, 1). It appears
that

the function a 7→ g(a)

a
is decreasing on (0,∞) ,

which is called the S-inequality.3

Another result for a seminorm ξ may be formulated in terms of a random
variable η ∼ Exp(1), that is, ∀a ∈ [0,∞) P

(
η ≥ a

)
= e−a, and a decreasing

function h : (0,∞)→ (0,∞) such that ξ ∼ h(η). It appears that

the function lnh(·) is convex on (0,∞) ,

which is called the B-inequality.4

It is conjectured that for all seminorms ξ1, ξ2,

P
(
ξ1 ≤ 1 and ξ2 ≤ 1

)
≥ P

(
ξ1 ≤ 1

)
P
(
ξ2 ≤ 1

)
.

This “correlation conjecture” is a 40-years old open problem!5

1V. Sudakov, B. Tsirelson 1974, and independently C. Borell 1975.
2A. Ehrhard 1983.
3R. Latala, K. Oleszkiewicz 1999.
4D. Cordero-Erausquin, M. Fradelizi, B. Maurey 2004.
5See: G. Schechtman, Th. Schlumprecht, J. Zinn (1998), “On the Gaussian measure of

the intersection”, Annals of Probability 26:1, 346–357.
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1b Application: decoding error probability

A code of length n is a finite set C ⊂ Rn; each c ∈ C is a codevector. A
sender submits a given codevector c0 to the additive white Gaussian noise
channel, and it gets corrupted to c0 + σX where X is distributed γn and σ
is the channel noise value. A receiver chooses the codevector c closest to the
received vector c0 + σX (which means maximum-likelihood decoding).

Consider the error probability

Perror(σ) = P
(
c 6= c0

)
and the minimal distance

D = min
c∈C,c6=c0

|c− c0|

(for given C and c0).

1b1 Theorem. There exists an increasing Lip(1) convex function f : R →
(0,∞) such that

∀σ > 0 Perror(σ) = P
(
f(ζ) ≥ D

2σ

)
where ζ ∼ N(0, 1).

Defining the critical noise value σc by Perror(σc) = 0.5 we get1

∀σ ∈ (0, σc) Perror(σ) ≤ P
(
ζ ≥ D

2

( 1

σ
− 1

σc

))
.

1c Useful special cases

Let y1, . . . , yn ∈ Rd, ∀k |yk| ≤ 1.
The function

(1c1) ξ(x) = max
k
〈x, yk〉

is Lip(1) and convex. The function

(1c2) ξ(x) = max
k
|〈x, yk〉|

1This is Theorem 1 of: J.-P. Tillich, G. Zemor (2004) “The Gaussian isoperimetric
inequality and decoding error probabilities for the Gaussian channel”, IEEE Transactions
on Information Theory 50:2, 328–331.
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is Lip(1) and a seminorm.
For p ∈ [1,∞) the function

(1c3) ξ(x) =
( 1

n

∑
k

|〈x, yk〉|p
)1/p

is Lip(1) and a seminorm.
For c ∈ R, c 6= 0, the function

(1c4) ξ(x) =
1

|c|
ln
∑
k

ec〈x,yk〉

is Lip(1) and convex.
More generally, for a nonempty subset A of the unit ball of Rd and

a probability measure µ on the unit ball of Rd we may generalize (1c1)
to ξ(x) = supy∈A〈x, y〉, (1c2) to ξ(x) = supy∈A |〈x, y〉|, (1c3) to ξ(x) =(∫
|〈x, y〉|p µ(dy)

)
1/p, and (1c4) to ξ(x) = 1

|c| ln
∫

ec〈x,y〉 µ(dy).

For every nonempty A ⊂ Rd the function

(1c5) ξ(x) = inf
y∈A
|x− y|

is Lip(1). If A is convex then the function is also convex.
Infinite dimension will be discussed later.

1d Application: frozen disorder models

Let Xk,l for 0 ≤ k ≤ m and −k ≤ l ≤ k be independent N(0, 1) random
variables. Every path L = (l0, . . . , lm) such that l0 = 0 and lk+1 − lk = ±1
(for k = 0, . . . ,m− 1) leads to a random variable

XL =
m∑
k=0

Xk,lk .

First-time percolation

The random variable

ξm =
1√
m

max
L

XL

is a Lip(1) convex function of (Xk,l)k,l. Gaussian concentration helps to prove
the strict inequality

lim
m→∞

1√
m
E ξm <

√
2 ln 2 ,

and the same for d-dimensional l, with
√

2 ln(2d) in the right-hand side.1

1See Theorem 1.2 in: Y. Hu, Q.-M. Shao (2009), “A note on directed polymers in
Gaussian environments”, Electronic Communications in Probability 14, 518–528.
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Directed polymer

For β > 0 the random variable

Zm,β =
1

2m

∑
L

eβXL

is the so-called partition function of the directed polymer in Gaussian ran-
dom environment; β is the inverse temperature. (The energy of L is, by
definition, −XL; the probability of L, given (Xk,l)k,l, is 1

Zm,β2m
eβXL .) The

limit of 1
m
E lnZm,β as m → ∞ is of interest;2 in dimension 3 it is equal to

β2/2 for β below a critical value, but strictly less than β2/2 for β above the
critical value.

The random variable

ξ =
1

β
√
m

lnZm,β

is a Lip(1) convex function of (Xk,l)k,l.

Spin glass

Let Xk,l for 1 ≤ k < l ≤ m be independent N(0, 1) random variables.
Every (σ1, . . . , σm) = σ ∈ {−1,+1}m leads to a random variable

Xσ =
∑
k<l

σkσlXk,l .

For β > 0 the random variable

Zm,β =
1

2m

∑
σ

eβXσ/
√
m

is the partition function of the so-called Sherrington-Kirkpatrick model for
spin glasses (“SK model”, nonlocal; the energy of σ is, by definition, −Xσ/

√
m;

the probability of σ, given (Xk,l)k,l, is 1
Zm,β2m

eβXσ/
√
m). The limit of 1

m
E lnZm,β

(as m → ∞) is of interest;3 it is equal to β2/4 for β < 1, but strictly less
than β2/4 for β > 1.4

The random variable

ξ =
1

β

√
2

m− 1
lnZm,β

2See Hu and Shao, Sect. 1.1.
3See Talagrand, page 190.
4Rather, lim sup(. . . ) < β2/4.
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is a Lip(1) convex function of (Xk,l)k,l. Gaussian concentration shows that
1
m

lnZm,β is usually close to its expectation. This random function of β “is
convex and has small fluctuations. The quantity of information that can be
extracted from this simple fact is amazing.” (Talagrand, page 191)
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