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8 Unknown distributions, correlated signals

8a The framework

All models considered in sections 1-7 assume that signals are independent and their distri-
butions are common knowledge. It never holds in reality. Often, signals are influenced by
some ‘common’ random variables, which makes them correlated. In other cases, we may
treat signals as independent; however, it does not mean that their distributions are ezactly
known to players.

For the first example, return to the ‘very simple auction’ of Sect. 1, with a small cor-
rection: instead of the uniform distribution U(0, 1) consider U(0, §) where 6 is a parameter.
In reality, # is not a random variable; it is just a number, say, 0.97. Players know that the
number is close to 1. In order to keep the model as simple as possible we describe their
uncertainty by the uniform distribution U(0.9,1) of 6.

Does the true value # = 0.97 influence actions of players? On one hand, the value,
being unknown to players, cannot influence their strategies. On the other hand, it influences
signals, and signals influence actions.

As far as we search for an equilibrium, we do not need to distinguish between two frame-
works:

e Unknown distributions: in the nature, # is non-random; however, players, not knowing
0, treat it as being random.

e Correlated signals: 6 is chosen (by the nature) at random, and its distribution is
common knowledge.

When investigating distributions of actions, still, we may unite the two frameworks.!
That is, we (just like players) treat # as being random; however, sometimes we consider
conditional probabilities (and expectations) given #. That is, if we theoreticians (unlike
players) know 6, we just condition on it (but only after finding an equilibrium).

Formally, our game is described by (recall (1b2))

(51,82; A1, Ay; ©, Po; (P5'1|0)a (PSzw); IT,, H2) )

here 81, S, are signal spaces; A;, Ay are action spaces; @ is the parameter space; Pg is
the distribution of the parameter; (Ps,¢) is a family of distributions of the first signal,
parametrized by 6#; the same for the second; and I, I, are payoff functions. The game is
symmetric in the sense that (recall (1b3))

51 :Sg; ./412./42; P51|3=P52|3 for 311069; H1=H2.

!Though, the joint distribution of correlated signals in general cannot be represented via a random
common parameter 6. In that sense, the ‘correlated signals’ framework is more general than the ‘unknown
distributions’ framework. However, I believe that in reality it is very typical that correlation is caused by
random common parameters.
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Our ‘not-so-simple auction’ is a symmetric game described by (recall (1b4))

81:82:8:R; A1:A2:A:[0,00);
©=R; Po=U(0.9,1);
Ps,j9 = Ps,9 = Psg = U(0,0);
IT; = IT, = IT is the function defined by (3al), (3d1), (3el).
We introduce random variables S, Sy, © such that © is distributed Pg, and conditionally,

given © = #, random variables S}, S, are independent, distributed Pgg (each). More formally,
we have a Markovian random field on a graph,?

E—EO—®

which means that the conditional distribution of S, given S; and © depends on © but not
on Si;

P(SQ SSQ‘SI,@) ZP(SQ §82|®) =F5|@(82),
or equivalently,

B (¢(52)]51.0) =B (¢(52)]©) = [ ¢(s2) dFs(se)

for every bounded measurable function ¢ : & — R. The same for S;, given S, and O.
Specifically,

Fgj9(s) = min (1, g) for s € [0,1];

1 9
/(p(s) dFse(s) = 5/ o(s)ds.
0
Further, the conditional independence means

E(@(S1)¥(S2)|©) =E(¢(S1)|0)E(¢(S:)]0),

which follows from the Markov property:

E(@(S1)6(S:)|©) =E(E(¢(S0u(s:) | $1,0) |6) =
E(p(SOE(¥(S)|51,0) [0) =E(@(SIE(%(5:)[0) [6) =E((S:)|6) E(w(s)|0) .

2The graph is a chain, thus we have just a Markov chain (S;, ©, S»). However, for more than two players

the graph is not a chain, it is a tree:
. & &
©)
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Therefore

B (o(s)0sx©) = [ ([ eharsuts)) ( [ v arsuts)) aroo

and, more generally,

(8al) E (¢(S1,5,,0)) = / (// ©(s1,52,0) dPsjp(s1) dP59(82)> dPg(0) .

Specifically,

B(etsuisn®) =10 [ ([ oas) (5 [ vas) oy o

P (51 <s51,5 <s8,0<0)=10 [ min(l,?
0.9

)min(1, %) df for § € [0.9,1].

<|®

Given strategies p1, j10, we introduce random variables A, A, getting a Markovian random
field on a larger graph

The Markov property means a number of equalities:

]E(SD(A2)‘A1,51,@,52) ZE(SD(A2)‘S2) )
E(@(SQ,A2)‘A1,51,®) =]E(80(S2,A2)|@) )
E(g&(@,SQ,AQ) ‘Al,Sl) :]E((,O(G,SQ,AQ)|51) y

etc. It follows that
E (01(A1)91(S1)x(©)1ha(Sa) p2(A2)) =

/(/]E(%(A1)|Sl = 31)¢1(81)dP5|9(51)) _
: (/E((P2(A2) | Sy = s2) a(s2) dP50(32)>X(9) dPo(6) :

here E ( v1(41) ‘ S = 81) is determined by pu; (recall 1c); the same for ps. You may also
write out a counterpart of (8al).
Similarly to (1d1) we define

II(p1; po) = ETI(Ay, S5 Az, So) -

Now, a best response and an equilibrium are defined in the same way as in le.
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8b Optimal actions and best response

We want to find the best response p; to a given strategy ps. Similarly to 2a we find an
upper bound for II(u, ug) for every uq;

H(,ul,,ug) = ]EH(Al,Sl, AQ,SQ) = EH(Al, Sl,AQ) =E (]E ( H(Al, Sl,AQ) | Al, Sl ) ) 3

]E(H(A1,S1;A2)|A1 =a1,S5; 281) ZE(H(G1,81;A2) ‘Al =a1,51=81) =
E (T(a1, s1542) [ S1=51) = /H(a1,81;a2) dPay|s,=s, (a2) = TL(a1, s1; Pay|s,=s, ) ;

introducing

Hmax(sl; ,LLZ) — JImax (31; PA2\51:S1) = SuI-,)4 H(ab 515 PA2|S1:S1)
ai €

we get E ( H(Al, 51; AQ) ‘ A1 =a, Sl = 81) S Hmax(sl; ,LLQ) and

H(/h; ,U2) < ]EHmaX(Sl; M2) = /Hmax(sn ,U2) dP51(81) = HmaX(Psl,M) .

In contrast to 2a, the signal s; plays two roles, according to its two occurrences in such
expressions as

H(ala S15 PA2|51281) ; Hmax(sl; PA2|51281) .

In order to make it more clear (or more vague?) we may separate the two roles by splitting
the signal in two, s and s%*; the ‘internal’ signal s informs the first player about his
valuation; the ‘external’ signal s$**, being correlated with so, informs the first player (to

some extent) about s,. That is, we consider
int, .
H(axl, 81 ’PA2|51:S?Xt) ,

only the case si** = st = s, is relevant; however, sometimes it is instructive, to split the
effect of s; into effects of s and s,

If st is kept constant while s runs, then we have the situation studied in Sect. 2:
a best response to a given distribution Py, s,—sx. We know that it is an increasing pure

strategy except (maybe) for never-winning actions (recall 2¢6). Let a5 be the least point of

the support of Py, g, —sext (it can be proven that aX*™ does not depend on s¢); for s; > af®

we have the optimal action a; = ¢(s'", s$), an increasing function of si* for a constant

st

What happens when s$** varies?
Return to our example, the ‘not-so-simple auction’. The joint distribution Pg, s, is the

mixture of U(0,0) ® U(0,80) for  ~ U(0.9,1).

82 82
1l —————— — — — | le — — — — — — — — — |
09—~~~ ik 09—~~~ —~—— B
1 b |
11 I
1 b |
11 I} |
1 b |
11 I |
11 I |
il s1 4 b s1
0.901 091
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The one-dimensional density fg, = fs, = fs is

b1 1
fo(s) =10 / Fl00(s)d0 =10 / F (00 (0) d =
0.9 0.9
! do
= 10/ — = —10Inmax(s,0.9) = 10min(In(1/s),1n(10/9)) .
max(s,0.9)

The two-dimensional density fg, g, is

1
1 1
fSI,S2 (81; 82) = 10/ 51(0,9)(81)51(0,0) (32) de —
0.9
1
do 10

10 — = —10 f sy € (0,1).
/nlax(sl,s2,0.9) 0> max(s1, s2,0.9) or 51,55 € (0,1)

The conditional density fg,s, is

f (8 ) — fS1,S2(51,S2) _ (1/max(51,52,0.9)) —1 .
S2|S1=51\°2 fS1(81) mln(ln(l/sl)’]n(lo/g)) )

when s; € (0,0.9), the conditional density does not depend on sy,

(1/ max(sy, 0.9)) — 1
In(10/9)

f52\51251 (52) = for S1 € (0,09) y

which is, of course, a special property of our example.

fS2\S1ZS1a 81 € (0: 09) f52\5'1281a s1 € (095 ]-) f52\51:517 51 — 1-

1,

s1
In(1/s71)

1
91n(10/9) 1

S2 S2 52
091 S1 1

The case s € (0,0.9) is easy; all these values may be replaced with one of them, say, 0.9,
thus (si™, s9%) = (s, 0.9) and (s, s1) = ©(s1,0.9), an increasing function on (0, 0.9).
The case s$** € (0.9,1) is not easy. The conditional distribution Ps,s,—s, may be repre-

sented as a mixture of Pg,|s,-09 and another distribution, concentrated on (0.9,1).

A

51 0.9 091

Accordingly, Pa,|s,=s, is a mixture of Py,s,—0.9 and another distribution, actions of signals
on (0.9,1). How does it influence the best response? It depends on the strategy po.
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Assume for a while that us is just Ay = %Sg. Of course, it need not be true; however, we
may hope that it is nearly true, since our ‘not-so-simple auction’ is close to the ‘very simple
auction’ of Sect. 1. We have IP’(A2 <a | S, = 51) = IF’(SQ < 2a ‘ S, = 81) ; for a € [0, 0.45]
it is simple:3

Fa,5,=s,(a) = const(s1) - a;
int int
— F — g€eX - t * - )
max (s = ) P s, cupa() = const(sy) - max_ a5}~ a):
the optimum is reached at a; = £s¥, if s € [0,0.9]; note that s does not matter here.
Till now, the solution is the same as in Sect. 1. What happens for larger a; ? Here, st

matters.

ext __
sP*t=1

5t=0.9

|
|
|
|
|
|
|
I

- ————————

5 0.5 0.9 1

o

If s =1 then the formula s holds till si* = 1, and so, the optimal action for s =1 is

0.5. However, if s = 0.9 then the optimal action for s = 1 is 0.456... You see, in that

case, more aggressive bidding of the competitor makes the best response more aggressive.
Generally, for any two distribution functions W; and W, such that functions a — 1/Wi(a)

and a — 1/Ws(a) are strictly convex, the following two conditions are equivalent.
o v1(s) < a(s) for all s; here ¢;(s) is the action optimal for s against Wy, and ¢y —
against Wj.
e The function a — Ws(a)/Wi(a) increases.
Here is a sufficient (but not necessary) condition.
e The function a — Wj(a)/W/{(a) increases.

8bl. Exercise. Assuming A; = %SQ show that
(a) The optimal action ¢(si", s) increases in s$** for a fixed s'™;
(b) ¢(s1, s1) increases in s;.
Hint: (a) consider the quotient of densities; (b) ¢(sP™,

separately.

ext )

s7*') increases in each argument

8b2. Exercise. Generalize 8bl for an arbitrary increasing pure strategy ps.
Hint. Increase of Wy/W; is invariant under increasing transformations of the argument.

8b3. Exercise. Generalize 8b2 for an arbitrary joint distribution of signals 57, S; having a
two-dimensional density fs, s, = f such that*

flz,u) flz,v)
fly,u) f(y,v)
SHere const(s1) = 2(5- —1)/(In(1/s1)), but we do not need it.
“Recall that |2 5| = ad — be.

>0 whenever x <y, u <wv.
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 Tsaisi=y(u) _ fsalsi=y(v)
fss151=2 (1) = foy151=2(v)
Random variables S, Sy satisfying the assumption of 8b3 are called affiliated. The in-
equality is equivalent to

Hint

2

0xdy

In f(z,y) >0 forall z,y

provided that f is smooth.

For independent signals we know that the best response is monotone (by 2c¢6). For
correlated signals the situation is much less clear, even if signals are affiliated. If o is
monotone (and 1/W; is convex) then p; is monotone. So what? Maybe, both are non-
monotone? If uy maps signals on (0.9, 1) to actions somewhere in the middle of (0,0.5) then
the ratio of distribution functions for (say) s = 0.9 and s$** = 1 is non-monotone.

a

5$5t=0.9

8

The increase of s$* makes some signals more aggressive, but some other signals — less

aggressive. Can it lead to a non-monotone equilibrium? I do not know.5 On the other hand,
results of 8b1-8b3 inspire a hope that a monotone equilibrium exists (due to affiliation).

8c Monotone equilibria (informal)

We consider a continuous, strictly increasing function ¢ such that ¢(s) < s for all s, and the
corresponding strategy A = (S); we want to find a condition for the strategy to support a
symmetric equilibrium (of our ‘not-so-simple auction’ game).

For almost every s € (0,1), the action ¢(s) must be optimal for s against Py, s,—s =

Py(s,)/51=s- The optimality means®

(8c1) (5 = a) Fyisnyisi=s (@) < (s = ¢(5)) Forsaysi=s ((s))  for all a.
It is necessary that the inequality holds for a = ¢(t):

(3:2) (5 — (1)) Fiys1s(t) < (5 — 9(5)) Fisisls) for all ¢,

since FAQ\Slzs(SD(t)) = P(QD(SQ) S QD(t) | Sl = 8) =P (SQ S t‘ Sl = S) = FSQ\Slzs(t)- We
assume that ¢(t) < s (otherwise the inequality holds for a trivial reason). We may write the
inequality in the form

D) _ s —gls)
Fy(s) = s—o(t)’

5Convexity of 1/Wy} is also a problem (especially for n players).

6Note that we consider a private value auction; for a more general case see Se.
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where Fy(t) = Fs,s,=5(t). That is,”
(8¢3) InFi(t) — In Fy(s) < In(s — ¢(s)) — In(s — (t)).

Assuming that functions F(-) and ¢(-) are smooth (namely, have continuous first derivatives)
we try ¢ = s—, t = s+ and conclude that the equality

d d
— InF,(t) = —— | — ot
o mR©=-3 w(-w0)
is necessary. That is,®
FI !

F(s) s—o(s)

it must hold for almost all s € (0, 1), therefore (by continuity), for all s € [0,1]. For a given
distribution of signals, it is a differential equation for ¢; it determines ¢ uniquely up to a
constant. On the other hand, for a given ¢, does it determine the corresponding distribution
of signals? Surely, not; F!(s)/F;(s) tells us nothing about F(t) outside (a neighborhood of)
the diagonal ¢t = s.

It is instructive to think, what happens for independent signals. Here, Fy(t) = F(t), and
F'(s) _ _¢'(s)
» F(s) T s—op(s)
differential equation. Now, returning to correlated signals and their F(¢), we may construct

another distribution function F(-) such that

(8¢h) (s) = () for all s,

(s) s

SO . And, of course, we know the solution (recall 3d3); no need to solve the

!
ST

«»

3
ST

namely,

(8c6) F(s) = exp ( / ?8 ds>.

We may consider the first price auction with independent signals distributed F (call it
‘associated’ with the original auction), and its equilibrium strategy A = ¢(S). Hopefully,
the same ¢ gives us an equilibrium strategy for correlated signals, too!

Specifically, we have the conditional density (recall 8b)

v (1/max(s,t,09)) =1
fs(t) = Fs(t) - min(ln(l/s)’]n(lo/g)) )

~ 1.055 for s € [0,0.9],

fs(s) = 91n(10/9)

1

fi(s) = 15(1_/3) for s € [0.9,1].

"Do not confuse the symbol Fj(-) introduced here (temporarily, for convenience) with the symbol Fs(-)
(always stands for the cumulative distribution function of S).
8Note that F!(s) is not the same as d%Fs(s), and F}(s)/Fs(s) is not the same as (In Fy(s))'.
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We could calculate the corresponding conditional distribution function Fi(-) by integration,
and then F!(s)/Fs(s) = fs(s)/Fs(s). However, the answer is evident! Just recall that f(-)
is constant on (0, s|; we have

fs(t) = const  for t € (0, s);

Fy(s) = /Os fs(t) dt = const - s;

Fl(s)  fs(s) const 1
2 = = =—- f 0,1).
Fi(s) Fs(s) const-s s or s € (0,1)

We construct the function F(-):

~ 1
F(s)zexp(/;ds) = const - §;

in order to get a distribution function we choose const = 1, and so, F describes the uniform
distribution U(0, 1). The corresponding equilibrium is known to us long ago:

1 1
gp(s)—Qs, A—QS.
We did not prove yet that it really is an equilibrium for our ‘not-so-simple auction’ with
correlated signals, but hopefully it is.

Why signal dependence does not change the strategy function ¢? Due to a special
property of our case; given S; = s;, the conditional distribution of S5 is uniform within
(0,51) (but not uniform in the whole). The first player, knowing his signal s;, optimizes
his action against S, assuming that S, < s; (since otherwise he does not win, as far as the
equilibrium is monotone and symmetric).® In that sense, the optimization is one-sided.

In order to make the story more dramatical, consider another case: let the joint distri-
bution Ps, g, be the mixture of U(#,1) ® U(#,1) for # ~ U(0,0.1).

89 82
1 1

0.1gf'o — — — — — _ _ | 0.1¢ ' _ _ |
0 81 S1

9The argument is not quite convincing, since the first player should check all alternative actions, including
a > ¢(s1), and here he should not restrict himself to Sz < s;. For now we only check actions infinitesimally
close to ¢(s1); that is, we perform only local optimization. Global optimization will be treated later.
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We have
1 1
fs(s) = 10min(In 1—,1n 50) :

-
10
1 — min(sy, $2,0.1)

1 1
70 = Fsgsi) = s (e )
[s(s) = 11 ( ! —1) for s € (0,0.1),

fSl,Sz(slaSQ) - - 107

In — 1—s
1
()= —— f 0.1,1).
J(8) = Stagioggy fors € (OLL)
For s € (0,0.1) we get
s 1 S
() dt = 1 )at=1- .
/ Silt ln — /0 <1 —t ) In i
1 1
Fs(s) ’/,/
0.1 1 ’
We may also expand the function into powers:'?
Fi(s)= 25+~ 10()  fors— 0
s(5) = 55+ 58 or s :
think, why Fj(s) ~ £s for small s; hint:
1 fs(t)

For s € [0.1,1) we get

9= [ pew= wﬂf%%TQW%}@:

In(10/9) — 0.1 + %(s - o.1)> 141

1
~ In(10/9) < 91n(10/9)

¥Indeed, —In(1 — 5) = s+ 35” + 35° + O(s*); —LIn(1 —s) = 1+ 15+ 3s* + O(s%); iy =

m=1_(%s+%82+0(83)) ( S+O( )) _1_%3_582‘}'%32‘}'0(33).
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We have to integrate the function

F!(s) ? . for s € (0,0.1),
for s € (0.1, 1).

1
91n(10/9)+s—1

Good luck: the integration can be performed explicitly. On the interval (0.1,1) we have
Fy(s) ds
S d = — 1 1 1 _ 1 )
/Fs(s) s /3+91n(10/9)—1d8 n(s+91In(10/9) ) 4 const ;

F(s) = const - (s +91n(10/9) — 1); we choose the constant, such that F'(1) = 1:

~ + s+9In(10/9) -1 1-s
P = —gma0/9 =1 9m(10/9)

for s € [0.1,1).

On the interval [0,0.1] we have

Rs) [ s (1L — ) 1
/FS(S)ds_/@ds_/ﬁds_ln(lnl—s_8)+C0nSt’

F(s) = const - (In = — ). We choose the constant by continuity at 0.1; namely, F(0.1) =

1n(10/9) 0.1
In(10/9) thus

F(s) = 111(110/9)(ln1 ! . —s) for s € [0,0.1].

Note also that F(s) = m (35 + 35 + O(s*)) for s — 0. And here is the density:

F'(s) = mmin (1%3 %) .

So, we consider the associated auction, whose signals are distributed F.
2

1 1

1
|
|
|
|
|
|
s ’
0.1 1 0.1 1

»

It appears to be close to the (unconditional, marginal) signal distribution of the original
auction (too close for seeing the difference on a graph), but different. The equilibrium
strategy of the associated auction is A = (S) where (recall 3d3)

o(s) = == [ 5 ().
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For s € (0,0.1) we have

1 ot y 1 1 1
1 _ — = —— 1= =1 e _g2.
(nl . S)gp(s) /0 t1 tdt /0 (1 ; t) dt = n1 5 s 25 ;

Note that (s) = fzz%ggg =25+ O(s?) for s —» 0. For s € (0.1,1) we have
2

(m% - 1;S)g0(s) = (m%) /Oo'ltdﬁ(t)Jr (m%) /Oztdﬁ(t) -

10 0.01 | 10 1
=ln—-01-— t-=dt =In— —0.105+ — (s — 0.1%);
"9 2 +/0_1 9 "9 T );

155"+ (In g —0.105 — 5¢) 152 —0.0035

o(s) = L4l 1 " 25—-0.0518

0.5 @%0&/5\/
- ;;S I(L

0.1 1

8d Monotone equilibria (formal)

We return to (8c1)—(8c6); an independent-signals auction is associated with the given (orig-
inal) correlated-signals auction. Let ¢®°¢ be the equilibrium strategy function'! of the
associated auction, ¢?5°¢(s) = ﬁ fy tdF(t). We address questions:

o Is ©?°¢ an equilibrium strategy function of the original auction?

e Have the original auction other monotone symmetric equilibria?

We assume that the two-dimensional distribution of signals has a density fs, s,, concen-
trated on the square (0,5™%) x (0, s™), strictly positive and continuous on the square.'?

"The equilibrium strategy is the joint distribution of random variables S, p®5°¢(S).
12Not the most general case, of course.
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Thus, we have

fs(t) — Fsl(t) _ f51,52(85t) _ smafohSz(S’t)

fs:(s) fO fs1,8,(s,u) du ;
be(t) f51,52 (Sa t)

Fs(t) B fotfsl,SQ(Sau) du

F(s) = exp (— / 8 ?EZ; du) for s € (0, s™) .

: (a continuous function on the square)

Let ¢ : (0, s™*) — R be a strictly increasing continuous function. It describes a symmetric
equilibrium if and only if (8cl) holds for almost all s € (0, s™*), therefore (by continuity),
for all s € (0,s™*). That cannot happen unless

(8d1) p(s) < s forall s € (0,s™).

Thus, ¢ maps (0,s™*) onto (0,a™*) for some a™* € (0,s™*). If (8c1) holds for all
a € (0,s™*) then it holds for all a € [0,00) (think, why). So, the combination of (8¢2) and
(8d1) is necessary and sufficient (for equilibrium).

Turning from (8¢2) to (8c3) we must take care of the restriction ¢(t) < s. We introduce

X(s,t) =InFy(s) — In Fi(t),

(8d2) In(s —¢(s)) —In(s — o(t)) if o(t) <s,
Y(s,t) = .
400 otherwise,
then (8c3) becomes
(8d3) X(s,t)+Y(s,t) >0 foralls,te(0,s").

In combination with (8d1) it is necessary and sufficient (for equilibrium).
Condition (8c4) is an infinitesimal form of (8c3), for s,¢ infinitesimally close. Does it
imply (8¢3)?

8d4. Lemma. Y (r,s) + Y (s,t) < Y(r,t) whenever r < s <torr>s>t.

Proof. Case Y (r,s) + Y(s,t) = +00. That cannot happen for r > s > ¢, thus we have r <
s <t,and r < @(s) or s < ¢(t) (or both). In every case r < (t), therefore Y (r,t) = +oc.
Case Y (r,s) + Y (s,t) < co. We rewrite the inequality:

r—o(r) s—ep(s) _r—o¢(r)
r—o(s) s—o(t) ~ r—opt)’
(r—o(t)(s —w(s) < (r—o(s))(s — @(t);
—rp(s) — sp(t) < —rp(t) — sp(s);
0< (s—7)(p(t) —©(s);

now it follows from monotonicity of . O

IN
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8d5. Lemma. The following two conditions are equivalent.

(8d6) X(r,s)+ X(s,t) < X(r,t) whenever r <s<torr>s>t;
Er(s) Er(?) n Ey(r) Ei(s) whenever r < s
(8d7) Fi(s) F ()‘>0 and F(r) Fis) >0 wh <s<t.

They are weaker than the condition

Fsl (tl) Fsl (tQ)

(8d8) Fy(t) Fy(ts)

>0 whenever s; < 85 and t; < 5.

Proof. Immediate. ]

In fact, (8d8) is weaker than affiliation (recall 8b3); in the smooth case, (8d8) is equivalent
to

2

0s0t

(8d9) InF,(t) > 0.

The relation between local and global is now simple. Assume that there exist € and M
such that

(8d10) X(s,t) +Y(s,t) > —M(s —t)*> whenever |s —t| <¢.
Then (8d6) implies (8d3). Indeed, using 8d4, for m large enough we have

m

X(s,t)+Y(s,1) Z( X(s+5L(t—s),s+E(t—s)+Y(s+E2({t—5),s+E(t—5)) >
k=1
s — ]2 X
z—mM( m ) m—)oolo'

8d11. Exercise. Assume that we have two auctions, described by F{" (t) and F& (t) re-
spectively, such that

(8d12) IXW(s,t) — XP(s,8)| < M(s —t)> whenever |s —t| <&

for some £ and M; here X, X2 are defined as in (8d2). Assume also that (8d6) holds
for both auctions. Then (8d3) is either satisfied for both auctions, or violated for both
auctions.'®

Prove it.

Hint: divide [s, t] into m small intervals, as before.

We want to apply 8d11 to the given (original) auction and its associated auction. The
latter satisfies (8d6) (think, why); the former is assumed to satlsfy (8d6). And (8d12) follows

from (8¢5) provided that second derivatives §t2 In F(t) and gtz In F(t) exist and are bounded.

13The same function ¢ is used for both auctions.
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The latter smoothness condition is not really needed. Instead of (8d12), it is enough to
satisfy

(8d13)
Z‘X Elt—s) s+ E(t—5)) — XO(s+ 5Lt —s),s+ £(t — 5))| — 0,

m— 00

where X()(s,t) = In F,(s) — In Fy(t) and X® (s,¢) = In F(s) — In F(t). We have

)l s F! s [ F! F
[BW g [0 | (B0 R,
v Fi(u) ¢ F(u) ¢ \Fs(u)  Fu(u)
Applying it to each one of the m small intervals in (8d13), we get the difference of two
integrals.

(XN (s,t) = XD (s,1) =

s s
S t

(the case m = 3,s < t is shown). When m — oo, the difference tends to 0 by the bounded
convergence theorem, since the function (s, u) — ﬁzgzg is continuous on (0, s™*) x (0, s™¥).

So, (8d13) is satisfied, and we get the following result.

8d14. Theorem. Let the two-dimensional distribution of signals satisfy (8d8).!* Then the
first price auction'® has one and only one symmetric equilibrium of the form A = (S) where
¢ :(0,8™) — R is a strictly increasing continuous function. Namely,

o(s) = Fzs) / (1) d,

— ex o f51,S2 t) )
Flo) =exp ( / fo fs1,5.(t, .

8e Notes on more general auctions

where

Correlated signals are often used in combination with non-private values, which means

0 ifa; < a2,
0 if a; = a9 = 0,
%V(Sl, 82) if ap = ag > 0,
V(Sl,SQ) if a; > as

(861) G(al,Sl;ag,SQ) =

14 Affiliation is sufficient for that. The distribution is assumed to be concentrated on (0, s™2%) x (0, s™a%)
and have a continuous, strictly positive density on the square.
15Symmetric, two players, private value.
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instead of (3el); here V is a given function, increasing in both arguments.'® The approach
of 3b—3d is applicable to a private value auction with unknown distributions; the parameter
f, unknown to a player, is treated as influencing signals of his competitors, but not his own
valuation. Otherwise we must use a valuation V (s, so) depending on both signals.

The theory of independent signals can be generalized for non-private values. Still, the
best response p; to a strategy s is a monotone (increasing) strategy. No matter whether uy
is monotone or not; anyway, p is in fact the best response to P4, rather than py. Therefore,
every equilibrium is monotone. A symmetric equilibrium is known to be unique, and given

by A = ¢(S) where
(8e2) o(s)=E(V(S,9)[5<s) .

(Note that the case V(s,t) = s returns us to 3d3.)
The result of 8b can be generalized for non-private values. Still, the best response to an
increasing strategy is an increasing strategy, provided that signals are affiliated.
What about generalizing the theory of correlated signals (8¢, 8d) for non-private values?
Instead of (s — a)Fy(s,)s,=s(a) (recall (8cl)) we get

(863) ( (V(Sl, SQ) — a) SQ | Sl = 8 )

(8¢2) becomes

(8e4) / (Vi(s,0) — o(t)) dFi(u) < / (Vs u) — ¢(s)) dFy ()

(8¢3) turns into

t
(8e5) | VR < eR® - o(s)R ().
the infinitesimal form being

(8e6) V(s,5)F{(s) = o(s)Fi(s) — ¢'(s)Fu(s)

instead of (8c4). Once again, the quotient F!(s)/Fs(s) is the only relevant aspect of the
two-dimensional distribution of signals. Therefore we may replace our auction with the
associated auction, with independent signals distributed F', just the same F as in Theorem
8d14. The associated auction has its equilibrium strategy function ¢ given by (8e2). For the
original auction, ¢ satisfies the infinitesimal (first-order) condition of equilibrium (8e6), and
is the only such function.

However, the relation between local and global via superadditivity (Lemmas 8d4, 8d5)
does not want to work here (as far as I understand). In fact, the function ¢ given by (8e2)
describes an equilibrium; however, the classical proof (Milgrom and Weber 1982) follows
a different pattern: the explicit formula (8e2) is used in the proof (in combination with
affiliation).

16For example: V (s1,s2) = 251+ $s2. Another example, V (s1,s2) = 151 + 155, describes a common value
auction. And V (s, s2) = s; returns us to private values.
)
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Another generalization, for n players, is also well-known. Basically, one only needs to
replace the signal Sy of the competitor with the signal X = max(S,, ..., Sy) of the strongest
competitor. Affiliation of Sy, ..., .S, implies affiliation of S7, X. The formula for F' becomes

gmax fsl,
F( —exp( / fofsl )




