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7 Many players, entry cost, and non-robustness

7a Small but important

The notion of equilibrium was used in physics several centuries earlier than in economics.
There, an equilibrium can be stable or unstable.

\_Q_//O\

stable equilibrium unstable equilibrium not an equilibrium

Unstable equilibria have no game-theoretic counterparts; in game theory, an equilibrium is
always stable.! However, it does not guarantee that it is robust.

~o0o0 Y~ _—9

robust equilibrium robust equilibrium  non-robust equilibrium

An equilibrium is robust, if a small modification of the given system (mechanical system, a
game, etc.) causes only a small modification of the equilibrium.?> Consider for example a
first price auction with a small entry cost ¢ > 0. I mean the symmetric auction introduced
in 3g (with no reserve price) but generalized to n players, as described in 5d (page 61). Let
signals be uniform on (0, 1),

S ~ U(0,1),

then the equation (so — 7)Fx(sg) = ¢ (where X = max(Ss,...,S,)) for the participation
threshold sg becomes s - sg_l = ¢, thus

S = %
The equilibrium strategy is A = ¢(S) where
o(s) =E(h(X)|X <s5) =E(X|so<X<s)P(s5<X<s|X<s) =

_ ! sxdxnlzn_lsn_SBL:(l_l)s 1_(8_0)n
ELE n sv! n s

for s > {/c, otherwise p(s) = 0. That is,

o(s) = max (o, ”;18(1 - Sin)) |

The limit for ¢ — 0is A = "T’IS, just the equilibrium for the auction with no entry cost.
Thus, if the entry cost is small, we may neglect it; do you agree?

'Well, sometimes it is indifferent, but never unstable.
2That is an intuitive idea, not a definition.



Tel Aviv University, 2001 Probabilistic aspects of economic games 86

Say, for ¢ = 107® = 0.00001 and n = 10 we have 5o = (107°)/1 = 1/3/10 ~ 0.31 and
o(s) = 0.95(1 — (231)19) for s > s,.

0.9 0.9
/ ¥
f S S

¢=0.00001, n=10 ¢=0, n=10

= ]

Oops! Such a noticeable effect of such a small cause! Now, what happens for n = 1000 and
c=0.017
0.9 0.9

¢=0.01, n=1000 ¢=0, n=1000

A dramatic effect of only 1% entry cost!

7b Many players but few participants

The equilibrium strategy A = ¢(S) depends on n and ¢; A = ¢, (S). What happens when
n—oo?

n—1

c=0: Pno(s) = - Sms—%w()

c>0: Onc(8) ——= 0= Yoo c($),
n—oo

since {/c — 1; you see, pn(s) = 0 when s” < ¢, which holds for n large enough, namely,
n—oQ

for

Ine
n>_—
Ins

(or we may write In(1/¢)/1In(1/s).) So,

(s) s ife=0,
o0,c\S) = .
Poo, 0 ifec>0;

the discontinuity at ¢ = 0 is a manifestation of the non-robustness.

A meaningful description of ¢, . for large n is given by an asymptotic formula with
rescaled argument:

1
(pn,c(l - ﬁx) = max(0,1 — ce”);
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indeed,?

<Pn,c(1 — %x) = max <0, (1 — %) (1 _ %) (1 - _c%)n>> —

— max (0, 1-— e%> = max(O, 1— ce“) .

n—0o0

We may write it in the form

1. . i
(pn,c(l + ﬁs> — max((], 1—ce ) for § € (—00,0),
treating S = n(S — 1) as a rescaled signal.* I prefer the negative n(S — 1) to the positive
n(1 — S) for preserving the orientation: the higher S, the better (for the player).

a
1—c

i

Inc

Some numeric examples give an idea of the error of the approximation:

a a
o ¢1 n=oo 1
n=100
n=30 f
—3.5 § _=5 §
c=0.1 ¢c=0.001

A player participates with the probability
P(A>0)=P(S>c)=1- 1,
thus, the number of participants is distributed binomially, and the limiting distribution is

Poissonian,

1
#{k : Ay, > 0} ~ Binom(n,1 — {/¢) — Poisson(Iln -),

n—»00 c
since n(1 — {/c) = —Inc.5 In other words,

P(#{k:Ak>0}=m) >c(ln1/c)m form=0,1,...

n—o0 m!

SRecall that (1+ £)™ — ¥ when n — oo, for every z € R.

4Note that the expected number of stronger competitors is (n — 1)(1 — S) ~ —S, which sheds a light on
the meaning of S.

SIndeed, {/c =c'/" =exp(:lnc) =1+ Llnc+o(L), thus n(l — {/c) = —Inc+o(1).
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Some numeric examples:

P
n=100, ¢=0.001
0.1J l E |:| |:| E l
m m
012345678 91011 012345678 9101112131415
The maximal signal max(Sy,...,S,) is close to 1 for large n; however, the maximal
rescaled signal n(max(Si,...,S,) — 1) = max(Si,...,S,) has a non-degenerate limiting

distribution:
P (max($y,...,5) <5) = (P(n(S-1)<3)) =

_ (IP(S§1+§))”= (1+§)nmexp§

for 5 € (—o0, 0]; that is, the distribution of — max(Sy, ..., S,) is approximately exponential,
Exp(1), for large n.
The winning bid (that is, maximal action) is a function of the maximal signal;

1 ~ -
max (A, ..., A,) = one(1+ - max (S, ..., S,;)) ~ max(0,1 — cexp(— max(Si,...,S,))),

thus®

]P’(max(Al,...,An)ga) —>IF’(1—ceZ§a),

n—oo

where Z ~ Exp(1); and finally, ,

IF’(maX(Al,...,An)ga)mmin(l,ﬁ) for a € [0,1]. Ci )

1-c
7b1l. Exercise. Show that the winning probability function W (a) (recall (5c15)) also con-

verges to min(l, l%a) for n — oc.

What happens on the plane (expected loss, winning probability) introduced in 2b? For
0 < a < 1—c we have the winning probability W (a) ~ %, and the expected loss c+aWW (a) ~

c — c . 3
¢+ a7t = 15 you see, these are approxgnately equal.

i,

c 1
For every finite n the curve is strictly concave, however, its limit for n — oo is linear. The
winner, having a signal close to 1, is nearly indifferent; every action gives him nearly 0. A
typical player, having a signal not close to 1, does not want to participate.

-'e

Uniform (in § € [0,1]) convergence of ¢n, (1 + £35) to max(0,1 — ce™#) is used.
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7b2. Exercise. Generalize the theory for an arbitrary distribution of signals, nonatomic,
with a compact support; show that (for large n)

1 max
Fs(So)zl—ﬁlnsT;

¢(s) ~ max (0, s — cexp(n(l — FS(S)))> ;

W (a) ~ min (1, L) ;

Smax —a

c+aW(a) = s™W(a) fora< s™™ —c¢

where s™® = sup{s : Fs(s) < 1}. Also, the number of participants is distributed approxi-
mately

Poisson (ln S—) .
c

Hint: gp(s):E(X‘songs)P(songs‘ng).

J/

~
~ygmax

So, for a positive entry cost ¢ we have a satisfactory theory of an ‘unlimited’ auction with
infinitely many players (but finitely many participants), simpler than the exact theory for a
finite n, and giving a good approximation for large n. The ‘unlimited’ auction diverges for
¢ — 0, but very slowly. In reality, I believe, ¢ is never less than, say, 10~°s™2* therefore the
mean number of participants” never exceeds In10% a2 11.5 or so.

7c A more general approach

The non-robustness pointed out in 7a is of quite general nature, as we’ll see soon. Consider
a symmetric game of n players, described by (recall 5a)

(S’ ‘A) P’ H7 n) ;

here the signal space S is arbitrary (possibly multidimensional); the action space A is one-
dimensional,

(7cl) A C[0,00), 0e A;
the signal distribution P is arbitrary; the payoff function IT is arbitrary but satisfying
(7c2) I1(0, s1; a9, 825 .- - Gn, 8p) =0 for all s1,...,8,,a9,...,0,;

it means that a player may quit, if he wants. (As before, signals are independent.)
Assume that

(7c3) II(ai, s1;. -5 Gn, Sn) = G(ay, 815 ..; n, $n) — L(ay, 815 ... G, Sn)

"In a single unit auction, of course.
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(this time, both the gain and the loss may depend on all signals),

(7c4) G(ay, s15...50p,8,) < G™* for all ay, $1,...,0a,, Sy
for some G™* < oo (‘maximal gain’), and

(7cb) L(ay, 81;---;0n, Sy) > Lmin(ar,s1) for all ap,s1,...,a,, S,

for some function Ly, : A x S — R (‘inescapable loss’).®

The last assumption generalizes the idea of a single unit auction (with the standard
allocation rule):

(7c6) G(ay,81;---;0,,8,) =0 whenever a; < max(ay,...,a,).

7c7. Theorem. Assuming (7c1)—(7c6) and a symmetric equilibrium, we have
Lmin(A1,51) < G™>Fi~1(A;)

almost surely.

Proof.

IT, (A4, S1) = supIILi(a,S1) > I1;(0,51) =0

almost surely (recall 2a18(c)); here, as before, IT; (a1, s1) = I (aq, s1; ;- . . ; i), etc. Hence
G(A1, S1) > L(A1, S1) > Liin(A1, S1) -

G™a  if gy = max(aq,...,a
On the other hand, G(a1, 51; - - - Gn, Sn) < G™™ 14, —max(ar,an) = ! . (at, .-, an),
0 otherwise

always, therefore

G’(G,l, 81) = ]EG'(CLl , 51, AQ, SQ, cees Ana Sn) S
< G™P (a1 = max(as, As, ..., A,) ) = G™Fy aq).

]
7c8. Corollary. Assuming (7c1)—(7c6) and a symmetric equilibrium, we have
P ( Lmin(41,51) < G™F} 7 (a) ) > Fa(a)
for every a € [0, 00).
8For an auction with entry cost ¢ we may take Luin(a1,81) = {(c) ii Zi z g’ irrespective of s;. For an

all-pay auction we may take Lyn(a1,51) = a;.
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Proof. First, note a general probabilistic fact: for every random variable X and every number
m’

since, on one hand, X < zx = Fx(X) < Fx(z) always, and on the other hand,
X >z = Fx(X)> Fx(x) almost surely.’
In particular,

P (Fa(A1) < Fa(a)) = Fa(a) .
By Theorem 7c7,
Fa(A1) < Fala) = Lmin(41,51) < G™F3 ™ (a)
a.s.; so,
Fa(a) =P (Fa(A) < Fa(a)) <P (Lmin(A41,8) < G™F;7(a) ).
0

7¢9. Exercise. If ¢ > 0 is such that Ly(ai,s1) > ¢ for all a; > 0,'% and A; has no atoms
on (0,00), then A; has an atom at 0, moreover,

C

(Gmax )

P(A4=0)> "y

Prove it.

For large n show that the number of participants is distributed approximately Poisson(\)
with some A < In(G™/c¢). Can we neglect c if it is only 10-5G™3* ?

Hint. F7'(A4;) > ¢/G™> whenever A; > 0 (a.s.)

7¢10. Exercise. If Lyin(a1,51) = a1 for all ay, s1,'* then

>
- Grna.x

for all a € [0, 00).

Prove it.

For large n show that the number of players giving Ay, > a (‘serious bidders’) is distributed
approximately Poisson(\) with some A < In(G™%/a). Could you believe that 30 players (out
of 1000, say) gave bids > 10~ °G™ax ?

9 Assume the contrary and get a contradiction ...
0Which is the case for an auction with entry cost.
"UWhich is the case for an all-pay auction.
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7c1l. Exercise. Consider such a model with an individual entry cost. Each signal is two-
dimensional, Sy = (Vj, Ck), where Cy is the entry cost,
Linin(A1, 51) = C1,
and V} is the valuation (or whatever).!? Assume that
Cr ~ U(0,¢)
for a given ¢ > 0. If A; has no atoms on (0, 00), then A; has an atom at 0, moreover,

C
(Gmax )

P(A;=0)> "¢

Prove it.
Compare it with 7¢9.
Hint: Fy(a) <P (Cy < G™*F} ' (a) ) < 1G™*F} ' (a).

7c12. Exercise. Try to generalize the theory for multiple unit auctions. To this end, replace
(7¢6) with

(7c13)  G(a1,81;---;0n, Sy) =0 whenever a; is less than two (or more) of ay,...,a,
or even
(7c14)  G(ay, S$1;--.;an, Sn) =0 whenever a; is less than n/2 (or more) of ai,...,a,.

In the latter case show that the number of participants is typically %n + const - v/n, where
the constant does not depend on n. What does it depend on?

7d Unbounded gain

Estimations of 7c are based on the upper bound G™#* of any possible gain. Usually, the gain
depends on a random signal (or many random signals). In principle, we may believe that
the random gain is bounded, that is, its distribution has a compact support. In practice,
however, our knowledge about distributions usually comes from empirical observations, that
is, sampling. A sample (not too small) gives us an idea of the main part of the distribution,
but not of its tail.

Look at a typical sample. We may reasonably believe that the distribution is like this,

D — :

12y, and C; need not be independent.
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and its expectation is approximately 2. However, what about boundedness? Any opinion
about an upper bound is much more risky than that about the expectation.!?

You could say: anyway, values higher than (say) 7 are very improbable; let us neglect
them, thus making the support compact. However, the question is, whether the tail may
be neglected, or not. In other words: whether the investigated phenomenon is especially
sensitive to the tail, or not. There are two possibilities.

e The phenomenon is not sensitive. Its theory can be generalized to unbounded distri-

butions.

e The phenomenon is sensitive. Its theory holds for bounded distributions only. Such

a theory cannot be used in practice unless we have a reliable information about the
support.

The distinction is essential. This is why I do not like saying something like

“We add the technical assumption of compact supports (since in reality everything is
bounded, anyway).”

We still assume (7c¢1)—(7c3) and (7¢5)—(7c6), but not (7c4); the gain need not be bounded.
We consider a symmetric equilibrium such that

(7d1) A; has no atoms on (0, 00),
denote
P(A=0)=p€[0,1]

and strive to show that (similarly to 7c9, 7c11) py must be close to 1 if n is large.

The random variable G = G(A1, S1;...; An, Sp) has its quantile function G* : (0, 1)
[0,00). Also the random variable Ly, = Lmin(A1, S1) has its quantile function L. : (0,1)
[0, 00).

7d2. Lemma. Assuming (7c1)—(7c3), (7¢5)—(7c6), a symmetric equilibrium and (7d1), we
have

_)
_)

D1 1
/ Lt (p) dp < / G (p) dp
Po 1

L (o7 -pp)
for all p; € [po, 1].
Proof. We take a; such that F4(a;) = p; and consider events
Eq = {A, =0}, E,={0< A <ai}.
We have IF’(EO) = Po, ]P’(El) = p1 — po, and
(7d3) E (Lminls,) > / : Liwin(p) dp,

Po

13 And about the expectation, it is still risky. It may happen that our distribution consists of 99.99% of a
‘good’ distribution with a finite expectation and 0.01% of a ‘bad’ distribution, with infinite expectation. A
sample has little chance to reveal the ‘bad’ component.
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since'*
P(EUE: )
E (LminlEl) = E (LminlEOUEl) Z / Lfnln(p) dp =
° 1 D1
~ [ L@ o= [ Lo db.
0 o

Introduce one more event
E2 = {A1 = maX(Al, cen ,An) > 0} 3
P(E2) = [igoo) Fi ' (a) dFa(a) = (1 — pp); similarly, P (Ey N Ey ) = (p7 — pf). We have

(7d4) E(G1g,) < /11 G*(p)dp,

1
- (PT-pp)

since!®

1
E(G]-El) = ]E(GlElﬂEg) S/
1

1
G*(p) dp=/ G*(p) dp.
~P(E1NE?>) 1*l(p1 Pg)
On the other hand, G(A1,S1) > Lnin(41, S1), that is,

E(G|A1,Sl) 2 Lmina

which was shown in the beginning of the proof of Theorem 7c7 (without using (7c4)). We
have

E(lElein) < E(lEl (G ‘ Ay, 5 )) = (lElG) 3
it remains to combine it with (7d3) and (7d4). O

For a single unit auction, the gain G of the first player cannot exceed his valuation V.
The latter is a random variable; it need not be bounded, but its expectation EV; should
be finite, and not growing for n — oo. Markov inequality gives P ( Vi > ac) < EVl for any

€ (0,00), therefore G*(p) < F*X. If Vi has also a finite second moment, we get more:

EV? E
P(Vi>z) < x‘;i’ therefore G*(p) < \/1VT1p

etc. Taking all that into account and returning to our general framework, we assume that

1
(7d5) / G*(p)dp < Me® foralle € (0,1);

1—¢
here « € (0,1) and M € (0, 00) are constants (not depending on n). Now, Lemma 7d2 gives

p1 n\ a
(7d6) / L. (p)dp < M( - p0> for all p; € [po, 1].

Po

M Lmin = 0 on Eg; accordingly, L .

min = 0 on (07p0)
153G = 0 outside of Es.
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7d7. Exercise. If ¢ > 0 is such that Ly,(ai,s1) > ¢ for all a; > 0,'6 then

(67

_ cn
pgm 1 Z : 1)
M infoe(r,1/po) 53
Prove it.
Hint: ¢(p1 — po) < M (®-22)?; denote p/po = =.
For large n we have

n_ 1) — 1)« _1)e
inf u: inf Mzn inf L )

bl

z€(L,l/po) T — 1 yeLi/ny) Wy —1 ye(loo) Iny

since ¢/y — 1~ L1lny, and % reaches its infimum at a (finite) point.'” Thus,

pd"~! > const - for large n,

c
nl—eM
where “const” depends on « only. It follows that

-«

1
Po>1——1In (const .

) for large n,
an

Cc

which generalizes 7c9 for unbounded gain.
The number of participants is distributed approximately Poisson(\) with A < é In (const-

”lf#) The entry cost ¢ appears under the logarithm; therefore, even a small ¢ is important
(as before). This time, however, A can grow when n — oo, but very slowly (logarithmically).

7d8. Exercise. Think, which statements of 7a—7b are sensitive (to the tail of the distribu-
tion, recall the beginning of 7d) and which are not.

7d9. Exercise. Try to generalize 7c10.

7d10. Exercise. Try to generalize 7c11.

6Which is the case for an auction with entry cost; recall 7c9.
17"The argument works if 1/p — oo for n — oco; otherwise po is even closer to 1 than it really must be.



