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Hardware security

Invasive attacks

(continued)
Including presentation material by

Sergei Skorobogatov, University of Cambridge



Invasive attacks: microprobing

• Microprobing with fine electrodes
– eavesdropping on signals inside a chip
– injection of test signals and observing the reaction
– can be used for extraction of secret keys and memory contents
– limited use for 0.35µm and smaller chips
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Invasive attacks: microprobing

• Laser cutting systems
– removing polymer layer from a chip surface
– local removing of a passivation layer for microprobing attacks
– cutting metal wires inside a chip
– maximum can access the second metal layer
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Invasive attacks: chip modification

• Focused Ion Beam (FIB) workstation
– chip-level surgery with 10 nm precision
– etching with high aspect ratio
– platinum and SiO2 deposition 
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Invasive attacks: chip modification
• Focused Ion Beam workstation

– creating probing points inside smartcard chips, read the memory
– modern FIBs allow backside access, but requires special chip 

preparation techniques to reduce the thickness of silicon
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Semi-invasive attacks

• Fill the gap between non-invasive and invasive attacks
– less damaging to target device (decapsulation without penetration)
– less expensive and easier to setup and repeat than invasive attacks

• Tools
– IC soldering/desoldering station
– simple chemical lab
– high-resolution optical microscope
– UV light sources, lasers
– oscilloscope, logic analyser, signal generator
– PC with data acquisition board, FPGA board, prototyping boards
– special microscopes (laser scanning, infrared etc.)

• Types of semi-invasive attacks: passive and active
– imaging: optical and laser techniques
– fault injection: UV attack, photon injection, local heating, masking
– side-channel attacks: optical emission analysis, induced leakage
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Semi-invasive attacks: imaging

• Backside infrared imaging
– microscopes with IR optics give better quality of image
– IR-enhanced CCD cameras or special cameras must be used
– resolution is limited to ~0.6μm by the wavelength of used light
– view is not obstructed by multiple metal layers
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Semi-invasive attacks: imaging

• Backside infrared imaging
– Mask ROM extraction without chemical etching

• Main option for 0.35µm and smaller chips
– multiple metal wires do not block the optical path
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Texas Instruments MSP430F112 microcontroller

0.35 μm

Motorola MC68HC705P6A microcontroller

1.2 μm



Semi-invasive attacks: imaging

• Advanced imaging techniques – active photon probing 
(Optical Beam Induced Current (OBIC))
– photons with energy exceeding semiconductor band gap ionize 

IC’s regions, which results in a photocurrent flow producing the 
image

– used for localisation of active areas
– also works from the rear side of a chip (using infrared lasers)
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Semi-invasive attacks: imaging

• Advanced imaging techniques – active photon probing 
(light-induced voltage alteration (LIVA) technique)
– photon-induced photocurrent is dependable on the state of a 

transistor
– reading logic state of CMOS transistors inside a powered-up 

chip
– works from the rear side of a chip (using infrared lasers)

• Requires backside approach for 0.35µm and smaller 
chips
– multiple metal wires do not block the optical path
– resolution is limited to ~0.6μm (still enough for memory cells)
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Semi-invasive attacks: fault injection

• Optical fault injection attacks
– optical fault injection was observed in experiments with microprobing

attacks in early 2001, introduced as a new method in 2002
– lead to new powerful attack techniques and forced chip manufacturers 

to rethink their design and bring better protection
– original setup involved optical microscope with a photoflash and 

Microchip PIC16F84 microcontroller programmed to monitor its SRAM
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Semi-invasive attacks: fault injection

• Localised heating using (continuous-wave) lasers
– test board with PIC16F628 and PC software for analysis
– permanent change of a single memory cell on a 0.9µm chip

• Limited influence on modern chips (<0.5µm) – influence 
on adjacent cells

130 60 120 180 240 300 360 420 480 540 600

0

1

2

3

4

Time, s

M
em

or
y 

bi
ts

 e
ra

se
d

0 60 120 180 240 300 360 420 480 540 600

0

1

2

3

4

Time, s

M
em

or
y 

bi
ts

 e
ra

se
d



Semi-invasive attacks: fault injection

• Memory masking attacks
– temporarily disable write and erase operations in embedded memory 

(Flash/EEPROM) and write into volatile memory (SRAM)
– use cw red lasers for front-side and infrared lasers for backside attacks
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Memory Write  O perations
Chip Flash Cells Flash Lines Flash Array EEPROM Cell EEPROM Lines EEPROM Array
PIC16F628A 1 – 2 1 – 2 Yes 1 – 2 1 – 2 Yes

12 – 45 1 – 2 Yes 8 – 22 1 – 2 Yes
PIC16F628A 
(backside)



Semi-invasive attacks: side-channel

• Optically enhanced position-locked power analysis
– Microchip PIC16F84 microcontroller with test program at 4 MHz
– classic power analysis setup (10 Ω resistor in GND, digital 

storage oscilloscope) plus laser microscope scanning setup
– test pattern

• run the code inside the microcontroller and store the power trace
• point the laser at a particular transistor and store the power trace
• compare two traces
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Semi-invasive attacks: side-channel

• Optically enhanced position-locked power analysis
– results for memory read operations: non-destructive analysis of 

active memory locations (‘0’ and ‘1’)
– results for memory write operations: non-destructive analysis of 

active memory locations (‘00’, ‘01’, ‘10’ and ‘11’)
• Only backside approach for 0.35µm and smaller chips

– single-cell access is limited to 0.5µm laser spot
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Semi-invasive attacks: side-channel
• Optical emission analysis

– transistors emit photons when they switch
– 10−2 to 10−4 photons per switch with peak in NIR region (900–1200 nm)
– optical emission can be detected with photomultipliers and CCD 

cameras
– comes from area close to the drain and primarily from the NMOS 

transistor
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Semi-invasive attacks: side-channel
• Optical emission analysis

– Microchip PIC16F628 microcontroller with test code at 20 Mhz; 
PMT vs SPA and CCD camera images in just 10 minutes

• Only backside approach for 0.35µm and smaller chips
– successfully tested on chips down to 130nm (higher Vcc, >1 

hour)
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Hardware tamper protection



Tamper protection

• Old devices
– security fuse is placed separately from the memory array (easy 

to locate and defeat)
– security fuse is embedded into the program memory (hard to 

locate and defeat), similar approach is used in many smartcards 
in the form of password protection and encryption keys

– moving away from building blocks which are easily identifiable 
and have easily traceable data paths

20Motorola MC68HC908AZ60A microcontroller Scenix SX28 microcontroller



Tamper protection

• Help came from chip fabrication technology
– planarisation as a part of modern chip fabrication process 

(0.5 μm or smaller feature size)
– glue logic design makes reverse engineering much harder
– multiple metal layers block any direct access
– small size of transistors makes attacks less feasible
– chips operate at higher frequency and consume less power
– smaller and BGA packages scare off many attackers
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0.9µm microcontroller 0.5µm microcontroller 0.13µm FPGA



Tamper protection

• Additional protections
– top metal layers with sensors
– voltage, frequency and temperature sensors
– memory access protection, crypto-coprocessors
– internal clocks, power supply pumps
– asynchronous logic design, symmetric design, dual-rail logic
– ASICs, secure FPGAs and custom-designed ICs
– software countermeasures
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STMicroelectronics ST16 smartcard Fujitsu secure microcontroller



Tamper protection: what goes wrong

• Security advertising without proof
– no means of comparing security, lack of independent analysis
– no guarantee and no responsibility from chip manufacturers
– wide use of magic words: protection, encryption, authentication, 

unique, highly secure, strong defence, cannot be, unbreakable, 
impossible, uncompromising, buried under x metal layers

• Constant economics pressure on cost reduction
– less investment, hence, cheaper solutions and outsourcing
– security via obscurity approach

• Quicker turnaround
– less testing, hence, more bugs

• What about back-doors?
– access to the on-chip data for factory testing purposes
– how reliably was this feature disabled?
– how difficult is to attack the access port?
– are there any trojans deliberately inserted by subcontractors?
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Defence technologies : how it fails

• Microchip PIC microcontroller: security fuse bug
– security fuse can be reset without erasing the code/data memory

• solution: fixed in newer devices

• Hitachi smartcard: information leakage on a products CD
– full datasheet on a smartcard was placed by mistake on the CD

• Actel secure FPGA: programming software bug
– devices were always programmed with a 00..00 passkey

• solution: software update

• Xilinx secure CPLD: programming software bug
– security fuse incorrectly programmed resulting in no protection

• solution: software update

• Dallas SHA-1 secure memory: factory initialisation bug
– some security features were not activated resulting in no 

protection
• solution: recall of the batch

• Other possible ways of security failures
– insiders, datasheets of similar products, development tools, 

patents
• solution: test real devices and control the output
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Conclusions

• There is no such a thing as absolute protection
– given enough time and resources any protection can be broken

• Technical progress helps a lot, but has certain limits
– do not overestimate capabilities of the silicon circuits
– do not underestimate capabilities of the attackers

• Defence should be adequate to anticipated attacks
– security hardware engineers must be familiar with attack 

technologies to develop adequate protection
– choosing the correct protection saves money in development 

and manufacturing
• Attack technologies are constantly improving, so should 

the defence technologies
• Many vulnerabilities were found in various secure chips 

and more are to be found posing more challenges to 
hardware security engineers 27
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Leakage and Tamper Resilience
(1/2)



Circuit transformers
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𝑋𝑋𝑖𝑖 𝑌𝑌𝑖𝑖

Any boolean circuit
Circuit 
transformation

Transformed circuit

𝑌𝑌𝑖𝑖

'is

𝑋𝑋𝑖𝑖
𝐶𝐶𝐶𝐶𝐶



Circuit transformers

• Transformer 𝑇𝑇 = (𝑇𝑇𝐶𝐶 ,𝑇𝑇𝑠𝑠)

• 𝐶𝐶
𝑇𝑇𝐶𝐶 𝐶𝐶𝐶, s0 →

𝑇𝑇𝑠𝑠 𝑠𝑠0′

• 𝑇𝑇 may be randomized
• 𝐶𝐶𝐶 may be randomized or (better yet) deterministic
• Functionally equivalent in input-output behavior:

𝐶𝐶 𝑆𝑆0 ≈ 𝐶𝐶′[𝑠𝑠0′ ]
(There is a security parameter everywhere; we keep it implicit.)
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𝑠𝑠𝑖𝑖
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𝑋𝑋𝑖𝑖 𝑌𝑌𝑖𝑖 𝑌𝑌𝑖𝑖𝑋𝑋𝑖𝑖

black
box

indistinguishable

Security [Ishai Sahai Wagner ’03]

𝐶𝐶𝐶𝐶𝐶
admissible 
leakage/

tampering

adversarysimulator

𝑠𝑠𝑖𝑖 𝑠𝑠𝑖𝑖′

Adversary chooses a 
leakage/tampering function, 
from a given set of admissible 
leakage/tampering functions, 
to be applied to the wires.



INPUT OUTPUT

CIRCUIT

MEMORY

Security definition

Transformer 𝑇𝑇 protects privacy (of the initial state)
against a given class of admissible leakage/tampering:
∀circuit C
∃efficient Sim  
∀admissible Adv
∀initial state s0 :
SimAdv,C[s0] ≈ output of Adv attacking C’[s0’]
(Even in case of tampering, only privacy is required)

C
INPUT OUTPUT

CIRCUIT

MEMORY

T

C’

s0 s0’
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Protecting against sum-of-wires leakage
𝑇𝑇𝑠𝑠 implements circuit using Dual-Rail Logic: 0 ↦ 0,1 , 1 ↦ (1,0)
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figure from [Waddle the Wagner 2005 – Fault Attacks on Dual-Rail Encoded Systems]

Also: NOT, INPUT, OUTPUT.
𝑇𝑇𝑠𝑠 represents 𝑠𝑠0 using dual-rail logic.



Protecting against sum-of-wires leakage
(cont.)

• Security proof sketch: simulator runs adversary and, 
when asked for leakage value, answers with the 
constant (thus known) Hamming weight.

• Also handles weighted sum
(e.g., different capacitance for long vs. short 
wires), as long as pairs are balanced.

• Practical complications:
– Capacitance imbalance
– Timing imbalance
– Glitches
– Cell internals
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