

Information Security – Theory vs. Reality

0368-4474, Winter 2015-2016

Lecture 8: Hardware security (2/2), Leakage/tamper resilience (1/2)

Lecturer: Eran Tromer

Hardware security

Invasive attacks

(continued)

Including presentation material by Sergei Skorobogatov, University of Cambridge

Invasive attacks: microprobing

- Microprobing with fine electrodes
 - eavesdropping on signals inside a chip
 - injection of test signals and observing the reaction
 - can be used for extraction of secret keys and memory contents
 - limited use for 0.35µm and smaller chips

Invasive attacks: microprobing

- Laser cutting systems
 - removing polymer layer from a chip surface
 - local removing of a passivation layer for microprobing attacks
 - cutting metal wires inside a chip
 - maximum can access the second metal layer

Invasive attacks: chip modification

- Focused Ion Beam (FIB) workstation
 - chip-level surgery with 10 nm precision
 - etching with high aspect ratio
 - platinum and SiO₂ deposition

Picture courtesy of Semiresearch Ltd

Invasive attacks: chip modification

Focused Ion Beam workstation

- creating probing points inside smartcard chips, read the memory
- modern FIBs allow backside access, but requires special chip preparation techniques to reduce the thickness of silicon

Semi-invasive attacks

- Fill the gap between non-invasive and invasive attacks
 - less damaging to target device (decapsulation without penetration)
 - less expensive and easier to setup and repeat than invasive attacks
- Tools
 - IC soldering/desoldering station
 - simple chemical lab
 - high-resolution optical microscope
 - UV light sources, lasers
 - oscilloscope, logic analyser, signal generator
 - PC with data acquisition board, FPGA board, prototyping boards
 - special microscopes (laser scanning, infrared etc.)
- Types of semi-invasive attacks: passive and active
 - imaging: optical and laser techniques
 - fault injection: UV attack, photon injection, local heating, masking
 - side-channel attacks: optical emission analysis, induced leakage

- Backside infrared imaging
 - microscopes with IR optics give better quality of image
 - IR-enhanced CCD cameras or special cameras must be used
 - resolution is limited to ~0.6µm by the wavelength of used light
 - view is not obstructed by multiple metal layers

- Backside infrared imaging
 - Mask ROM extraction without chemical etching
- Main option for 0.35µm and smaller chips
 - multiple metal wires do not block the optical path

Texas Instruments MSP430F112 microcontroller

0.35 µm

Motorola MC68HC705P6A microcontroller 1.2 µm

- Advanced imaging techniques active photon probing (Optical Beam Induced Current (OBIC))
 - photons with energy exceeding semiconductor band gap ionize IC's regions, which results in a photocurrent flow producing the image
 - used for localisation of active areas
 - also works from the rear side of a chip (using infrared lasers)

Microchip PIC16F84A microcontroller

- Advanced imaging techniques active photon probing (light-induced voltage alteration (LIVA) technique)
 - photon-induced photocurrent is dependable on the state of a transistor
 - reading logic state of CMOS transistors inside a powered-up chip
 - works from the rear side of a chip (using infrared lasers)
- Requires backside approach for 0.35µm and smaller chips
 - multiple metal wires do not block the optical path
 - resolution is limited to ~0.6µm (still enough for memory cells)

Semi-invasive attacks: fault injection

• Optical fault injection attacks

- optical fault injection was observed in experiments with microprobing attacks in early 2001, introduced as a new method in 2002
- lead to new powerful attack techniques and forced chip manufacturers to rethink their design and bring better protection
- original setup involved optical microscope with a photoflash and Microchip PIC16F84 microcontroller programmed to monitor its SRAM

Semi-invasive attacks: fault injection

- Localised heating using (continuous-wave) lasers
 - test board with PIC16F628 and PC software for analysis
 - permanent change of a single memory cell on a 0.9µm chip
- Limited influence on modern chips (<0.5µm) influence on adjacent cells

Semi-invasive attacks: fault injection

Memory masking attacks

- temporarily disable write and erase operations in embedded memory (Flash/EEPROM) and write into volatile memory (SRAM)
- use cw red lasers for front-side and infrared lasers for backside attacks

	Memory Write Operations					
Chip	Flash Cells	Flash Lines	Flash Array	EEPROM Cell	EEPROM Lines	EEPROM Array
PIC16F628A	1-2	1-2	Yes	1-2	1-2	Yes
PIC16F628A						
(backside)	12 - 45	1-2	Yes	8-22	1-2	Yes

- Optically enhanced position-locked power analysis
 - Microchip PIC16F84 microcontroller with test program at 4 MHz
 - classic power analysis setup (10 Ω resistor in GND, digital storage oscilloscope) plus laser microscope scanning setup
 - test pattern
 - run the code inside the microcontroller and store the power trace
 - point the laser at a particular transistor and store the power trace
 - compare two traces

- Optically enhanced position-locked power analysis
 - results for memory <u>read</u> operations: non-destructive analysis of active memory locations ('0' and '1')
 - results for memory <u>write</u> operations: non-destructive analysis of active memory locations ('0→0', '0→1', '1→0' and '1→1')
- Only backside approach for 0.35µm and smaller chips

single-cell access is limited to 0.5µm laser spot

Optical emission analysis

- transistors emit photons when they switch
- -10^{-2} to 10^{-4} photons per switch with peak in NIR region (900–1200 nm)
- optical emission can be detected with photomultipliers and CCD cameras
- comes from area close to the drain and primarily from the NMOS transistor

- Optical emission analysis
 - Microchip PIC16F628 microcontroller with test code at 20 Mhz; PMT vs SPA and CCD camera images in just 10 minutes
- Only backside approach for 0.35µm and smaller chips
 - successfully tested on chips down to 130nm (higher Vcc, >1 hour)

Hardware tamper protection

Tamper protection

- Old devices
 - security fuse is placed separately from the memory array (easy to locate and defeat)
 - security fuse is embedded into the program memory (hard to locate and defeat), similar approach is used in many smartcards in the form of password protection and encryption keys
 - moving away from building blocks which are easily identifiable and have easily traceable data paths

Motorola MC68HC908AZ60A microcontroller

Tamper protection

- Help came from chip fabrication technology
 - planarisation as a part of modern chip fabrication process (0.5 µm or smaller feature size)
 - glue logic design makes reverse engineering much harder
 - multiple metal layers block any direct access
 - small size of transistors makes attacks less feasible
 - chips operate at higher frequency and consume less power
 - smaller and BGA packages scare off many attackers

0.9µm microcontroller

0.5µm microcontroller

0.13µm FPGA

Tamper protection

- Additional protections
 - top metal layers with sensors
 - voltage, frequency and temperature sensors
 - memory access protection, crypto-coprocessors
 - internal clocks, power supply pumps
 - asynchronous logic design, symmetric design, dual-rail logic
 - ASICs, secure FPGAs and custom-designed ICs
 - software countermeasures

STMicroelectronics ST16 smartcard

Fujitsu secure microcontroller

Tamper protection: what goes wrong

- Security advertising without proof
 - no means of comparing security, lack of independent analysis
 - no guarantee and no responsibility from chip manufacturers
 - wide use of magic words: protection, encryption, authentication, unique, highly secure, strong defence, cannot be, unbreakable, impossible, uncompromising, buried under x metal layers
- Constant economics pressure on cost reduction
 - less investment, hence, cheaper solutions and outsourcing
 - security via obscurity approach
- Quicker turnaround
 - less testing, hence, more bugs
- What about back-doors?
 - access to the on-chip data for factory testing purposes
 - how reliably was this feature disabled?
 - how difficult is to attack the access port?
 - are there any trojans deliberately inserted by subcontractors?

Defence technologies : how it fails

- Microchip PIC microcontroller: security fuse bug
 - security fuse can be reset without erasing the code/data memory
 - solution: fixed in newer devices
- Hitachi smartcard: information leakage on a products CD
 - full datasheet on a smartcard was placed by mistake on the CD
- Actel secure FPGA: programming software bug
 - devices were always programmed with a 00..00 passkey
 - solution: software update
- Xilinx secure CPLD: programming software bug
 - security fuse incorrectly programmed resulting in no protection
 - solution: software update
- Dallas SHA-1 secure memory: factory initialisation bug
 - some security features were not activated resulting in no protection
 - solution: recall of the batch
- Other possible ways of security failures
 - insiders, datasheets of similar products, development tools, patents
 - solution: test real devices and control the output

Conclusions

- There is no such a thing as absolute protection
 - given enough time and resources any protection can be broken
- Technical progress helps a lot, but has certain limits
 - do not overestimate capabilities of the silicon circuits
 - do not underestimate capabilities of the attackers
- Defence should be adequate to anticipated attacks
 - security hardware engineers must be familiar with attack technologies to develop adequate protection
 - choosing the correct protection saves money in development and manufacturing
- Attack technologies are constantly improving, so should the defence technologies
- Many vulnerabilities were found in various secure chips and more are to be found posing more challenges to hardware security engineers

Leakage and Tamper Resilience (1/2)

Circuit transformers

Circuit transformers

- Transformer $T = (T_C, T_s)$
- $C \xrightarrow{T_C} C', s_0 \xrightarrow{T_S} s'_0$
- T may be randomized
- C' may be randomized or (better yet) deterministic
- Functionally equivalent in input-output behavior: $C[S_0] \approx C'[s'_0]$

(There is a security parameter everywhere; we keep it implicit.)

Security

[Ishai Sahai Wagner '03]

Security definition

Transformer *T* protects privacy (of the initial state) against a given class of admissible leakage/tampering: \forall circuit C \exists efficient Sim \forall admissible Adv \forall initial state s₀: Sim^{Adv,C[s0]} \approx output of Adv attacking C'[s₀']

³³ (Even in case of tampering, only privacy is required)

Protecting against sum-of-wires leakage

 T_s implements circuit using **Dual-Rail Logic**: $0 \mapsto (0,1), 1 \mapsto (1,0)$

figure from [Waddle the Wagner 2005 - Fault Attacks on Dual-Rail Encoded Systems]

Also: NOT, INPUT, OUTPUT.

 T_s represents s_0 using dual-rail logic.

Protecting against sum-of-wires leakage (cont.)

- Security proof sketch: simulator runs adversary and, when asked for leakage value, answers with the constant (thus known) Hamming weight.
- Also handles weighted sum (e.g., different capacitance for long vs. short wires), as long as pairs are balanced.
- Practical complications:
 - Capacitance imbalance
 - Timing imbalance
 - Glitches
 - Cell internals