Information Security: Theory vs. Reality

0368-4474, Winter 2015-2016

Lecture 4:
 Machine Learning Techniques in Side-Channel Analysis

Lecturer: Eran Tromer

Including presentation material by Guy Wolf

Outline

(1) Introduction

- Side-Channel Leaks
- Machine Learning
(2) Recap: Correlation Power Analysis
(3) Template Power Analysis
- Dimensionality Reduction
- Classification
- Power Trace Alignment
(4) Activity Leaks
- Hidden Markov Model
- Acoustic Analysis of Peripherals
- Other Activity Leaks
(5) Conclusion

Side-Channel Leaks

Side-Channel Leaks

Processing Leaked Data

Traces are vectors representing a measured physical quantity as a function of time, during the attacked operation. They containing hundreds or more (often millions) of measurement points.

Processing Leaked Data

Traces are vectors representing a measured physical quantity as a function of time, during the attacked operation. They containing hundreds or more (often millions) of measurement points.

$$
\square \text { leaked data }
$$

Processing Leaked Data

Traces are vectors representing a measured physical quantity as a function of time, during the attacked operation. They containing hundreds or more (often millions) of measurement points.

$$
\square \text { leaked data }
$$

Processing Leaked Data

Traces are vectors representing a measured physical quantity as a function of time, during the attacked operation. They containing hundreds or more (often millions) of measurement points.

Processing Leaked Data

Traces are vectors representing a measured physical quantity as a function of time, during the attacked operation. They containing hundreds or more (often millions) of measurement points.

Processing Leaked Data

Traces are vectors representing a measured physical quantity as a function of time, during the attacked operation. They containing hundreds or more (often millions) of measurement points.

Processing Leaked Data

Traces are vectors representing a measured physical quantity as a function of time, during the attacked operation. They containing hundreds or more (often millions) of measurement points.

$\subseteq \mathbb{R}^{1000000}$

Processing Leaked Data

Traces are vectors representing a measured physical quantity as a function of time, during the attacked operation. They containing hundreds or more (often millions) of measurement points.

Processing Leaked Data

Traces are vectors representing a measured physical quantity as a function of time, during the attacked operation. They containing hundreds or more (often millions) of measurement points.

Machine Learning

Machine learning encompasses tools that perform smart analysis of data, such as:

- Discovery of useful, possibly unexpected, patterns in data
- Non-trivial extraction of implicit, previously unknown and potentially useful information from data
- Exploration \& analysis, by automatic or semi-automatic means, of large quantities of data in order to discover meaningful patterns
Common tasks include:
- Dimensionality reduction
- Clustering \& Classification
- Regression \& Out-of-sample extension

Quick Recap:
 Correlation Power Analysis

Quick Recap: Correlation Power Analysis

Typical assumption:

power consumption correlates with Hamming Weight of y

Quick Recap: Correlation Power Analysis

Plaintexts: Traces:
Internal Vals.:
Hamm. Wts.:

Quick Recap: Correlation Power Analysis

Traces matrix:
times

Hamming Weight matrix:
key candidates

Quick Recap: Correlation Power Analysis

Traces matrix: Hamming Weight matrix:
times

Quick Recap: Correlation Power Analysis

Traces matrix:
times

Hamming Weight matrix:
key candidates

Correlation indicates the correct time and key

Quick Recap: Correlation Power Analysis

Traces matrix:
Hamming Weight matrix:

Correlation indicates the correct time and key

Alternative Attack:
 Template Power Analysis

Template Power Analysis

Training: Learn traces of many plaintexts \& keys
times

Template Power Analysis

Training: Learn traces of many plaintexts \& keys

Template Power Analysis

Training: Learn traces of many plaintexts \& keys
times

Online: Attack using

Template Power Analysis

Representing power traces as vectors

Traces are high-dimensional vectors, containing hundreds or more (often millions) of measurement points.

Traces can be analyzed as vectors in the Euclidean space \mathbb{R}^{m} with ℓ_{2} norms \& distances

- Somewhat arbitrary representation, but effective and convenient

Template Power Analysis

Learning \& analyzing trace vectors

Template assumption: the positions of traces in \mathbb{R}^{m} (with ℓ_{2} norm) correlate with the plaintext \& key values that generated them

- Correlation is either directly seen or via some internal value
- Ideally, correlation is expressed as clustering by plaintext \& key

Theoretically, can detect clusters using machine learning tools too. Usually, enough is known to classify traces into clusters; the challenge is to characterize these clusters geometrically so we can check which cluster the online trace resides

Template Power Analysis

Example: classic TPA attack using Gaussian statistical modeling ${ }^{1}$

Model power consumption of encrypting plaintext p with key k as a random variable $\vec{X}_{(k, p)} \sim \mathcal{N}\left(\vec{\mu}_{(k, p)}, \Sigma_{(k, p)}\right)$

- $\vec{X}_{(k, p)}$ is drawn from a multidimensional normal (Gaussian) distribution
- $\vec{\mu}_{(k, p)} \in \mathbb{R}^{m}$ is the mean power consumption for $k \& p$
- $\Sigma_{(k, p)}$ is the $m \times m$ noise covariance matrix for $k \& p$
- The likelihood of a trace \vec{x} originating from $k \& p$ is

$$
\mathcal{L}_{(k, p)}(\vec{x})=\left((2 \pi)^{m}\left|\Sigma_{(k, p)}\right|\right)^{-1 / 2} \exp \left(-\frac{1}{2}\left(\vec{x}-\vec{\mu}_{(k, p)}\right)^{T} \Sigma_{(k, p)}^{-1}\left(\vec{x}-\vec{\mu}_{(k, p)}\right)\right)
$$

Attack single trace (with known plaintext p):

- Compute likelihood of it originating from each key candidate (with p)
- Choose key candidate with maximum likelihood

Template Power Analysis

Curse of dimensionality

Directly analyzing high-dimensional vectors is usually infeasible due to:

Curse of Dimensionality

A general term for various phenomena that arise when analyzing/organizing high-dimensional data.

- Common theme - difficult/impractical/impossible to obtain statistical significance due to sparsity of the data in high-dimensions
- Causes poor performance (computational complexity)
- Causes poor results (bad estimates)

Common solution - use dimensionality reduction methods and analyze their resulting embedded space.
Example: only use the $\ell<m$ time indices that provide the highest differences between mean power consumptions of different key-plaintext pairs. This is traditional differential power analysis.

Dimensionality Reduction with
Principal Component Analysis

Dimensionality Reduction

Principal Component Analysis (PCA)

Dimensionality Reduction

Principal Component Analysis (PCA)

Dimensionality Reduction

Principal Component Analysis (PCA)

Dimensionality Reduction

Principal Component Analysis (PCA) - covariance matrix

$\operatorname{cov}\left(t_{1}, t_{2}\right) \triangleq \sum_{i} \operatorname{trace}_{i}\left[t_{1}\right] \cdot \operatorname{trace}_{i}\left[t_{2}\right]$

Dimensionality Reduction

Principal Component Analysis (PCA) - spectral theorem

Spectral theorem applies to covariance matrices:

Spectral Theorem: $\operatorname{cov}\left(t_{1}, t_{2}\right)=\sum_{i} \lambda_{i} \phi_{i}\left(t_{1}\right) \phi_{i}\left(t_{2}\right)$

Dimensionality Reduction

Principal Component Analysis (PCA) - truncated SVD

Many datasets (incl. power traces) have a decaying cov. spectrum

Dimensionality Reduction

Principal Component Analysis (PCA) - truncated SVD

Eigenvectors

Eigenvalues

Approximate cov. matrix by truncating small eigenvalues from SVD

Dimensionality Reduction

Principal Component Analysis (PCA) - example

Consider simple case of traces that are all on the same high dimensional line

- Straight line is defined by a unit vector $\|\vec{\psi}\|=1$
- Points on the line are defined by multiplying $\vec{\psi}$ by scalars
- The traces can be formulated as $x_{i}=c_{i} \vec{\psi}$
- Covariance: $\operatorname{cov}\left(t_{1}, t_{2}\right)=\sum_{i} x_{i}\left[t_{1}\right] x_{i}\left[t_{2}\right]=\sum_{i} c_{i} \vec{\psi}\left[t_{1}\right] c_{i} \vec{\psi}\left[t_{2}\right]=$

$$
\left(\sum_{i} c_{i}^{2}\right) \vec{\psi}\left[t_{1}\right] \vec{\psi}\left[t_{2}\right]=\|\vec{c}\|^{2} \vec{\psi}\left(t_{1}\right) \vec{\psi}\left(t_{2}\right) \quad \vec{c} \triangleq\left(c_{1}, c_{2}, \ldots\right)
$$

Dimensionality Reduction

Principal Component Analysis (PCA) - example

Consider simple case

Dimensionality Reduction
 Principal Component Analysis (PCA) - example

Consider simple case of traces that are all on the same high dimensional line

- Straight line is defined by a unit vector $\|\vec{\psi}\|=1$
- Points on the line are defined by multiplying $\vec{\psi}$ by scalars
- The traces can be formulated as $x_{i}=c_{i} \vec{\psi}$
- Covariance: $\operatorname{cov}\left(t_{1}, t_{2}\right)=\sum_{i} x_{i}\left[t_{1}\right] x_{i}\left[t_{2}\right]=\sum_{i} c_{i} \vec{\psi}\left[t_{1}\right] c_{i} \vec{\psi}\left[t_{2}\right]=$

$$
\left(\sum_{i} c_{i}^{2}\right) \vec{\psi}\left[t_{1}\right] \vec{\psi}\left[t_{2}\right]=\|\vec{c}\|^{2} \vec{\psi}\left(t_{1}\right) \vec{\psi}\left(t_{2}\right) \quad \vec{c} \triangleq\left(c_{1}, c_{2}, \ldots\right)
$$

Covariance matrix has a single eigenvalue $\|\vec{c}\|^{2}$ and a single eigenvector $\vec{\psi}$, which defines principal direction of the trace-vectors

Dimensionality Reduction

Principal Component Analysis (PCA) - example

3D space
$\stackrel{\uparrow}{\square}$

Dimensionality Reduction

Principal Component Analysis (PCA) - example

3D space
$\stackrel{ }{\longrightarrow}$

Dimensionality Reduction

Principal Component Analysis (PCA) - example

Dimensionality Reduction

Principal Component Analysis (PCA) - example

Length: eigenvalues
Direction: eigenvectors

3D space

principal components \Rightarrow max var directions

Dimensionality Reduction

Principal Component Analysis (PCA) - projection

Projection on principal components:

Dimensionality Reduction

Principal Component Analysis (PCA) - projection

Projection on principal components:

1D space \longrightarrow

000 O Occo 000000000100

Dimensionality Reduction
 PCA algorithm

PCA algorithm:

(1) Centering
(2) Covariance

- Eigendecomposition
(1) Projection

Alternative method: Multi-Dimensional Scaling (MDS) - preserve distances/inner-products with minimal set of coordinates.

Short tutorial on PCA \& MDS: www.cs.haifa.ac.il/~rita/uml_course/lectures/PCA_MDS.pdf

Dimensionality Reduction

Summary

Traces (high-dim. vectors):

Projected traces
(low-dim. vectors):

Dimensionality Reduction

Summary

Traces (high-dim. vectors):

Projected traces
(low-dim. vectors):

Next task: how to find keys from the low-dimensional vectors?

Clustering \& Classification with

Support Vector Machine

Classification

Clustering

Cluster analysis

Clustering - the task of grouping objects such that objects in the same cluster are more similar to each other than to those in other clusters.

Classification

Clustering

Cluster analysis

Clustering - the task of grouping objects such that objects in the same cluster are more similar to each other than to those in other clusters.

Learning types

Unsupervised learning:
Trying to find hidden structures in unlabeled data.

Supervised learning: Inferring functions from labeled training data.

Classification

Clustering \& classification approaches

Classic TPA using Gaussian statistical models:

- The analysis considers many clusters (one for each key-plaintext pair)
- Clusters are assumed to look like normally distributed random variables $\vec{X}_{(k, p)} \sim \mathcal{N}\left(\vec{\mu}_{(k, p)}, \Sigma_{(k, p)}\right)$
- Requires many traces for each key-plaintext pair to compute $\vec{\mu}_{(k, p)} \& \Sigma_{(k, p)}$

Simplified bit clustering with Support Vector Machine (SVM):

- Classify each bit separately - only two classes are considered for each bit
- Requires less training traces than classic TPA - traces are grouped by bit values, not by the key value
- No statistical assumptions required - geometric classification using a separating hyperplane

Classification

Simplified bit clustering - only two classes

Classification

Support Vector Machine (SVM) - separation with hyperplane

Classification

Support Vector Machine (SVM) - separation with hyperplane

Classification

Support Vector Machine (SVM) - separation with hyperplane

Classification

Support Vector Machine (SVM) - separation with hyperplane

Classification

Support Vector Machine (SVM) - separation with hyperplane

Classification

Support Vector Machine (SVM) - separation with hyperplane

Classification

Support Vector Machine (SVM) - quantifying robustness with margins

Classification

Support Vector Machine (SVM) - quantifying robustness with margins

Classification

SVM formulation - hyperplane

Classification

SVM formulation - hyperplane with margin

Classification

SVM formulation - shifted hyperplane with margin

$$
c=\vec{w} \cdot \vec{u}
$$

$$
\vec{w} \cdot \vec{x}-c \geq \alpha
$$

Classification

SVM algorithm

SVM training

Input:

- Points $\left\{\vec{x}_{i}\right\}$ from PCA of the traces
- Labels $\left\{b_{i}\right\}$ according to attacked bit:

$$
b_{i}= \begin{cases}1 & \text { bit is } 0 \\ -1 & \text { bit is } 1\end{cases}
$$

Solve the quadratic program (e.g., using Lagrange multipliers):

$$
\begin{array}{cl}
\text { Find } & \max \alpha \\
\text { s.t. } & \vec{w} \cdot \vec{x}_{i}-c \geq b_{i} \alpha
\end{array}
$$

Output: the solution (\vec{w}, c, α)

Classification

SVM algorithm

SVM classifier

Input:

- New point \vec{x} from PCA projection of attacked trace
- The solution (\vec{w}, c, α) from SVM training

Classify by value of $\vec{w} \cdot \vec{x}-c$:

Power Analysis with PCA \& SVM

 based on recent paper ${ }^{2}$

Use single PCA \& multiple SVMs (one per bit) to learn traces (in training phase) and attack a key byte
${ }^{2}$ "Side channel attack: an approach based on machine learning", 2011, by L. Lerman, G. Bontempi, and O. Markowitch

Power Analysis with PCA \& SVM

based on recent paper ${ }^{2}$

PCA results (colored by specified bit values):
Effective SVM attack. -bit=1 -bit=o
SVM attack will fail:

Empirical results (on 3DES): desc. success rate (by bit position) 7th bit success rate: $\sim 95 \% \longrightarrow$ 1st bit success rate: $\sim 50 \%$
${ }^{2}$ "Side channel attack: an approach based on machine learning", 2011, by L. Lerman, G. Bontempi, and O. Markowitch

Power Trace Alignment

Power Trace Alignment

Power traces can be misaligned for several reasons, such as

- Synchronization issues between the sampling devices and the tested hardware
- Clock variabilities and instabilities
- Intentional countermeasures such as delays and modulations

Misaligned traces \Rightarrow incorrect/inaccurate correlations \Rightarrow wrong classification and useless attacks

Power Trace Alignment

Naïve approach: static alignment by time offset
Theoretically:

Power Trace Alignment

Naïve approach: static alignment by time offset
Theoretically:
Use time offset to align traces

Power Trace Alignment

Naïve approach: static alignment by time offset
Realistically:

Power Trace Alignment

Naïve approach: static alignment by time offset
Realistically:

Power Trace Alignment

Machine-learning approach: adaptive alignment by Dynamic Time Warp (DTW)

Power Trace Alignment

Machine-learning approach: adaptive alignment by Dynamic Time Warp (DTW)

Power Trace Alignment

Machine-learning approach: adaptive alignment by Dynamic Time Warp (DTW)

Power Trace Alignment

Using pairwise alignment in an attack

Training:

(1) Acquire power traces
(2) Choose reference trace (e.g., arbitrarily or use mean of all traces)
(3) Align each trace to the reference trace using the pairwise alignment

- Apply training algorithm (e.g., PCA \& SVM) to the aligned traces

Online:

(1) Acquire trace from attacked hardware
(2) Align trace to the reference trace (from the training) using pairwise alignment
(3) Apply classification algorithm (e.g., PCA \& SVM)

Pairwise Power Trace Alignment

Pairwise Power Trace Alignment

Trace x

Alignment path:
get from start to end of both traces

Pairwise Power Trace Alignment

Trace x

1:1 alignment:
trivial - nothing modified by the alignment

Aligned distance:

$$
\sum(\square)^{2}=\|x-y\|^{2}
$$

Pairwise Power Trace Alignment

Trace x

Time offset:
works sometimes, but not always optimal

Aligned distance:

$$
\sum(\square)^{2}=?
$$

Pairwise Power Trace Alignment

Trace x

Extreme offset:
complete misalignment worst alignment alternative

Aligned distance:

$$
\sum(\square)^{2}=\|x\|^{2}+\|y\|^{2}
$$

Pairwise Power Trace Alignment

Trace x

Optimal alignment: Optimize alignment by minimizing aligned distance

Aligned distance:

$$
\Sigma(\square)^{2}=\min
$$

Power Trace Alignment

Finding optimal pairwise alignment

Dynamic Programming

- A method for solving complex problems by breaking them down into simpler subproblems.
- Applicable to problems exhibiting the properties of overlapping subproblems and optimal substructure.
- Better performances than naive methods that do not utilize the subproblem overlap.

Power Trace Alignment
 Dynamic Time Warp (DTW)

Basic DTW Algorithm:

For each trace-time i and for each trace-time j :

- Set cost $\leftarrow(x[i]-y[j])^{2}$
- Set the optimal distance at stage $[i, j]$ to:

$$
\operatorname{DTW}_{[i, j]} \leftarrow \operatorname{cost}+\min \left\{\begin{array}{c}
D_{[i, j-1]} \\
D T W_{[i-1, j-1]} \\
D T W_{[i-1, j]}
\end{array}\right\}
$$

Optimal distance: $\operatorname{DTW}_{[m, n]}$ (where m \& n are lengths of traces).
Optimal alignment: backtracking the path leading to $\operatorname{DTW}_{[m, n]}$ via min-cost choices of the algorithm

Power Analysis with DTW-based Alignment

 based on recent paper ${ }^{3}$Use coarse-grained matrices to avoid bad/unreasonable portions:

Drill down by fine graining to approximate the optimal alignment with quasi-linear time \& space requirements

3"Improving Differential Power Analysis by Elastic Alignment", 2011, by J.G.J. van Woudenberg, M.F. Witteman, and B. Bakker

Power Analysis with DTW-based Alignment based on recent paper ${ }^{3}$

Experimental results:

Compare correlation DPA using 3 alignment methods:
Static: Simple static alignment by time offset
SW: Replace trace entries with avg. of sliding window

- Not strictly an alignment method, but simple \& sometimes effective
DTW: Elastic alignment with DTW

[^0]
Power Analysis with DTW-based Alignment

 based on recent paper ${ }^{3}$

Static: SW:
DTW:

Trace set size

DES with stable clock
3"Improving Differential Power Analysis by Elastic Alignment", 2011, by J.G.J. van Woudenberg, M.F. Witteman, and B. Bakker

Power Analysis with DTW-based Alignment

 based on recent paper ${ }^{3}$

SW:
DTW:

Trace set size
DES with unstable clock
3"Improving Differential Power Analysis by Elastic Alignment", 2011, by J.G.J. van Woudenberg, M.F. Witteman, and B. Bakker

Analyzing Non-Cryptographic Leaks with
 Hidden Markov Model

Information \& Activity Leaks

Consider secret sequence of activities and leaked information with the following properties:

- Contains information about the secret sequence
- Contains noise
- Insufficient for directly recovering the secret information

If activities follow known statistical patterns, then an attacker can "guess" secret sequence from noisy leaks.

Attack: find best hypothesis such that:
(1) It matches the leaked data
(2) Has high probability according to statistical distribution of activity sequences

Information \& Activity Leaks

Can it work?

Leaked information can be used for more than cryptographic purposes:

- Users are predictable - most activities are similar \& repetitive
- Internet - common websites and surfing routines
- Emails/documents - linguistic models
- Passwords - most common password is "password"
- Others examples: "querty", "letmein", "trustno1", "dragon", "monkey", "ninja", and "jesus".
- News services often publish lists of most common passwords of the year/month
- Guess activities/information by detecting "reasonable" usage patterns from leaked data
A statistical model of user activity profile can be used for this task.

Markov Chain

Stochastic Process:

Markov Chain

Markov Process:

Transition probabilities (no history):

$$
\operatorname{Pr}\left[q_{i+1}=? \mid q_{i}\right]=\operatorname{Pr}\left[q_{i+1}=? \mid q_{i}, q_{i-1}, \ldots, q_{2}, q_{1}\right]
$$

Markov Chain
Keyboard structure \& text auto-complete

Markov Chain

Keyboard structure \& text auto-complete

Markov Chain

Keyboard structure \& text auto-complete

Markov Chain

Keyboard structure \& text auto-complete

Hidden Markov Model

Hidden Markov Model

Hidden Markov Model

Transition probabilities:

$$
\operatorname{Pr}\left[h_{i+1}=? \mid h_{i}\right]
$$

Leak probabilities:

$$
\operatorname{Pr}\left[o_{i}=? \mid h_{i}\right]
$$

Hidden Markov Model

Viterbi Algorithm

A dynamic programming algorithm for finding the most likely sequence of hidden states, especially in the context of Hidden Markov models.

Acoustic Analysis of Keyboards

based on paper ${ }^{4}$

4"Keyboard Acoustic Emanations Revisited",2005, by L. Zhuang, F. Zhou, and J.D. Tygar

Acoustic Analysis of Keyboards

based on paper ${ }^{4}$

(b) Recognition Phase: Recognize keystrokes using the classifier from (a).

[^1]
Acoustic Analysis of Keyboards

 based on paper ${ }^{4}$
Typed text:

the big money fight has drawn the support of dozens of companies in the entertainment industry as well as attorneys gnnerals in states, who fear the file sharing software will encourage illegal activity, stem the growth of small artists and lead to lost jobs and dimished sales tax revenue.

[^2]
Acoustic Analysis of Keyboards based on paper ${ }^{4}$

HMM only:

the big money fight has drawn the shoporo od dosens of companies in the entertainment industry as well as attorneys gnnerals on states, who fear the fild shading softwate will encourage illegal acyivitt, srem the grosth of small arrists and lead to lost cobs and dimished sales tas revenue.

[^3]
Acoustic Analysis of Keyboards based on paper ${ }^{4}$

HMM \& spelling corrections:

> the big money fight has drawn the support of dozens of companies in the entertainment industry as well as attorneys generals in states, who fear the film sharing software will encourage illegal activity, stem the growth of small artists and lead to lost jobs and finished sales tax revenue.

[^4]
Acoustic Analysis of Keyboards

based on paper ${ }^{4}$

Password retrieval
 Length of Recording

${ }^{4 " K e y b o a r d ~ A c o u s t i c ~ E m a n a t i o n s ~ R e v i s i t e d ", 2005, ~ b y ~ L . ~ Z h u a n g, ~ F . ~ Z h o u, ~}$ and J.D. Tygar

Acoustic Analysis of Printers

 based on paper ${ }^{5}$
(Picture taken from URL:flylib.com/books/en/2.374.1.27/1/)

(Pictures taken from
URL:mindmachine.co.uk/book/print_06_dotmatrix_overview01.html)

[^5]
Acoustic Analysis of Printers

based on paper ${ }^{5}$

${ }^{5}$ "Acoustic Side-Channel Attacks on Printers",2010, by M. Backes, M. Dürmuth, S. Gerling, M. Pinkal, C. Sporleder

Acoustic Analysis of Printers

based on paper ${ }^{5}$

Training:

- Feature extraction (split into words, noise reduction, etc.)
- Construct DB with (word, sound) pairs

Online:

- Feature extraction (same as in training)
- For each word:
- Sort DB by similarity/difference from recorded sound
- Reorder DB by n-gram/word distribution using HMM
- Guess printed word as the top candidate from reordered DB

[^6]
Acoustic Analysis of Printers

based on paper ${ }^{5}$

	Text 1	Text 2	Text 3	Text 4	Overall
Basic Top 1 (Top 3)	$60.5 \%(75.1 \%)$	$66.5 \%(79.2 \%)$	$62.8 \%(78.7 \%)$	$61.5 \%(77.9 \%)$	$\mathbf{6 2 . 9} \%(78.0 \%)$
HMM 3-gram	66.7%	71.8%	71.2%	69.0%	$\mathbf{6 9 . 9} \%$

	Declaration 1	Declaration 2
Basic Top 1 (Top 3)	$59.5 \%(77.8 \%)$	57.5% (72.6 \%)
HMM 3-gram (using general-purpose corpus)	68.3%	60.8%
HMM 3-gram (using domain-specific corpus)	$\mathbf{9 5 . 2} \%$	$\mathbf{7 2 . 5} \%$

5"Acoustic Side-Channel Attacks on Printers",2010, by M. Backes, M. Dürmuth, S. Gerling, M. Pinkal, C. Sporleder

Other Activity Leaks

Other activity leaks to which machine learning (and other tools) are applied:

- Offensively:
- Other cases of trace analysis (e.g., frequency domain)
- Traffic analysis
- Deanonymization
- Defensively:
- Authentication
- Malware code detection
- Malware command-and-control traffic detection
- DDoS detection

Further Reading I

Side-channel attacks using machine learning tools:

- "Further hidden Markov model cryptanalysis" (2005) by P.J. Green, R. Noad, N.P. Smart
- "Analyzing side channel leakage of masked implementations with stochastic methods" (2007) by K. Lemke-Rust \& C. Paar
- "Side channel attacks on cryptographic devices as a classification problem" (2007) by P. Karsmakers, B. Gierlichs, K. Pelckmans, K. De Cock, J. Suykens, B. Preneel, B. De Moor
- "Theoretical and practical aspects of mutual information based side channel analysis" (2009) by E. Prouff \& M. Rivain
- "Cache-timing template attacks" (2009) by B.B. Brumley \& R.M. Hakala
- "Machine learning in side-channel analysis: a first study" (2011) by G. Hospodar, B. Gierlichs, E. De Mulder, I. Verbauwhede, J. Vandewalle
- "Side channel attack: an approach based on machine learning" (2011) by L. Lerman, G. Bontempi, O. Markowitch
- "Side channel cryptanalysis using machine learning" (2012) by H. He, J. Jaffe, \& L. Zou
- "PCA, eigenvector localization and clustering for side-channel attacks on cryptographic hardware devices" (2012) by D. Mavroeidis, L. Batina, T. van Laarhoven, E. Marchiori
- "Efficient Template Attacks Based on Probabilistic Multi-class Support Vector Machines" (2013) by T. Bartkewitz \& K. Lemke-Rust

Further Reading II

Trace alignment:

- "Recovering secret keys from weak side channel traces of differing lengths" (2008) by C.D. Walter
- "Side Channel Analysis enhancement: a proposition for measurements resynchronisation" (2011) N. Debande, Y. Souissi, M. Nassar, S. Guilley, T.H. Le, J.L. DangerBakker
- "Improving differential power analysis by elastic alignment" (2011) by J.G.J. van Woudenberg, M.F. Witteman, B. Bakker
- "A general approach to power trace alignment for the assessment of side-channel resistance of hardened cryptosystems" (2012) by Q. Tian \& S.A. Huss

Information retrieval from leaked data:

- "Keyboard acoustic emanations revisited" (2005) by L. Zhuang, F. Zhou, J.D. Tygar
- "Acoustic side-channel attacks on printers" (2010) by M. Backes, M. Dürmuth, S. Gerling, M. Pinkal, C. Sporleder
- "Building a side channel based disassembler" (2010) by T. Eisenbarth, C. Paar, Björn Weghenkel
- "Automated black-box detection of side-channel vulnerabilities in web applications" (2011) by P. Chapman \& D. Evans
- "Current events: identifying webpages by tapping the electrical outlet" (2012) by S. S. Clark, B. A. Ransford, J. M. Sorber, W. Xu, E. G. Learned-Miller, K. Fu
- "Engineering statistical behaviors for attacking and defending covert channels" (2013) by V. Crespi, G. Cybenko, A. Giani

Conclusion

Machine learning

Retrieve meaningful information from vast amounts of leaked data.

Machine learning tools/concepts:

- Training/testing scheme
- Dimensionality reduction with PCA
- Clustering/classification with SVM
- Alignment with DTW
- Predicting/guessing usage patterns with HMM

Side channel applications

- Template based power analysis \& power trace alignment
- Acoustic analysis of computer peripherals

[^0]: 3"Improving Differential Power Analysis by Elastic Alignment", 2011, by J.G.J. van Woudenberg, M.F. Witteman, and B. Bakker

[^1]: 4"Keyboard Acoustic Emanations Revisited",2005, by L. Zhuang, F. Zhou, and J.D. Tygar

[^2]: 4"Keyboard Acoustic Emanations Revisited",2005, by L. Zhuang, F. Zhou, and J.D. Tygar

[^3]: 4"Keyboard Acoustic Emanations Revisited",2005, by L. Zhuang, F. Zhou, and J.D. Tygar

[^4]: 4"Keyboard Acoustic Emanations Revisited",2005, by L. Zhuang, F. Zhou, and J.D. Tygar

[^5]: 5"Acoustic Side-Channel Attacks on Printers",2010, by M. Backes, M. Dürmuth, S. Gerling, M. Pinkal, C. Sporleder

[^6]: 5"Acoustic Side-Channel Attacks on Printers",2010, by M. Backes, M. Dürmuth, S. Gerling, M. Pinkal, C. Sporleder

