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Processing Leaked Data
Traces are vectors representing a measured physical quantity as a
function of time, during the attacked operation. They containing
hundreds or more (often millions) of measurement points.

leaked data
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Machine Learning

Machine learning encompasses tools that perform smart analysis of
data, such as:

Discovery of useful, possibly unexpected, patterns in data
Non-trivial extraction of implicit, previously unknown and
potentially useful information from data
Exploration & analysis, by automatic or semi-automatic means,
of large quantities of data in order to discover meaningful
patterns

Common tasks include:
Dimensionality reduction
Clustering & Classification
Regression & Out-of-sample extension
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Quick Recap:
Correlation Power Analysis
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Quick Recap: Correlation Power Analysis

 

Key k -

Plaintext p -
Ciphertext-

C
C
C
C
C
CO

Internal value y = f (k , p)

Typical assumption:
power consumption correlates with Hamming Weight of y
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Quick Recap: Correlation Power Analysis

Plaintexts: Traces: Internal Vals.: Hamm. Wts.:

p1 - -� 00101001 - 3

... ... ... ...
pn - -� 10011011 - 5
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Quick Recap: Correlation Power Analysis
Traces matrix:
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Mutual Information:

general statistical correlation
(Entropy(x) + Entropy(y)− Entropy(x , y))
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Alternative Attack:
Template Power Analysis
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Template Power Analysis
Training: Learn traces of many plaintexts & keys
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Online: Attack using a single trace
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Template Power Analysis
Representing power traces as vectors

Traces are high-dimensional vectors, containing hundreds or more
(often millions) of measurement points.

:::: trace x ::::
(

x[1], x[2], · · · , x[m]
)
∈ Rm

Traces can be analyzed as vectors in the Euclidean space Rm with `2
norms & distances

Somewhat arbitrary representation, but effective and convenient
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Template Power Analysis
Learning & analyzing trace vectors

Template assumption: the positions of traces in Rm (with `2 norm)
correlate with the plaintext & key values that generated them

(p0, k0)
(p1, k1)

(p2, k2) (p3, k3)

Correlation is either directly seen or via some internal value
Ideally, correlation is expressed as clustering by plaintext & key

Theoretically, can detect clusters using machine learning tools too. Usually,
enough is known to classify traces into clusters; the challenge is to characterize
these clusters geometrically so we can check which cluster the online trace resides
in.
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Template Power Analysis
Example: classic TPA attack using Gaussian statistical modeling1

Model power consumption of encrypting plaintext p with key k as a
random variable ~X(k,p) ∼ N (~µ(k,p),Σ(k,p))

~X(k,p) is drawn from a multidimensional normal (Gaussian) distribution
~µ(k,p) ∈ Rm is the mean power consumption for k & p
Σ(k,p) is the m ×m noise covariance matrix for k & p
The likelihood of a trace ~x originating from k & p is
L(k,p)(~x) =

(
(2π)m|Σ(k,p)|

)−1/2 exp
(
− 1

2 (~x − ~µ(k,p))T Σ−1
(k,p)(~x − ~µ(k,p))

)
Attack single trace (with known plaintext p):

Compute likelihood of it originating from each key candidate (with p)
Choose key candidate with maximum likelihood

1“Template Attacks”, 2003, by S. Chari, J.R. Rao, and P. Rohatgi
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Template Power Analysis
Curse of dimensionality

Directly analyzing high-dimensional vectors is usually infeasible due to:

Curse of Dimensionality
A general term for various phenomena that arise when
analyzing/organizing high-dimensional data.

Common theme - difficult/impractical/impossible to obtain statistical
significance due to sparsity of the data in high-dimensions

Causes poor performance (computational complexity)

Causes poor results (bad estimates)

Common solution - use dimensionality reduction methods and analyze their
resulting embedded space.
Example: only use the ` < m time indices that provide the highest differences
between mean power consumptions of different key-plaintext pairs. This is
traditional differential power analysis.
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Dimensionality Reduction
with

Principal Component Analysis
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Dimensionality Reduction
Principal Component Analysis (PCA)
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Find:
max variance directions
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Dimensionality Reduction
Principal Component Analysis (PCA) - covariance matrix

times

tim
es Covariance

matrix =

traces                  

traces


cov(t1, t2) , ∑

i
tracei [t1] · tracei [t2]

18 / 59



Dimensionality Reduction
Principal Component Analysis (PCA) - spectral theorem

Eigenvalue
@
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λi

Eigenvector
HHHj

φi = Covariance
matrix φi

t1�
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Eigenvectors
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Covariance
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@
@
@
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6

Eigenvalues

Spectral theorem
applies to covariance

matrices:

SVD (Singular Value
Decomposition)

Spectral Theorem: cov(t1, t2) = ∑
i
λi φi (t1)φi (t2)
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Dimensionality Reduction
Principal Component Analysis (PCA) - truncated SVD

λ1 λ2 λ3 λ4 λ5

eigenvalues

Many datasets (incl. power traces) have a decaying cov. spectrum
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Eigenvalues

Approximate cov. matrix by truncating small eigenvalues from SVD
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Dimensionality Reduction
Principal Component Analysis (PCA) - example

Consider simple case of traces that are all on the same high
dimensional line

Straight line is defined by a unit vector
∥∥∥~ψ∥∥∥ = 1

Points on the line are defined by multiplying ~ψ by scalars
The traces can be formulated as xi = ci ~ψ

Covariance: cov(t1, t2) = ∑
i

xi [t1] xi [t2] = ∑
i

ci ~ψ[t1] ci ~ψ[t2] =

(∑
i

c2
i )~ψ[t1]~ψ[t2] = ‖~c‖2 ~ψ(t1)~ψ(t2) ~c , (c1, c2, . . .)

Covariance matrix has a single eigenvalue ‖~c‖2 and a single
eigenvector ~ψ, which defines principal direction of the trace-vectors

Covariance
Matrix = ψ

‖c‖2 ψ
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Dimensionality Reduction
Principal Component Analysis (PCA) - example
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principal components ⇒ max var directions
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Dimensionality Reduction
Principal Component Analysis (PCA) - projection

Projection on principal components:

Traces



Principal components    

3D space
6-
��

�
��

λ1φ1

7→
1D space

-
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Dimensionality Reduction
PCA algorithm

PCA algorithm:
1 Centering
2 Covariance
3 Eigendecomposition
4 Projection

Alternative method: Multi-Dimensional Scaling (MDS) - preserve
distances/inner-products with minimal set of coordinates.

Short tutorial on PCA & MDS:
www.cs.haifa.ac.il/∼rita/uml course/lectures/PCA MDS.pdf
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Dimensionality Reduction
Summary

... 7→PCA

Traces (high-dim. vectors): Projected traces
(low-dim. vectors):

Next task: how to find keys from the low-dimensional vectors?
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Clustering & Classification
with

Support Vector Machine
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Classification
Clustering

Cluster analysis
Clustering - the task of grouping
objects such that objects in the
same cluster are more similar to
each other than to those in other
clusters.

Learning types
Unsupervised learning:
Trying to find hidden
structures in unlabeled data.

Supervised learning:
Inferring functions from
labeled training data.
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Classification
Clustering & classification approaches

Classic TPA using Gaussian statistical models:
The analysis considers many clusters (one for each key-plaintext pair)

Clusters are assumed to look like normally distributed random variables
~X(k,p) ∼ N (~µ(k,p),Σ(k,p))

Requires many traces for each key-plaintext pair to compute ~µ(k,p) & Σ(k,p)

Simplified bit clustering with Support Vector Machine (SVM):
Classify each bit separately - only two classes are considered for each bit
Requires less training traces than classic TPA - traces are grouped by
bit values, not by the key value
No statistical assumptions required - geometric classification using a
separating hyperplane
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Classification
Simplified bit clustering - only two classes

(p0, k0)

(p1, k1)

(p2, k2) (p3, k3)

bit i of key
�
��

0 B
BBN

17→
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Classification
Support Vector Machine (SVM) - separation with hyperplane

b = 0

b = 1
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Classification
Support Vector Machine (SVM) - quantifying robustness with margins
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Classification
Support Vector Machine (SVM) - quantifying robustness with margins
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Classification
SVM formulation - hyperplane

�
�
�
�
�
�
�
�
�
��

HY 0
~w

~w · ~x > 0

~w · ~x < 0
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Classification
SVM formulation - hyperplane with margin
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  HY 0
~w

α

~w · ~x ≥ α

~w · ~x ≤ −α
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Classification
SVM formulation - shifted hyperplane with margin
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  HY ~u
~w

α

~w · ~x − c ≥ α

~w · ~x − c ≤ −α

c = ~w · ~u
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Classification
SVM algorithm

SVM training
Input:

Points {~xi} from PCA of the traces
Labels {bi} according to attacked bit:

bi =

1 bit is 0
−1 bit is 1

Solve the quadratic program (e.g., using Lagrange multipliers):

Find max α
s.t. ~w · ~xi − c ≥ biα

Output: the solution (~w , c , α)
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Classification
SVM algorithm

SVM classifier
Input:

New point ~x from PCA projection of attacked trace
The solution (~w , c , α) from SVM training

Classify by value of ~w · ~x − c :

attacked bit is 0︷ ︸︸ ︷ attacked bit is probably 1︷ ︸︸ ︷
︸ ︷︷ ︸

attacked bit is probably 0
︸ ︷︷ ︸

attacked bit is 1

−α
α
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Power Analysis with PCA & SVM
based on recent paper2

- PCA
���

@@R

SVM - 1st bit

...
SVM - 7th bit

Use single PCA & multiple SVMs (one per bit)
to learn traces (in training phase) and attack a key byte

PCA results (colored by specified bit values):

Effective SVM attack: SVM attack will fail:

Empirical results (on 3DES): desc. success rate (by bit position)
7th bit success rate: ∼95% −→ 1st bit success rate: ∼50%

2“Side channel attack: an approach based on machine learning”, 2011, by L.
Lerman, G. Bontempi, and O. Markowitch
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Power Trace Alignment
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Power Trace Alignment
Motivation

Power traces can be misaligned for several reasons, such as
Synchronization issues between the sampling devices and the
tested hardware
Clock variabilities and instabilities
Intentional countermeasures such as delays and modulations

Misaligned traces ⇒ incorrect/inaccurate correlations ⇒ wrong
classification and useless attacks
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Power Trace Alignment
Näıve approach: static alignment by time offset

Theoretically:

Use time offset
to align traces

a�
a-

Realistically:

Which offset to use?

a�
a-
a-
a�
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Power Trace Alignment
Machine-learning approach: adaptive alignment by Dynamic Time Warp (DTW)
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Power Trace Alignment
Using pairwise alignment in an attack

Training:
1 Acquire power traces
2 Choose reference trace (e.g., arbitrarily or use mean of all traces)
3 Align each trace to the reference trace using the pairwise

alignment
4 Apply training algorithm (e.g., PCA & SVM) to the aligned

traces

Online:
1 Acquire trace from attacked hardware
2 Align trace to the reference trace (from the training) using

pairwise alignment
3 Apply classification algorithm (e.g., PCA & SVM)
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Pairwise Power Trace Alignment
Trace x -

Tr
ac

e
y

6

a
a qe

H
HHH

HHHH��
��

i

j

x [i ]− y [j ]

Pairwise diff. matrix:
each cell holds difference
between two trace entries

Alignment path:
get from start to end
of both traces

1:1 alignment:
trivial - nothing modified
by the alignment

Aligned distance:

∑( )2
= ‖x − y‖2

Time offset:
works sometimes, but
not always optimal

Aligned distance:

∑( )2
=?

Extreme offset:
complete misalignment -
worst alignment
alternative

Aligned distance:

∑( )2
= ‖x‖2 + ‖y‖2

Optimal alignment:
Optimize alignment by
minimizing aligned
distance

Aligned distance:

∑( )2
= min
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Power Trace Alignment
Finding optimal pairwise alignment

Dynamic Programming
A method for solving complex problems by breaking them down
into simpler subproblems.
Applicable to problems exhibiting the properties of overlapping
subproblems and optimal substructure.
Better performances than naive methods that do not utilize the
subproblem overlap.
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Power Trace Alignment
Dynamic Time Warp (DTW)

Basic DTW Algorithm:
For each trace-time i and for each trace-time j :

Set cost ← (x [i ]− y [j ])2

Set the optimal distance at stage [i , j ] to:

DTW[i ,j] ← cost + min


DTW[i ,j−1]

DTW[i−1,j−1]
DTW[i−1,j]


Optimal distance: DTW[m,n] (where m & n are lengths of traces).

Optimal alignment: backtracking the path leading to DTW[m,n] via
min-cost choices of the algorithm

DTW[i ,j]

DTW[i−1,j−1]
�
���

DTW[i−1,j]

6

DTW[i ,j−1]
-
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Power Analysis with DTW-based Alignment
based on recent paper3

Use coarse-grained matrices to avoid bad/unreasonable portions:

Drill down by fine graining to approximate the optimal
alignment with quasi-linear time & space requirements

3“Improving Differential Power Analysis by Elastic Alignment”, 2011, by
J.G.J. van Woudenberg, M.F. Witteman, and B. Bakker
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Power Analysis with DTW-based Alignment
based on recent paper3

Experimental results:
Compare correlation DPA using 3 alignment methods:

Static: Simple static alignment by time offset
SW: Replace trace entries with avg. of sliding window

Not strictly an alignment method, but simple &
sometimes effective

DTW: Elastic alignment with DTW

3“Improving Differential Power Analysis by Elastic Alignment”, 2011, by
J.G.J. van Woudenberg, M.F. Witteman, and B. Bakker
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Power Analysis with DTW-based Alignment
based on recent paper3

Static:
SW:
DTW:

DES with stable clock

SW:
DTW:

DES with unstable clock

3“Improving Differential Power Analysis by Elastic Alignment”, 2011, by
J.G.J. van Woudenberg, M.F. Witteman, and B. Bakker
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Power Analysis with DTW-based Alignment
based on recent paper3

Static:
SW:
DTW:

DES with stable clock

SW:
DTW:

DES with unstable clock
3“Improving Differential Power Analysis by Elastic Alignment”, 2011, by

J.G.J. van Woudenberg, M.F. Witteman, and B. Bakker
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Analyzing Non-Cryptographic Leaks
with

Hidden Markov Model
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Information & Activity Leaks

Consider secret sequence of activities and leaked information with the
following properties:

Contains information about the secret sequence
Contains noise
Insufficient for directly recovering the secret information

If activities follow known statistical patterns, then an attacker can
“guess” secret sequence from noisy leaks.

Attack: find best hypothesis such that:
1 It matches the leaked data
2 Has high probability according to statistical distribution of

activity sequences
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Information & Activity Leaks
Can it work?

Leaked information can be used for more than cryptographic
purposes:

Users are predictable - most activities are similar & repetitive

Internet - common websites and surfing routines
Emails/documents - linguistic models
Passwords - most common password is “password”

Others examples: “querty”, “letmein”, “trustno1”, “dragon”,
“monkey”, “ninja”, and “jesus”.
News services often publish lists of most common passwords of
the year/month

Guess activities/information by detecting “reasonable” usage
patterns from leaked data

A statistical model of user activity profile can be used for this task.
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Markov Chain

Stochastic Process:

- fqi−2 - fqi−1 -

- mqi−2 - mqi−1 -

fqi �
�
���

qi+1
?= hy-

q i+
1
?=
hx

@
@
@@R

qi+1 ?= hz
Transition probabilities:

Pr [qi+1 =? | qi , qi−1, . . . , q2, q1]
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Markov Chain

Markov Process:

- fqi−2 - fqi−1 -

- mqi−2 - mqi−1 - fqi �
�
���

qi+1
?= hy-

q i+
1
?=
hx

@
@
@@R

qi+1 ?= hz
Transition probabilities (no history):

Pr [qi+1 = ? | qi ] = Pr [qi+1 = ? | qi , qi−1, . . . , q2, q1]
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Markov Chain
Keyboard structure & text auto-complete

- mt - me - mx - mt -
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Hidden Markov Model

?fo1
?fo2

?fo3
?fo4

- mh1 - mh2 - mh3 - mh4 -

Transition probabilities:
Pr [hi+1 =? | hi ]

Leak probabilities:
Pr [oi =? | hi ]
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Hidden Markov Model

?fo1
?fo2

?fo3
?fo4

- mh1 - mh2 - mh3 - mh4 -

Viterbi Algorithm
A dynamic programming algorithm for finding the most likely
sequence of hidden states, especially in the context of Hidden Markov
models.
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Acoustic Analysis of Keyboards
based on paper4

Typed text:HMM only:HMM & spelling corrections:

Password retrieval

4“Keyboard Acoustic Emanations Revisited”,2005, by L. Zhuang, F. Zhou,
and J.D. Tygar
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Acoustic Analysis of Keyboards
based on paper4

Typed text:HMM only:HMM & spelling corrections:

Password retrieval
4“Keyboard Acoustic Emanations Revisited”,2005, by L. Zhuang, F. Zhou,
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Acoustic Analysis of Printers
based on paper5

(Picture taken from URL:flylib.com/books/en/2.374.1.27/1/)
(Pictures taken from

URL:mindmachine.co.uk/book/print 06 dotmatrix overview01.html)

so
un

d
in

te
ns

ity

# of needles hitting the paper

5“Acoustic Side-Channel Attacks on Printers”,2010, by M. Backes, M.
Dürmuth, S. Gerling, M. Pinkal, C. Sporleder
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Acoustic Analysis of Printers
based on paper5

Training:
Feature extraction (split into words, noise reduction, etc.)
Construct DB with (word, sound) pairs

Online:
Feature extraction (same as in training)
For each word:

Sort DB by similarity/difference from recorded sound
Reorder DB by n-gram/word distribution using HMM
Guess printed word as the top candidate from reordered DB

5“Acoustic Side-Channel Attacks on Printers”,2010, by M. Backes, M.
Dürmuth, S. Gerling, M. Pinkal, C. Sporleder
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Other Activity Leaks

Other activity leaks to which machine learning (and other tools) are
applied:

Offensively:
Other cases of trace analysis (e.g., frequency domain)
Traffic analysis
Deanonymization

Defensively:
Authentication
Malware code detection
Malware command-and-control traffic detection
DDoS detection
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Further Reading I

Side-channel attacks using machine learning tools:
“Further hidden Markov model
cryptanalysis” (2005) by P.J. Green, R.
Noad, N.P. Smart
“Analyzing side channel leakage of
masked implementations with stochastic
methods” (2007) by K. Lemke-Rust & C.
Paar
“Side channel attacks on cryptographic
devices as a classification problem”
(2007) by P. Karsmakers, B. Gierlichs, K.
Pelckmans, K. De Cock, J. Suykens, B.
Preneel, B. De Moor
“Theoretical and practical aspects of
mutual information based side channel
analysis” (2009) by E. Prouff & M.
Rivain
“Cache-timing template attacks” (2009)
by B.B. Brumley & R.M. Hakala

“Machine learning in side-channel
analysis: a first study” (2011) by G.
Hospodar, B. Gierlichs, E. De Mulder, I.
Verbauwhede, J. Vandewalle
“Side channel attack: an approach based
on machine learning” (2011) by L.
Lerman, G. Bontempi, O. Markowitch
“Side channel cryptanalysis using
machine learning” (2012) by H. He, J.
Jaffe, & L. Zou
“PCA, eigenvector localization and
clustering for side-channel attacks on
cryptographic hardware devices” (2012)
by D. Mavroeidis, L. Batina, T. van
Laarhoven, E. Marchiori
“Efficient Template Attacks Based on
Probabilistic Multi-class Support Vector
Machines” (2013) by T. Bartkewitz & K.
Lemke-Rust
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Further Reading II
Trace alignment:

“Recovering secret keys from weak side
channel traces of differing lengths” (2008) by
C.D. Walter
“Side Channel Analysis enhancement: a
proposition for measurements
resynchronisation” (2011) N. Debande, Y.
Souissi, M. Nassar, S. Guilley, T.H. Le, J.L.
DangerBakker

“Improving differential power analysis by
elastic alignment” (2011) by J.G.J. van
Woudenberg, M.F. Witteman, B. Bakker
“A general approach to power trace alignment
for the assessment of side-channel resistance of
hardened cryptosystems” (2012) by Q. Tian &
S.A. Huss

Information retrieval from leaked data:
“Keyboard acoustic emanations revisited”
(2005) by L. Zhuang, F. Zhou, J.D. Tygar
“Acoustic side-channel attacks on printers”
(2010) by M. Backes, M. Dürmuth, S. Gerling,
M. Pinkal, C. Sporleder
“Building a side channel based disassembler”
(2010) by T. Eisenbarth, C. Paar, Björn
Weghenkel

“Automated black-box detection of
side-channel vulnerabilities in web applications”
(2011) by P. Chapman & D. Evans
“Current events: identifying webpages by
tapping the electrical outlet” (2012) by S. S.
Clark, B. A. Ransford, J. M. Sorber, W. Xu, E.
G. Learned-Miller, K. Fu
“Engineering statistical behaviors for attacking
and defending covert channels” (2013) by V.
Crespi, G. Cybenko, A. Giani
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Conclusion
Machine learning
Retrieve meaningful information from vast amounts of leaked data.

Machine learning tools/concepts:
Training/testing scheme
Dimensionality reduction with PCA
Clustering/classification with SVM
Alignment with DTW
Predicting/guessing usage patterns with HMM

Side channel applications
Template based power analysis & power trace alignment
Acoustic analysis of computer peripherals
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