
Information Security – Theory vs. Reality

0368-4474, Winter 2015-2016

Lecture 2: Architectural side-channels (2/2)

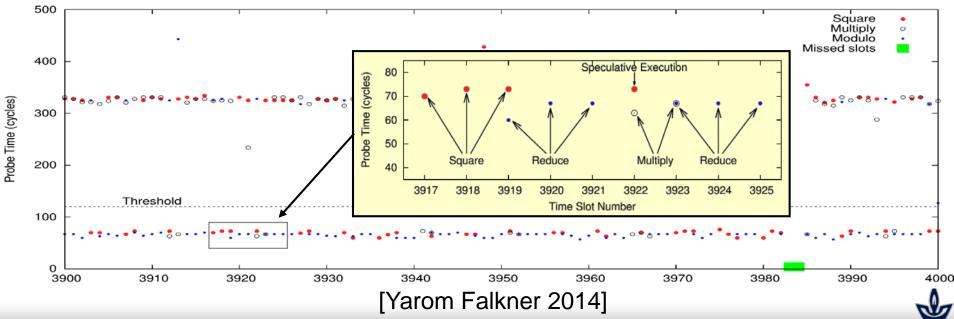
Lecturer: Eran Tromer

Course agenda

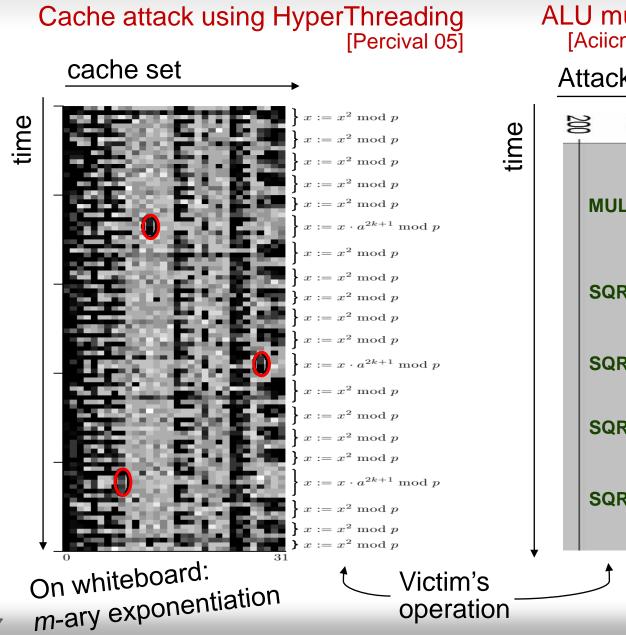
Architectural side-channel attacks (cont.)

- Target outermost cache, shared between all CPU cores (typically L3)
- RSA key extraction from GnuPG 1.4.13
- Target specific memory block (instead of cache set)
- Exploits memory deduplication (contentbased page sharing)
 - Common code, libraries, data across VMs
 - Supposedly safe (nominally, no new information flow)

L3 flush+reload attack (cont.)

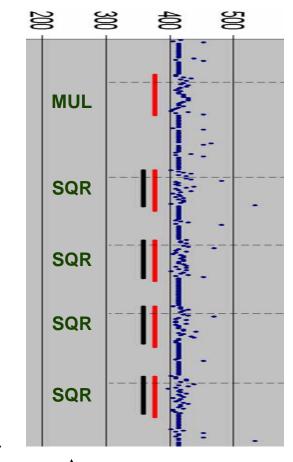

To measure a memory block *b*, the attacker:

- Achieve page sharing of *b* with victim
- Flush block b using x86 clflush instruction
 - Flushes block from all cache levels
 - Normally used for synchronization / performance
- Wait until victim runs
- Measure time to read the block *b*
 - Fast \rightarrow victim accessed b
 - Slow victim did not access b



L3 flush+reload attack on GnuPG's RSA

- GnuPG 1.4.13 uses square-and-multiply exponentiation.
- Repeatedly measure blocks in the code of the square, multiply and modulo routines.
- Read out the bits from the sequence during a single RSA decryption
 - multiply between adjacent square \rightarrow key bit is 1
 - No multiply between adjacent square \rightarrow key bit is 0



Other attacks on RSA

ALU multiplier attack [Aciicmez Seifert 2007]

Attacker's MUL time

7

Other architectural attacks

(Whiteboard discussion)

Covert channels Hardware, assisted	[Hu '91, '92]
 Hardware-assisted Power trace 	[Page '02]
 Timing attacks via internal collisions 	
	o Tsujihara Minematsu Miyuachi '02] oo Saito Suzaki Shigeri Miyauchi '03]
 Model-less timing attacks 	[Bernstein '04]
• RSA	[Percival '05]
 Exploiting the scheduler 	[Neve Seifrert '07]
 Improve temporal resolution by causing victim to get tiny time slice 	
Instruction cache	Aciicmez '07]
 Exploits difference between code paths 	
 Attacks are analogous to data cache attack 	
Branch prediction	[Aciicmez Schindler Koc '06–'07]
 Exploits difference in choice of code path 	
 BP state is a shared resource 	
ALU resources	[Aciicmez Seifert '07]
 Exploits contention for the multiplication units 	
 Many followups 	

8

Mitigation

(classroom discussion)