

### Information Security – Theory vs. Reality

0368-4474, Winter 2015-2016

#### Lecture 11: Fully homomorphic encryption

Lecturer: Eran Tromer

Including presentation material by Vinod Vaikuntanathan, MIT

### **Fully Homomorphic Encryption**

#### Confidentiality of static data: plain encryption





#### Confidentiality of data inside computation: Fully Homomorphic Encryption





#### **Fully Homomorphic Encryption**

- Goal: delegate computation on data without revealing it
- A confidentiality goal

Example 1: Private search

Delegate processing of data without revealing it

You: Encrypt the query, send to Google

(Google does not know the key, cannot "see" the query)

► Google: Encrypted query → Encrypted results (You decrypt and recover the search results)



#### **Example 2: Private Cloud Computing**

Delegate processing of data without revealing it





7

#### **Fully Homomorphic Encryption**



Security: semantic security / indistinguishability [GM82]



#### History of Fully Homomorphic Encryption

#### - First Defined:

"Privacy homomorphism" [Rivest Adleman Dertouzos 78] motivation: searching encrypted data



 $c_2 = m_2^e$ 

- Limited homomorphism:

  - GM & Paillier: additively homomorphic × plaintext in exponent multiply ciphertext → add plaintext
  - Quadratic formulas [BGN 05] [GHV 10]
- Non-compact homomorphic encryption:
  - Based on Yao garbled circuits
  - [SYY 99] [MGH 08]: c\* grows exp with degree/depth

 $c_1 = m_1^e$ 

[IP 07] branching programs



 $(m_1m_2m_3)^e$ 

 $(\mod n)$ 

 $c_3 = m_3^e$ 

#### **Fully Homomorphic Encryption**



#### Big Breakthrough: [Gentry09]

#### **First Construction of Fully Homomorphic Encryption**

using algebraic number theory & "ideal lattices"

# Full-semester course Today: an alternative construction [DGHV 10] using just integer addition and multiplication

- easier to understand, implement and improve

#### Constructing fully-homomoprhic encryption assuming hardness of approximate GCD





# **1.** Secret-key "Somewhat" Homomorphic Encryption (under the approximate GCD assumption)

(a simple transformation)

map

2. Public-key "Somewhat" Homomorphic Encryption (under the approximate GCD assumption)

(borrows from Gentry's techniques)

**3.** Public-key FULLY Homomorphic Encryption (under approx GCD + sparse subset sum)



#### **Secret-key Homomorphic Encryption**

- Secret key: a large odd number p (sec. param = n)
- - pick a random "large" multiple of p, say  $q \cdot p$  (q ~ n<sup>5</sup> bits)
  - pick a random "small" even number 2-r
  - Ciphertext c = q-p+2-r+b

("noise"

- To Decrypt a ciphertext c:
  - − c (mod p) = 2-r+b (mod p)
  - read off the least significant bit



 $(r \sim n bits)$ 

#### Secret-key Homomorphic Encryption

How to Add and Multiply Encrypted Bits:

– Add/Mult two near-multiples of p gives a near-multiple of p.

$$-\mathbf{c_1} = q_1 \cdot p + (2 \cdot r_1 + b_1), \ \mathbf{c_2} = q_2 \cdot p + (2 \cdot r_2 + b_2)$$

$$-c_{1}+c_{2} = \mathbf{p} \cdot (\mathbf{q}_{1} + \mathbf{q}_{2}) + \frac{2 \cdot (\mathbf{r}_{1}+\mathbf{r}_{2}) + (\mathbf{b}_{1}+\mathbf{b}_{2})}{\mathbf{LSB} = \mathbf{b}_{1} \text{ XOR } \mathbf{b}_{2}} \quad \text{(P)}$$

$$-c_{1}c_{2} = \mathbf{p} \cdot (c_{2} \cdot q_{1} + c_{1} \cdot q_{2} - q_{1} \cdot q_{2}) + \underbrace{2 \cdot (r_{1}r_{2} + r_{1}b_{2} + r_{2}b_{1}) + b_{1}b_{2}}_{\text{LSB}} \ll \mathbf{p}$$





#### O Ciphertext grows with each operation

Useless for many applications (cloud computing, searching encrypted e-mail)

#### Noise grows with each operation

- Consider  $c = qp+2r+b \leftarrow Enc(b)$ 





#### O Ciphertext grows with each operation

Useless for many applications (cloud computing, searching encrypted e-mail)

#### Noise grows with each operation

- Can perform "limited" number of hom. operations
- What we have: "Somewhat Homomorphic" Encryption



#### **Public-key Homomorphic Encryption**

Secret key: an n<sup>2</sup>-bit odd number p

Public key:  $[q_0p+2r_0,q_1p+2r_1,...,q_tp+2r_t] \stackrel{\Delta}{=} (x_0,x_1,...,x_t)$ 

- t+1 encryptions of 0

– Wlog, assume that  $x_0$  is the largest of them

#### • To Decrypt a ciphertext c:

- c (mod p) = 2-r+b (mod p) = 2-r+b

- read off the least significant bit



#### Public-key Homomorphic Encryption

Secret key: an n<sup>2</sup>-bit odd number p

Public key:  $\left[\mathbf{q_0p+2r_0,q_1p+2r_1,\ldots,q_tp+2r_t}\right] \stackrel{\Delta}{=} (x_0,x_1,\ldots,x_t)$ 

**2** To Encrypt a bit **b**: pick random subset  $S \subseteq [1...t]$ 

$$c = \sum_{i \in S} x_i + 2r + b \pmod{x_0}$$

• To Decrypt a ciphertext c:

- c (mod p) = 2-r+b (mod p) = 2-r+b

- read off the least significant bit



#### Public-key Homomorphic Encryption

Secret key: an n<sup>2</sup>-bit odd number p

Public key:  $\left[\mathbf{q_0p+2r_0,q_1p+2r_1,\ldots,q_tp+2r_t}\right] \stackrel{\Delta}{=} (x_0,x_1,\ldots,x_t)$ 

**2** To Encrypt a bit **b**: pick random subset  $S \subseteq [1...t]$ 

$$\mathbf{c} = \sum_{i \in S} x_i + 2r + \mathbf{b} \pmod{\mathbf{x}_0}$$

 $\mathbf{c} = \mathbf{p} \left[ \sum_{i \in S} q_i \right] + \mathbf{2} \left[ r + \sum_{i \in S} r_i \right] + \mathbf{b} (\mathsf{mkox}_{G}) (\mathsf{f}_{G}) r \text{ a small k} \right]$  $= \mathbf{p} \left[ \sum_{i \in S} q_i - kq_0 \right] + \mathbf{2} \left[ r + \sum_{i \in S} r_i - kr_0 \right] + \mathbf{b}$  $(\mathsf{mult. of p}) + (\mathsf{"small" even noise}) + \mathbf{b}$ 

# Public-key Homomorphic Encryption Ciphertext Size Reduction

Secret key: an n<sup>2</sup>-bit odd number p

Public key:  $[q_0p+2r_0,q_1p+2r_1,...,q_tp+2r_t] \stackrel{\Delta}{=} (x_0,x_1,...,x_t)$ 

**2** To Encrypt a bit **b**: pick random subset  $S \subseteq [1...t]$ 

$$c = \sum_{i \in S} x_i + 2r + b \pmod{x_0}$$

• To Decrypt a ciphertext c:

 $-c \pmod{p} = 2 \cdot r + b \pmod{p} = 2 \cdot r + b$ 

- read off the least significant bit

#### O Eval: Reduce mod x<sub>0</sub> after each operation

(\*) additional tri

# Public-key Homomorphic Encryption Ciphertext Size Reduction

Secret key: an n<sup>2</sup>-bit odd number p

Public key:  $[q_0p+2r_0,q_1p+2r_1,...,q_tp+2r_t] \stackrel{\Delta}{=} (x_0,x_1,...,x_t)$ 

- Resulting ciphertext <  $x_0$ 

- Underlying bit is the same (since x<sub>0</sub> has even noise)

(\*) additional tr

- Noise does not increase by much(\*)

- read on least significant bit

#### O Eval: Reduce mod x<sub>0</sub> after each operation



#### How "Somewhat" Homomorphic is this?

Can evaluate (multi-variate) polynomials with m terms, and maximum degree d if d << n.

$$m \cdot 2^{nd} < p/2 = 2^{n^2}/2$$
 or  $d \sim n$ 

$$f(x_1, \dots, x_t) = \underbrace{x_1 \cdot x_2 \cdot x_d}_{\eta} + \dots + \underbrace{x_2 \cdot x_5 \cdot x_{d-2}}_{\eta}$$
  
m terms

Say, noise in  $Enc(x_i) < 2^n$ Final Noise ~  $(2^n)^d + ... + (2^n)^d = m^{\bullet}(2^n)^d$ 



#### Bootstrapping: from "somewhat HE" to "fully HE"

# Decrypt-then-NAND circuit



#### Bootstrapping: from "somewhat HE" to "fully HE"

**Theorem [Gentry'09]:** Convert "bootstrappable"  $\rightarrow$  FHE.



#### Is our Scheme "Bootstrappable"?



some of the decryption outside the decryption circuit (Following [Gentry 09])

Caveat: Assume Hardness of "Sparse Subset Sum"



# Security

#### (of the "somewhat" homomorphic scheme)





The Approximate GCD Assumption







#### Assumption: no PPT adversary can guess the number p

(proof of security)

Semantic Security [GM'82]: no PPT adversary can guess the bit b







### **Progress in FHE**

#### ► "Galactic" → "Efficient"

Asymptotically: nearly *linear-time*\* algorithms Practically:

- Implementations, including bootstrapping and "packing" github.com/shaih/HElib github.com/lducas/FHEW
- a few milliseconds for Enc, Dec [LNV'11,Gentry Halevi Smart '11]
- a few minutes (amortized) for evaluating an AES block [GHS '12]
- single bootstrapping < 1 second [Ducas Micciancio '14]</p>
- bootstrapping takes 5.5 minutes and allows a "payload" of depth 9 computation on  $GF(2^{16})^{1024}$  vectors

#### Strange assumptions → Mild assumptions

– **Best Known [BGV11]**: (leveled) FHE from worst-case hardness of  $n^{O(\log n)}$ -approx short vectors on lattices

#### **Multi-key FHE**







Correctness: Dec(sk<sub>1</sub>,sk<sub>2</sub> y)= $f(x_1,x_2)$ 



# **Fully Homomorphic Encryption**

Whiteboard discussion:

- Properties
- Performance
- Contrast with obfuscation
- Usefulness

#### Protecting memory using Oblivious RAM

#### Motivation: memory/storage attacks

- Physical attacks
  - Memory/storage is on a physical separate device (DRAM chip, SD card, hard disk, ...)
  - Communication between CPU and device is easy to tap
  - Memory/storage device may be under attack or stolen
    - Aggravated by data remanence problem
- Software side channels
  - Leakage of accesses memory addresses across software confinement boundaries (via data cache, instruction cache, page table, ...)
- Network attacks



- External storage (file server, Network Attached Storage, cloud service, ...)
- Remote server/appliance/provider may be compromised



#### Protecting against memory attack

- Computation model:
  - Random access memory
  - Small processor (logarithmic in memory size)
- Leakage/tampering model:
  - All memory accesses (both data and address) leak or are corrupted arbitrary (relaxation: by polytime adversary)
  - Processor assumed secure
- Goal: a compiler that converts any program into one that resists memory attacks
  - Functionality: input/output precisely preserved
  - Security: privacy against leakage [MR04] with suitable (restricted) circuit classes and admissible functions

#### Protecting memory content from leakage

# Encrypt the whole memory as a single message

- Encrypt every block separately
- INSECURE encrypt block data using AES

# **INSECURIE** ncrypt block number + data using AES

- encrypt block using semantically-secure
  (probabilistic encryption
- Keep the decryption key inside the secure processor



Protecting memory content from corruption

Sign every block, keep the signing key inside the secure processor

# Hash every block, keep digests inside the secure processor

- Using Merkle trees
  - Maintain a Merkle hash tree over the memory
  - Merkle nodes stored in the unstrusted memory
  - Merkle root stored in secure processor
  - At every read, processor verifies Merkle path
  - At every write, update Merkle path



#### Oblivious RAM [Goldreich Ostrovsky '96]... Protecting against memory access leakage

## Compile any program *P* and memory size *n* into a new program *P'*, such that: (this definition follows [Chung Pass 2013]) For any *P* with memory size *n*, and input *x*:

- Correctness: P'(x) = P(x) (up to some small failure probability)
- Efficiency:
  - P' on x runs c(n) times longer than P on x, where  $c(\cdot)$  is the <u>computational</u> <u>overhead</u>
  - P' uses memory of size  $m(n) \cdot n$ , where  $m(\cdot)$  is the memory overhead
  - Extra registers in secure processor
- Obliviousness (security): For any P<sub>1</sub>, P<sub>2</sub> with memory size n, and inputs x<sub>1</sub>, x<sub>2</sub>, such that the number of memory accesses done by P<sub>1</sub> on x<sub>1</sub> is the same as P<sub>2</sub> on x<sub>2</sub>, the (address, val) memory transcript of P'<sub>1</sub> on x<sub>1</sub> is statistically close to that of P'<sub>2</sub> on x<sub>2</sub>.

#### "Simple ORAM" construction

Given a progam *P* and memory size *n*, output *P'*: *P'* proceeds like *P*, except:

- $read(r) \mapsto 0read(r)$
- write(r, val)  $\mapsto$  Owrite(r, val)
- Memory divided into <u>blocks</u> of size  $\alpha$ .
- External memory holds a complete binary tree of depth  $d = \log\left(\frac{n}{a}\right)$
- *Pos* maps each memory blocks *b* to a leaf *pos*.

Invariant: the content of block b is stored somewhere along path to pos.

- Each node contains a <u>bucket</u>: at most *K* tuples (*b*, *pos*, *data*) where *b* is a block index and *v* is the block's data.
   (*K* = polylog(*n*))
- All registers and memory are initialized to  $\perp$ .



[Chung Pass '13]

#### Simple ORAM" construction: reading

Oread(r):

- *b* is *r*'s block
- $pos \leftarrow Pos[b]$
- Fetch r's block by traversing path from root to pos looking for a tuple (b, pos, v). (if not found, output ⊥)
- <u>Update map</u> Pos[b] ← pos' chosen at random.
- Put back (b, pos', v) into the root's bucket. (if overflow, output ⊥)
- <u>Flush</u> tuples down a path to a random *pos*\*, as far as they can go while consistent with invariant. (if overflow, output ⊥)



Position Map Pos

Obliviousness: each *Oread* operation traverses the tree along two paths that are chosen at random and independently of the history so far (doing a single read and single write at every node).

#### Simple "ORAM" construction: further details

- Writing: Owrite(r, val): same as Oread(r) except we put back the updated (b, pos', v').
- Storing the position map
  - Problem: the position map is too large.
  - Solution ("full-fledged construction"): recursively stored the position map in a smaller oblivious RAM (same K but smaller memory).
- <u>Correctness</u>:

Obvious as long as overflows don't happen. Easy probabilistic analysis shows that overflows happen with negligible probability (for suitable parameters  $\alpha$  and K). See [Chung Pass '13 – "A Simple ORAM"] for details.

• Overheads: all polylogarithmic. O(1) registers suffice.

#### Other ORAMs

- Lower bound: log(n) computational overhead.
- There are several variants of such "path ORAM", and others.
- Implemented in software, FPGA hardware.

