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Fully Homomorphic Encryption
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Confidentiality of static data: plain encryption

x1
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Confidentiality of data inside computation:
Fully Homomorphic Encryption
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Fully Homomorphic Encryption

• Goal: delegate computation on data without 
revealing it

• A confidentiality goal
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Example 1: Private search

Delegate processing of data
without revealing it

► You: Encrypt the query,
send to Google

(Google does not know the key,
cannot “see” the query)

► Google: Encrypted query →
Encrypted results

(You decrypt and recover the
search results)
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Example 2: Private Cloud Computing

Delegate processing of data
without revealing it

(Input: x) (Program: P)
(Enc(x), P) → Enc(P(x))

Encrypt x
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Fully Homomorphic Encryption

Encrypted x, Program P → Encrypted P(x)

Definition: (KeyGen, Enc, Dec, Eval)
(as in regular public/private-key encryption)

– If c = Enc(PK, x) and c′ = Eval (PK, c, P),

 Compactness: Length of c′ independent of size of P

 Security: semantic security / indistinguishability [GM82]

 Correctness of Eval: For every input x, program P

then Dec (SK, c’) = P(x).
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History of Fully Homomorphic Encryption
– First Defined: 

“Privacy homomorphism”
[Rivest Adleman Dertouzos 78]

motivation: searching encrypted data
• Limited homomorphism:

• RSA & El Gamal: multiplicatively homomorphic
multiply ciphertexts ↦ multiply plaintext

• GM & Paillier: additively homomorphic
plaintext in exponent
multiply ciphertext ↦ add plaintext

• Quadratic formulas
[BGN 05] [GHV 10]

𝑐𝑐1 = 𝑚𝑚1
𝑒𝑒 𝑐𝑐2 = 𝑚𝑚2

𝑒𝑒 𝑐𝑐3 = 𝑚𝑚3
𝑒𝑒

×
𝑐𝑐∗ ≡ 𝑐𝑐1𝑐𝑐2𝑐𝑐3 ≡

𝑚𝑚1𝑚𝑚2𝑚𝑚3
𝑒𝑒

(mod 𝑛𝑛)

• Non-compact homomorphic encryption:
• Based on Yao garbled circuits
• [SYY 99] [MGH 08]: c* grows exp with degree/depth
• [IP 07] branching programs

Since 1978

Eval: P, Enc(x) → Enc(P(x))
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Fully Homomorphic Encryption

– using just integer addition and multiplication

►Full-semester course
►Today: an alternative construction [DGHV 10]

Big Breakthrough: [Gentry09]

First Construction of Fully Homomorphic Encryption
using algebraic number theory & “ideal lattices”

– easier to understand, implement and improve

Since 1978

Eval: P, Enc(x) → Enc(P(x))
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Constructing

fully-homomoprhic encryption
assuming

hardness of approximate GCD
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A Roadmap

1. Secret-key “Somewhat” Homomorphic Encryption
(under the approximate GCD assumption)

2. Public-key “Somewhat” Homomorphic Encryption
(under the approximate GCD assumption)

3. Public-key FULLY Homomorphic Encryption
(under approx GCD + sparse subset sum)

(a simple transformation)

(borrows from Gentry’s techniques)

12
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Secret-key Homomorphic Encryption

 Secret key: a large  n2-bit odd number p

 To Encrypt a bit b:
– pick a random “large” multiple of p, say q·p

– pick a random “small” even number 2·r

– Ciphertext c = q·p+2·r+b

 To Decrypt a ciphertext c:

– c (mod p) = 2·r+b (mod p) = 2·r+b

– read off the least significant bit

(q ~ n5 bits)
(r ~ n bits)

“noise”

(sec. param = n)
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Secret-key Homomorphic Encryption

 How to Add and Multiply Encrypted Bits:

– Add/Mult two near-multiples of p gives a near-multiple of p.

– c1 = q1·p + (2·r1 + b1), c2 = q2·p + (2·r2 + b2)

– c1+c2 = p·(q1 + q2) + 2·(r1+r2) + (b1+b2) « p

– c1c2 = p·(c2·q1+c1·q2-q1·q2) + 2·(r1r2+r1b2+r2b1) + b1b2 « p

LSB = b1 XOR b2

LSB = b1 AND b2
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Problems

 Ciphertext grows with each operation

 Noise grows with each operation

 Useless for many applications (cloud computing, 
searching encrypted e-mail)

– Consider c = qp+2r+b ← Enc(b)

(q-1)p qp (q+1)p (q+2)p

2r+b
– c (mod p) = r’ ≠ 2r+b

r’– lsb(r’) ≠ b
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Problems

 Ciphertext grows with each operation

 Noise grows with each operation

 Useless for many applications (cloud computing, 
searching encrypted e-mail)

 Can perform “limited” number of hom. operations

What we have: “Somewhat Homomorphic” Encryption
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Public-key Homomorphic Encryption

 Secret key: an n2-bit odd number p

 To Decrypt a ciphertext c:

– c (mod p) = 2·r+b (mod p) = 2·r+b

– read off the least significant bit

 Eval (as before)

Public key: [q0p+2r0,q1p+2r1,…,qtp+2rt] = (x0,x1,…,xt)

– t+1 encryptions of 0

Δ

– Wlog, assume that x0 is the largest of them
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c = + b (mod x0)

Public-key Homomorphic Encryption

rx
Si

i 2+∑
∈

 Secret key: an n2-bit odd number p

 To Decrypt a ciphertext c:

– c (mod p) = 2·r+b (mod p) = 2·r+b

– read off the least significant bit

 Eval (as before)

Public key: [q0p+2r0,q1p+2r1,…,qtp+2rt] = (x0,x1,…,xt)

 To Encrypt a bit b: pick random subset S     [1…t]

Δ

⊆
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c = + b (mod x0)

Public-key Homomorphic Encryption

rx
Si

i 2+∑
∈

 Secret key: an n2-bit odd number p

Public key: [q0p+2r0,q1p+2r1,…,qtp+2rt] = (x0,x1,…,xt)

 To Encrypt a bit b: pick random subset S     [1…t]

Δ

⊆

c = p[        ] + 2[         ] + b (mod x0) ∑
∈Si

iq ∑
∈

+
Si

irrc = p[        ] + 2[         ] + b – kx0 (for a small k) ∑
∈Si

iq ∑
∈

+
Si

irr

= p[             ] + 2[               ] + b 0kqq
Si

i −∑
∈

0krrr
Si

i −+∑
∈

(mult. of p) + (“small” even noise) + b 
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c = + b (mod x0)rx
Si

i 2+∑
∈

Public-key Homomorphic Encryption

 Secret key: an n2-bit odd number p

 To Decrypt a ciphertext c:

– c (mod p) = 2·r+b (mod p) = 2·r+b

– read off the least significant bit

 Eval: Reduce mod x0 after each operation

 To Encrypt a bit b: pick random subset S     [1…t]⊆

Ciphertext Size Reduction

Public key: [q0p+2r0,q1p+2r1,…,qtp+2rt] = (x0,x1,…,xt)
Δ

(*) additional tricks for mult
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c = + b (mod x0)rx
Si

i 2+∑
∈

Public-key Homomorphic Encryption

 Secret key: an n2-bit odd number p

 To Decrypt a ciphertext c:

– c (mod p) = 2·r+b (mod p) = 2·r+b

– read off the least significant bit

 Eval: Reduce mod x0 after each operation

 To Encrypt a bit b: pick random subset S     [1…t]⊆

Ciphertext Size Reduction

– Resulting ciphertext < x0

– Underlying bit is the same (since x0 has even noise)

– Noise does not increase by much(*)

Public key: [q0p+2r0,q1p+2r1,…,qtp+2rt] = (x0,x1,…,xt)
Δ

(*) additional tricks for mult
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A Roadmap

 Secret-key “Somewhat” Homomorphic Encryption

 Public-key “Somewhat” Homomorphic Encryption

3. Public-key FULLY Homomorphic Encryption
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How “Somewhat” Homomorphic is this?

Can evaluate (multi-variate) polynomials with m terms, 
and maximum degree d if  d << n.

f(x1, …, xt) = x1·x2·xd + … + x2·x5·xd-2

Final Noise ~ (2n)d+…+(2n)d = m•(2n)d

Say, noise in Enc(xi) < 2n

2/22/2
2nnd pm =<⋅ or nd ~

m terms
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Bootstrapping:
from “somewhat HE” to “fully HE”

Decrypt-then-NAND 
circuit

Dec Dec

NAND

c1 sk skc2
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“Somewhat” HE“Bootstrappable”

Bootstrapping:
from “somewhat HE” to “fully HE”

FHE = Can eval all circuits

Theorem [Gentry’09]: Convert “bootstrappable” → FHE.

Decrypt-then-NAND 
circuit

Dec Dec

NAND

c1 sk skc2
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Is our Scheme “Bootstrappable”?

What functions can the scheme evaluate?

Complexity of the Decrypt-then-NAND circuit

⊇(?)

Can be made bootstrappable by “preprocessing” 
some of the decryption outside the decryption 
circuit (Following [Gentry 09])

Caveat: Assume Hardness of “Sparse Subset Sum”

(polynomials of degree < n)

(degree ~ n1.73 polynomial)
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Security
(of the “somewhat” homomorphic scheme)
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The Approximate GCD Assumption

q1p+r1

p?

p
q1 ← [0…Q]
r1 ← [-R…R]

odd p ← [0…P]

(q1p+r1,…, qtp+rt)

Assumption: no PPT adversary can guess the number p

Parameters of the Problem: Three numbers P,Q and R
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p?
p

Assumption: no PPT adversary can guess the number p

Semantic Security [GM’82]: no PPT adversary can guess the bit b

PK =(q0p+2r0,{qip+2ri})

Enc(b) =(qp+2r+b)

=(proof of security)

(q1p+r1,…, qtp+rt)
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Progress in FHE

►“Galactic” → “Efficient”
Asymptotically: nearly linear-time* algorithms

► Strange assumptions → Mild assumptions

Practically:
– Implementations, including bootstrapping and “packing”     
github.com/shaih/HElib github.com/lducas/FHEW

– a few milliseconds for Enc, Dec [LNV’11,Gentry Halevi Smart ‘11]
– a few minutes (amortized) for evaluating an AES block [GHS ‘12]
– single bootstrapping < 1 second [Ducas Micciancio '14]
– bootstrapping takes 5.5 minutes and allows a “payload” of 

depth 9 computation on 𝐺𝐺𝐺𝐺 216 1024 vectors

*linear-time in the security parameter

– Best Known [BGV11]: (leveled) FHE from worst-case 
hardness of  nO(log n)-approx short vectors on lattices

30
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Multi-key FHE

Function
f

x1

x2

sk1, pk1

sk2, pk2
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Multi-key FHE

Function
f

x1

y = Eval(f,c1,c2)

Dec(sk1,sk2 y)=f(x1,x2)
Correctness:

x2

sk1, pk1

sk2, pk2

Dec
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Fully Homomorphic Encryption

Whiteboard discussion:
• Properties
• Performance
• Contrast with obfuscation
• Usefulness
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Protecting memory using 
Oblivious RAM
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Motivation: memory/storage attacks

• Physical attacks
– Memory/storage is on a physical separate device (DRAM chip, SD 

card, hard disk, …)
– Communication between CPU and device is easy to tap
– Memory/storage device may be under attack or stolen

• Aggravated by data remanence problem

• Software side channels
– Leakage of accesses memory addresses across software 

confinement boundaries (via data cache, instruction cache, page 
table, …)

• Network attacks
– External storage (file server, Network Attached Storage, cloud 

service, …)
– Remote server/appliance/provider may be compromised
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Protecting against memory attack

• Computation model:
– Random access memory
– Small processor (logarithmic in memory size)

• Leakage/tampering model:
– All memory accesses (both data and address) leak or are 

corrupted arbitrary (relaxation: by polytime adversary)
– Processor assumed secure

• Goal: a compiler that converts any program into one 
that resists memory attacks
– Functionality: input/output precisely preserved
– Security: privacy against leakage [MR04] with suitable 

(restricted) circuit classes and admissible functions
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Protecting memory content from leakage

• Encrypt the whole memory as a single 
message

• Encrypt every block separately
– encrypt block data using AES 
– encrypt block number + data using AES 
– encrypt block using semantically-secure 

(probabilistic encryption
• Keep the decryption key inside the secure 

processor
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Protecting memory content from corruption

• Sign every block, keep the signing key inside 
the secure processor

• Hash every block, keep digests inside the 
secure processor

• Using Merkle trees
– Maintain a Merkle hash tree over the memory
– Merkle nodes stored in the unstrusted memory
– Merkle root stored in secure processor
– At every read, processor verifies Merkle path
– At every write, update Merkle path
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Oblivious RAM [Goldreich Ostrovsky ‘96]…
Protecting against memory access leakage

Compile any program 𝑷𝑷 and memory size 𝒏𝒏 into a new 
program 𝑷𝑷𝑷, such that:       (this definition follows [Chung Pass 2013])

For any 𝑃𝑃 with memory size 𝑛𝑛, and input 𝑥𝑥:
• Correctness: 𝑃𝑃𝑃(𝑥𝑥)=𝑃𝑃(𝑥𝑥) (up to some small failure probability)

• Efficiency:
– 𝑃𝑃′ on 𝑥𝑥 runs 𝑐𝑐 𝑛𝑛 times longer than 𝑃𝑃 on 𝑥𝑥, where 𝑐𝑐(⋅) is the computational 

overhead
– 𝑃𝑃′ uses memory of size 𝑚𝑚 𝑛𝑛 ⋅ 𝑛𝑛,where 𝑚𝑚(⋅) is the memory overhead
– Extra registers in secure processor

• Obliviousness (security):
For any 𝑃𝑃1, 𝑃𝑃2 with memory size 𝑛𝑛, and inputs 𝑥𝑥1, 𝑥𝑥2,

the (address,val) memory transcript of 𝑃𝑃1′ on 𝑥𝑥1 is 
statistically close to that of 𝑃𝑃2′ on 𝑥𝑥2.

such that the number of memory accesses done by 𝑃𝑃1 on 𝑥𝑥1
is the same as 𝑃𝑃2 on 𝑥𝑥2,
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“Simple ORAM” construction [Chung Pass ‘13]

Given a progam 𝑃𝑃 and memory size 𝑛𝑛, output 𝑃𝑃𝑃:
𝑃𝑃𝑃 proceeds like 𝑃𝑃, except:
• 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑟𝑟) ↦ 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑟𝑟)
• write(𝑟𝑟, 𝑣𝑣𝑣𝑣𝑣𝑣) ↦ Owrite(𝑟𝑟, 𝑣𝑣𝑣𝑣𝑣𝑣)
• Memory divided into blocks of size 𝛼𝛼.

• External memory holds a complete binary tree of depth 𝑑𝑑 = log 𝑛𝑛
𝛼𝛼

• 𝑃𝑃𝑃𝑃𝑃𝑃 maps each memory blocks 𝑏𝑏 to a leaf 𝑝𝑝𝑝𝑝𝑝𝑝.
Invariant: the content of block 𝑏𝑏 is stored somewhere along path to 𝑝𝑝𝑝𝑝𝑝𝑝.
• Each node contains a bucket: at most 𝐾𝐾 tuples (𝑏𝑏,𝑝𝑝𝑝𝑝𝑝𝑝,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) where 𝑏𝑏 is a 

block index and 𝑣𝑣 is the block’s data.
( 𝐾𝐾 = polylog 𝑛𝑛 )

• All registers and memory are initialized to ⊥.
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Simple ORAM” construction: reading

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑟𝑟):
• 𝑏𝑏 is 𝑟𝑟’s block
• 𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑃𝑃𝑃𝑃𝑃𝑃[𝑏𝑏]
• Fetch 𝑟𝑟’s block by traversing path 

from root to 𝑝𝑝𝑝𝑝𝑝𝑝 looking for a tuple 
(𝑏𝑏,𝑝𝑝𝑝𝑝𝑝𝑝, 𝑣𝑣). (if not found, output ⊥)

• Update map 𝑃𝑃𝑃𝑃𝑃𝑃 𝑏𝑏 ← 𝑝𝑝𝑝𝑝𝑝𝑝𝑝 chosen 
at random.

• Put back 𝑏𝑏,𝑝𝑝𝑝𝑝𝑠𝑠′, 𝑣𝑣 into the root’s 
bucket.      (if overflow, output ⊥)

• Flush tuples down a path to a 
random 𝑝𝑝𝑝𝑝𝑠𝑠∗, as far as they can go 
while consistent with invariant.
(if overflow, output ⊥)

Obliviousness: each 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 operation traverses the tree along two 
paths that are chosen at random and independently of the history so far 
(doing a single read and single write at every node).
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Simple “ORAM” construction: further details
• Writing:

𝑂𝑂𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤(𝑟𝑟, 𝑣𝑣𝑣𝑣𝑣𝑣):
same as 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑟𝑟 except we put back the updated 𝑏𝑏,𝑝𝑝𝑝𝑝𝑠𝑠′, 𝑣𝑣′ .

• Storing the position map
– Problem: the position map is too large.
– Solution (“full-fledged construction”):

recursively stored the position map in a smaller oblivious RAM (same 𝐾𝐾 but smaller 
memory). 

• Correctness:
Obvious as long as overflows don’t happen. Easy probabilistic analysis 
shows that overflows happen with negligible probability (for suitable 
parameters 𝛼𝛼 and 𝐾𝐾). See [Chung Pass ’13 – “A Simple ORAM”] for details.

• Overheads: all polylogarithmic. 𝑂𝑂(1) registers suffice.

Other ORAMs
• Lower bound: log(𝑛𝑛) computational overhead. 
• There are several variants of such “path ORAM”, and others.
• Implemented in software, FPGA hardware.
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