W

TEL AVIV UNIVERSITY

Information Security — Theory vs. Reality

0368-4474, Winter 2015-2016

Lecture 11:
Fully homomorphic encryption

Lecturer:
Eran Tromer

Including presentation material by
Vinod Vaikuntanathan, MIT

Fully Homomorphic Encryption

Confidentiality of static data: plain encryption

Confidentiality of data inside computation:
Fully Homomorphic Encryption

Fully Homomorphic Encryption

 Goal: delegate computation on data without
revealing It

* A confidentiality goal

Example 1: Private search

Delegate processing of data

without revealing it

» You: Encrypt the query,
send to Google

(Google does not know the key,
cannot “see” the query)

» Google: Encrypted query —

Encrypted results
(You decrypt and recover the

search results)

—

Ci

E

Example 2: Private Cloud Computing

Delegate processing of data

without revealing it

Encrypt x

gEnc(x), P) — Enc(P(x))

(Program: P)

Fully Homomorphic Encryption

Encrypted x, Program P — Encrypted P(x)

Definition: (KeyGen, Enc, Dec, Eval)
— _/

(as in regular put?ﬁg/private-key encryption)
 Correctness of Eval: For every input x, program P

—1f ¢ = Enc(PK, x) and ¢’ = Eval (PK, c, P),
then Dec (SK, c’) = P(x).

d Compactness: Length of ¢’ independent of size of P

1 Security: semantic security / indistinguishability [Gms2]

8 W

History of Fully Homomorphlc Encryption

— First Defined: V .H.N'TED:
“Privacy homomorphism” Since 1978

[Rivest Adleman Dertouzos 78]

motivation: searching encrypted data =~
« Limited homomorphism:

 RSA & El Gamal: multiplicatively homomorphic

e Quadratic formulas
[BGN 05] [GHV 10]

« Non-compact homomorphic encryption:
 Based on Yao garbled circuits
e [SYY 99] [MGH 08]: c* grows exp with degree/depth
e [IP O7] branching programs

Fully Homomorphic Encryption

10

Since 1978

V .H.N'TED;

Big Breakthrough: [Gentryo9]

First Construction of Fully Homomorphic Encryption
using algebraic number theory & “ideal lattices”

» Full-semester course
» Today: an alternative construction [DGHV 10]

— using just integer addition and multiplication
— easier to understand, implement and improve

W

Constructing

fully-homomoprhic encryption

assuming

hardness of approximate GCD

ic

A Bgadmap

1. Secret-key “Somewhat” Homomorphic Encryption
(under the approximate GCD assumption)

(a simple transformation)

2. Public-key “Somewhat” Homomorphic Encryption
(under the approximate GCD assumption)

(borrows from Gentry’s techniques)
v

3. Public-key FULLY Homomorphic Encryption
(under approx GCD + sparse subset sum) \,%

12 A

Secret-key Homomorphic Encryption

O Secret key: a large odd number p (sec. param = n)

® To Encrypt a bit b:
— pick a random “large” multiple of p, say g-p (g ~ n° bits)

— pick a random “small” even number 2-r (r ~ n bits)

— Ciphertext c = g-p+2:r+b [—/\j
noise

©® To Decrypt a ciphertext c:

—c (mod p) =2:r+b (mod p)

— read off the least significant bit

. W

Secret-key Homomorphic Encryption

® How to Add and Multiply Encrypted Bits:
— Add/Mult two near-multiples of p gives a near-multiple of p.
=qyp+ (21, +Dby), C=0yp + (21, + by
—Cy+C, =p-(gy + Qy) + 2 ((rytry) + (by "'bz) «p

——

LSB = b, XOR b,

— C4C, = P-(Cy-Q;+Cy-0y-0;-0y) + 2 (r1r2+r1b +r,0,) + by b «p

—

LSB = b, AND b,

. W

iy

O Ciphertext grows with each operation

* Useless for many applications (cloud computing,
searching encrypted e-mail)

® Noise grows with each operation
— Consider ¢ = gp+2r+b «— Enc(b)
—c(mod p) =r # 2r+b
—Isb(r’) # b / 2r+b \fr; |

(g-1)p qp (g+1)p (9+2)p

15

Problems Q

O Ciphertext grows with each operation

* Useless for many applications (cloud computing,
searching encrypted e-mail)

® Noise grows with each operation

“ Can perform “limited” number of hom. operations

“* What we have: “Somewhat Homomorphic” Encryption

. W

Public-key Homomorphic Encryption

O Secret key: an n?-bit odd number p

A
Public key: [qop+2r5,q.p+2r,,...,qp+2r] = (Xg:Xq, -+ :X,)

— t+1 encryptions of 0

— WIlog, assume that x;, Is the largest of them

© To Decrypt a ciphertext c:
—c (mod p) =2:r+b (mod p) =2:r+b

— read off the least significant bit

O Eval (as before)

17

Public-key Homomorphic Encryption

18

O Secret key: an n?-bit odd number p

A
Public key: [qop+2r0,q.p+2r4,....a0+2r] = (Xg:Xqp...,%)

® To Encrypt a bit b: pick random subset S C[1...1]

c= D %+2r + b (mod X,)

ieS

© To Decrypt a ciphertext c:
—c (mod p) =2:r+b (mod p) =2:r+b

— read off the least significant bit

O Eval (as before)

Public-key Homomorphic Encryption

19

O Secret key: an n?-bit odd number p

A
Public key: [qop+2ro,q1p+2r1,...,qtp+2rt] = (XgsXqy--+sXp)

® To Encrypt a bit b: pick random subset S C[1...1]

c= D %+2r + b (mod X,)

ieS

c=p[Zs:qi]"'Z[HZS:”] + b (ko ¢fgr a small k)
=p[D a—ka, [+ 2[r+D r-kr,]+b

€S ieS
(mult. of p) + (“small” even noise) + b

Y

Public-key Homomorphic Encryption
Ciphertext Size Reduction

O Secret key: an n?-bit odd number p
A
Public key: [qop+2r0,q.p+2r,,....qp+2r] = Xo:Xq,-+-1X,)
® To Encrypt a bit b: pick random subset S C[1...1]

c= D %+2r + b (mod X,)

© To Decrypt a ciphertext c:
—c (mod p) =2:r+b (mod p) =2:r+b

— read off the least significant bit

O Eval: Reduce mod x, after each operation

20 (*) additional tricks f

Public-key Homomorphic Encryption

Ciphertext Size Reduction

O Secret key: an n?-bit odd number p

A
Public key: [q0p+2ro,q1p+2r1,...,qtp+2rt] = (XgsXqs--+sXp)

— Resulting ciphertext < x,

— Underlying bit is the same (since x, has even noise)

— Noise does not increase by much®

— S
— reaWigniﬁcant bit

O Eval: Reduce mod x, after each operation

2 1 (*) additional tricksf%

A Bgadmap

M Secret-key “Somewhat” Homomorphic Encryption

M Public-key “Somewhat” Homomorphic Encryption

v

3. Public-key FULLY Homomorphic Encryption

. W

How “Somewhat” Homomorphic is this?

Can evaluate (multi-variate) polynomials with m terms,
and maximum degree d if d <<n.

m-2¥ <p/2=2"/2 or d~n

f(Xq, ooiy X)) = XX Xy + oo+ X5 XXy o
Y

m terms

Say, noise in Enc(x;) < 2"

Final Noise ~ (2Md+...+(2")9 = me(2")d

23

Bootstrapping:
from “somewhat HE” to “fully HE”

Decrypt-then-NAND
circuit

NAND

24

Bootstrapping:
from “somewhat HE” to “fully HE”

25

Theorem [Gentry’09]: Convert “bootstrappable” — FHE.

FHE = Can eval all circuits

Decrypt-then-NAND
circuit
“BootsirhppaHE”

Is our Scheme “Bootstrappable”?

What functions can the scheme evaluate?

(polynomials of degree < n)

(?)
D

Complexity of the Decrypt-then-NAND circuit

(degree ~ nt-73 polynomial)

Can be made bootstrappable by “preprocessing”

+ some of the decryption outside the decryption
CIrcult (Following [Gentry 09])

B Caveat: Assume Hardness of “Sparse Subset Sum”

26

27

Security

(of the “somewhat” homomorphic scheme)

The Approximate GCD Assumption

28

/]

odd p < [0...P]

(QiP+rg,..., QP+

__/

dq, < [0...Q]
r, — [-R...R]
PT adversary can guess the number p

(proof of security)

PK =(gop+2r,{ap+2r}) > B

Enc(b) =(gp+2r+b)

Progress in FHE

» “Galactic” — “Efficient”

Asymptotically: nearly linear-time* algorithms
Practically:

— Implementations, including bootstrapping and “packing”
github.com/shaith/HElL1Db github.com/lducas/FHEW

— a few milliseconds for Enc, Dec [LNV'11,Gentry Halevi Smart ‘11

— a few minutes (amortized) for evaluating an AES block [GHS ‘12]

— single bootstrapping < 1 second [Ducas Micciancio '14]

— bootstrapping takes 5.5 minutes and allows a “payload” of
depth 9 computation on GF(21%)1924 vectors

» Strange assumptions — Mild assumptions

— Best Known [BGV11]: (leveled) FHE from worst-case
hardness of nCcaM-approx short vectors on lattices
*linear-time in the security parametel%

‘e Y a\

30

=¥

Multi-key FHE

sky, Pk,

\
\
\ y

s Function

Multi-key FHE
sk, pk,

\
\
\ y

sz Function

Decl T 4y - Eval(f1cl1c2)

sk,, pk,

X5

Correctness;
Dec(sky,sk, y)=f(x,X,)

- Y

Fully Homomorphic Encryption

Whiteboard discussion:

* Properties
 Performance

e Contrast with obfuscation
e Usefulness

Protecting memory using
Oblivious RAM

Motivation: memory/storage attacks

* Physical attacks
— Memory/storage is on a physical separate device (DRAM chip, SD
card, hard disk, ...)
— Communication between CPU and device is easy to tap
— Memory/storage device may be under attack or stolen
« Aggravated by data remanence problem

o Software side channels

— Leakage of accesses memory addresses across software
confinement boundaries (via data cache, mstructlon cache page

table, ...)

* Network attacks . —
— External storage (file server, Network Attached Storage cloud -
service, ...)
— Remote server/appliance/provider may be compromised

35

Protecting against memory attack

« Computation model:
— Random access memory
— Small processor (logarithmic in memory size)

e Leakage/tampering model:

— All memory accesses (both data and address) leak or are
corrupted arbitrary (relaxation: by polytime adversary)

— Processor assumed secure

e Goal: a compiler that converts any program into one
that resists memory attacks
— Functionality: input/output precisely preserved

— Security: privacy against leakage vro4) with suitable
(restricted) circuit classes and admissible functions ’%

36

Protecting memory content from leakage

37

Encrypt the whole memory as a single
message

Encrypt every block separately
=‘encrypt block data using AES
=lencrypt block number + data using AES

— encrypt block using semantically-secure
(probabilistic encryption

Keep the decryption key inside the secure
processor

Protecting memory content from corruption

e .SIgn every block, keep the signing key inside
the“'secure processor

 Hash every block, keep digests inside the
Secureé processor

e Using Merkle trees
— Maintain a Merkle hash tree over the memory
— Merkle nodes stored in the unstrusted memory
— Merkle root stored in secure processor
— At every read, processor verifies Merkle path
— At every write, update Merkle path

38

Oblivious RAM [Goldreich Ostrovsky ‘96]...
Protecting against memory access leakage

39

Compile any program P and memory size n into a new
program P’, such that: (this definition follows [Chung Pass 2013])

For any P with memory size n, and input x:
e (Correctness: P’(x):P (x) (up to some small failure probability)

« Efficiency:
- P’ on x runs c(n) times longer than P on x, where c(+) is the computational
overhead

- P’ uses memory of size m(n) - n,where m(-) is the memory overhead
— Extra registers in secure processor
e Obliviousness (security):
For any Py, P, with memory size n, and inputs x,, x,,
such that the number of memory accesses done by P; on x;

IS the same as P, on x;, _ _
the (address,val) memory transcript of P{ on x; is

statistically close to that of P, on x,.

W

“Simple ORAM?” construction [Chung Pass ‘13]

40

Given a progam P and memory size n, output P’
P’ proceeds like P, except:

read(r) - Oread(r)
write(r, val) — Owrite(r, val)
Memory divided into blocks of size a.

External memory holds a complete binary tree of depth d = log (g)

Pos maps each memory blocks b to a leaf pos.

Invariant: the content of block b is stored somewhere along path to pos.

Each node contains a bucket: at most K tuples (b, pos, data) where b is a
block index and v is the block’s data.

(K = polylog(n))
All registers and memory are initialized to 1.

Simple ORAM?” construction: reading

Position Map Pos

Oread(r): o
() b iS T’S bIOCk position of 111t-l.|1ut'_1'n‘llr iz formd here
e pos < Pos|b]

ORAM Tree T

» Fetch r’s block by traversing path PRIy, e sl SEdom peh o

from root to pos looking for a tuple | D
(b,pos,v). (if not found, output 1) o T |

« Update map Pos[b] « pos’ chosen - -
at random. ’ | ! |

i

A to pos® = 110

« Put back (b,pos’,v) into the root's [| E S S

bucket. (if overflow, output 1)

(] oo o/ ””. 1o \ 1 1

11

 Flush tuples down apathtoa | | | K N | |]

random pos®, as far as they can go P
while consistent with invariant. S S ——
(if overflow, output 1)
Obliviousness: each Oread operation traverses the tree along two
paths that are chosen at random and independently of the history so far

(doing a single read and single write at every node).
41

af |:.‘a1]1 fram A to pos = 011

Y

Simple “ORAM?” construction: further details

42

Writing:
Owrite(r,val):.
same as Oread(r) except we put back the updated (b, pos’, v").

Storing the position map
— Problem: the position map is too large.

— Solution (“full-fledged construction”):
recursively stored the position map in a smaller oblivious RAM (same K but smaller
memory).

Correctness:

Obvious as long as overflows don’t happen. Easy probabilistic analysis
shows that overflows happen with negligible probability (for suitable
parameters a and K). See [Chung Pass '13 — “A Simple ORAM”] for details.

Overheads: all polylogarithmic. O(1) registers suffice.

Other ORAMSs

Lower bound: log(n) computational overhead.
There are several variants of such “path ORAM”, and others.
Implemented in software, FPGA hardware.

	Information Security – Theory vs. Reality�� 0368-4474, Winter 2015-2016��Lecture 11:�Fully homomorphic encryption�
	Fully Homomorphic Encryption
	Confidentiality of static data: plain encryption
	Confidentiality of data inside computation:�Fully Homomorphic Encryption
	Fully Homomorphic Encryption
	Example 1: Private search
	Example 2: Private Cloud Computing
	Fully Homomorphic Encryption
	History of Fully Homomorphic Encryption
	Fully Homomorphic Encryption
	Constructing�fully-homomoprhic encryption�assuming�hardness of approximate GCD
	A Roadmap
	Secret-key Homomorphic Encryption
	Secret-key Homomorphic Encryption
	Problems
	Problems
	Public-key Homomorphic Encryption
	Public-key Homomorphic Encryption
	Public-key Homomorphic Encryption
	Public-key Homomorphic Encryption
	Public-key Homomorphic Encryption
	A Roadmap
	How “Somewhat” Homomorphic is this?
	Bootstrapping:�from “somewhat HE” to “fully HE”
	Bootstrapping:�from “somewhat HE” to “fully HE”
	Is our Scheme “Bootstrappable”?
	Security
	The Approximate GCD Assumption
	Slide Number 29
	Progress in FHE
	Multi-key FHE
	Multi-key FHE
	Fully Homomorphic Encryption
	Protecting memory using Oblivious RAM
	Motivation: memory/storage attacks
	Protecting against memory attack
	Protecting memory content from leakage
	Protecting memory content from corruption
	Oblivious RAM	[Goldreich Ostrovsky ‘96]…�Protecting against memory access leakage
	“Simple ORAM” construction	[Chung Pass ‘13]
	Simple ORAM” construction: reading
	Simple “ORAM” construction: further details

