
1

Information Security – Theory vs. Reality

0368-4474, Winter 2015-2016

Lecture 10:
Trusted Platform Architecture and SGX

Lecturer:
Eran Tromer
Guest lecturer:
Alon Jackson

2

Trusted Computing Architecture

Using presentation material from Dan Boneh, Stanford.

3

Background
TCG consortium. Founded in 1999 as TCPA.
 Main players (promoters): (>200 members)

AMD, HP, IBM, Infineon, Intel,
Lenovo, Microsoft, Sun

Goals:
 Hardware protected (encrypted) storage:
Only “authorized” software can decrypt data
 e.g.: protecting key for decrypting file system

 Secure boot: method to “authorize” software

 Attestation: Prove to remote server what
software is running on my machine.

4

Secure boot

History of BIOS/EFI malware:

 CIH (1998): CIH virus corrupts system BIOS

 Heasman (2007):
 System Management Mode (SMM) “rootkit” via EFI

 Sacco, Ortega (2009): infect BIOS LZH decompressor
 CoreBOOT: generic BIOS flashing tool

Main point: BIOS runs before any defenses (e.g. antivirus)

Proposed defense: lock system configuration (BIOS + OS)

Today: TCG approach

5

TCG: changes to PC

Extra hardware: TPM
 Trusted Platform Module (TPM) chip
 Single 33MhZ clock.
 Vendors: Atmel, Infineon, National, STMicro, …
 Cost: <$0.3

 Integrated into other chips
 Ethernet controller (Broadcom)
 CPU’s chipset (Intel)

Software changes:
 BIOS, EFI (UEFI)
 OS and Apps

6

TPMs in the real world

TPMs widely available on laptops, desktops
and some servers

Software using TPMs:

 File/disk encryption: BitLocker, IBM, HP, Softex

 Attestation for enterprise login: Cognizance, Wave

 Client-side single sign on: IBM, Utimaco, Wave

TPM Basics

 What the TPM does

 How to use it

7

8

Components on TPM chip

I/O

Crypto Engine:
RSA, SHA-1, HMAC, RNG

Non Volatile
Storage

(> 1280 bytes)
PCR Registers
(≥16 registers)

Other
Junk

RSA: 1024, 2048 bit modulus
SHA-1: Outputs 20 byte digest

LPC
bus

API
calls

9

Non-volatile storage
1. Endorsement Key (EK) (2048-bit RSA)

 Created at manufacturing time. Cannot be changed.
 Used for “attestation” (described later)

2. Storage Root Key (SRK) (2048-bit RSA)

 Used for implementing encrypted storage
 Created after running

TPM_TakeOwnership(OwnerPassword, …)
 Can be cleared later with TPM_ForceClear from BIOS

3. OwnerPassword (160 bits) and persistent flags

Private EK, SRK, and OwnerPwd never leave the TPM

10

PCR: the heart of the matter

PCR: Platform Configuration Registers
 Lots of PCR registers on chip (at least 16)
 Register contents: 20-byte SHA-1 digest (+junk)

Updating PCR #n :

 TPM_Extend(n,D): PCR[n] ← SHA-1 (PCR[n] || D)

 TPM_PcrRead(n): returns value(PCR(n))

PCRs initialized to default value (e.g. 0) at boot time
 TPM can be told to restore PCR values in NVRAM via

TPM_SaveState and TPM_Startup(ST_STATE)
for system suspend/resume

11

Using PCRs: the TCG boot process

BIOS boot block executes
 Calls TPM_Startup (ST_CLEAR) to initialize PCRs to 0
 Calls PCR_Extend(n, <BIOS code>)
 Then loads and runs BIOS post boot code

BIOS executes:
 Calls PCR_Extend(n, <MBR code>)
 Then runs MBR (master boot record), e.g. GRUB.

MBR executes:
 Calls PCR_Extend(n, <OS loader code, config>)
 Then runs OS loader

… and so on

12

In a diagram

BIOS
boot
block

BIOS MBR

TPM

Hardware

Root of trust in
integrity
measurement

Root of trust in
integrity reporting

measuring

Extend PCR

• After boot, PCRs contain hash chain of booted software
• Collision resistance of SHA-1 ensures commitment

ApplicationOS
OS

loader

13

Example: Trusted GRUB (IBM’05)

What PCR # to use and what to measure specified
in GRUB config file

14

Using PCR values after boot

Application 1: encrypted (a.k.a sealed) storage.

Step 1: TPM_TakeOwnership(OwnerPassword, …)
 Creates 2048-bit RSA Storage Root Key (SRK) on TPM
 Cannot run TPM_TakeOwnership again without OwnerPwd:
Ownership Enabled Flag ← False

 Done once by IT department or laptop owner.

(optional) Step 2: TPM_CreateWrapKey / TPM_LoadKey
 Create more RSA keys on TPM protected by SRK
 Each key identified by 32-bit keyhandle

15

Protected Storage

Main Step: Encrypt data using RSA key on TPM

 TPM_Seal (some) Arguments:

 keyhandle: which TPM key to encrypt with

 KeyAuth: Password for using key `keyhandle’

 PcrValues: PCRs to embed in encrypted blob

 data block: at most 256 bytes (2048 bits)
 Used to encrypt symmetric key (e.g. AES)

 Returns encrypted blob.

Main point: blob can only be decrypted with
TPM_Unseal when PCR-reg-vals = PCR-vals in blob.
 TPM_Unseal will fail othrewise

16

Protected Storage

Embedding PCR values in blob ensures that only
certain apps on certain platform configuration can
decrypt data.
 e.g.: Messing with MBR or OS kernel will

change PCR values.

17

Sealed storage: applications
Lock software on machine:
 OS and apps sealed with MBR’s PCR.
 Any changes to MBR (to load other OS) will prevent

locked software from loading.
 Prevents tampering and reverse engineering

Web server: seal server’s SSL private key
 Goal: only unmodified Apache can access SSL key
 Problem: updates to Apache or Apache config

General problem with software upgrades/patches:
Upgrade process must re-seal all blobs with new PCRs

18

Security?
Resetting TPM after boot
 Attacker can disable TPM until after boot, then extend

PCRs arbitrarily
(one-byte change to boot block) [Kauer 07]

 Software attack: send TPM_Init on LPC bus allows
calling TPM_Startup again (to reset PCRs)

 Simple hardware attack: use a wire to connect TPM
reset pin to ground

 Once PCRs are reset, they can be extended to reflect
a fake configuration.

Rollback attack on encrypted blobs
 e.g. undo security patches without being noticed.
 Can be mitigated using Data Integrity Regs (DIR)
 Need OwnerPassword to write DIR

19

Attestation
Goal: prove to remote party what software is
running on my machine.

Good applications:
 Bank allows money transfer only if customer’s

machine runs “up-to-date” OS patches.
 Enterprise allows laptop to connect to its network only

if laptop runs “authorized” software
 Quake players can join a Quake network only if their

Quake client is unmodified.

DRM:
 MusicStore sells content for authorized players only.

20

Attestation: how it works

Recall: EK private key on TPM.
 Cert for EK public-key issued by TPM vendor.

Step 1: Create Attestation Identity Key (AIK)
 Involves interaction with a trusted remote issuer

to verify EK
 Generated:

AIK private+public keys, and a certificate signed
by issuer

21

Attestation: how it works

Step 2: sign PCR values (after boot)

 Call TPM_Quote (some) Arguments:

 keyhandle: which AIK key to sign with

 KeyAuth: Password for using key `keyhandle’

 PCR List: Which PCRs to sign.

 Challenge: 20-byte challenge from remote server
 Prevents replay of old signatures.

 Userdata: additional data to include in sig.

 Returns signed data and signature.

22

Using attestation
(to establish an SSL tunnel)

Remote
Server

PC

TPM

OS

App
• Generate pub/priv key pair
• TPM_Quote(AIK, PcrList, chal, pub-key)
• Send pub-key and certs

Attestation Request (20-byte challenge)

(SSL) Key Exchange using Cert
Validate:
1. Certs

2. PCR vals
3. ChallengeCommunicate with app using SSL tunnel

• Attestation must include key-exchange
• App must be isolated from rest of system

23

Better root of trust: “late launch”
Late launch: securely load OS/VMM,
even on a potentially-compromised machine
DRTM – Dynamic Root of Trust Measurement
New CPU instruction:
Intel TXT: SENTER AMD: SKINIT
Atomically does:
 Reset CPU. Reset PCR 17 to 0.
 Load given Secure Loader (SL) code into I-cache
 Extend PCR 17 with SL
 Jump to SL

BIOS boot loader is no longer root of trust
Avoids TPM_Init attack: TPM_Init sets PCR 17 to -1

24

Trusting the CPU?
Trust the vendor?
System Management Mode (SMM)
 Special execution mode with protected memory, “below” OS and

hypervisor
 Survives TXT launch, so compromised BIOS could load a malicious

SMM that circumvents TXT.

Intel Management Engine (ME)
 A microcontroller embedded in the processor, “next to” the OS and

hypervisor
 Independent of OS security policy.
 Applications: originally, remote administration. Nowadays: EPID

(chip-specific keys), Boot Guard (checks signature on boot code),
Protected Audio and Video Path, SGX (secure enclaves)

 Trustworthy?
 ME includes its own, potentially vulnerable, custom OS and apps.
 No public documentation of implementation and logic.
 Could be used as an ideal rootkit / trojan horse.

25

Security?
Resetting TPM after boot
 Attacker can disable TPM until after boot, then extend

PCRs arbitrarily
(one-byte change to boot block) [Kauer 07]

 Software attack: send TPM_Init on LPC bus allows
calling TPM_Startup again (to reset PCRs)

 Simple hardware attack: use a wire to connect TPM
reset pin to ground

 Once PCRs are reset, they can be extended to reflect a
fake configuration.

Rollback attack on encrypted blobs
 undo security patches

Large trusted base
 Long, complex and potentially vulnerable chain of trust:

OEM’s drivers, vendor’s peripherals, OS’s vendors.

26

Protecting code on an
untrusted platform

Can we run sensitive code on a potentially-compromised
platform, without rebooting/replacing it?
 Many ways to read and corrupt code!

Secure “enclave” using CPU hardware
 Possible with SENTER/SKINIT but cumbersome

(Flicker project)
 Intel Software Guard Extensions (SGX)

(discussed later)

 ARM TrustZone
Cryptography
 Fully-homomorphic encryption
 Succinct zero-knowledge proofs (SNARKs) and Proof-

Carrying Data

27

SGX

Using presentation material from Intel.

28Some slides are courtesy of intel©

Why SGX?
Software security on commercial CPUs is pursued for many years
• SW solutions have limited potential.
• Closed HW systems have limited functionality.
• Traditional TPMs have large TCB – commonly measure all platform.

TXT overcame some of these by introducing a Dynamic Root of Trust:
 Dedicated TCB “mini OS”.
 Run only sensitive logic in trusted OS.
 Thus, needs to measure only mini OS and sensitive logic app.

But TXT still:
• Halts main OS, restarts mini-OS and clears CPU.
• Doesn’t support continuous run of trusted and

untrusted apps.
• Cumbersome to develop for.
• Large TCB - lots of potentially vulnerable SW.

Numerous vulnerabilities - Most Hazardous:
Compromised BIOS can load a malicious SMM that survives TXT launch.

29

Why SGX?
SGX introduces the ENCALVE:
• A protected TEE (Trusted Execution Environment) container.
• Shrinks TCB (Trusted Computing Base) to HW and sensitive app logic.
• Extends HW TCB on to enclaves in ring-3.
• Runs TEE under untrusted OS or VMM.
• Supports continuous run of:

o Trusted and untrusted apps.
o Multiple enclaves.
o Multi-threaded enclave.

30While maintaining application Integrity and confidentiality.

How?

• Dedicated HW

• 18 new ISA instructions

• Internal FW data structures

• Tailored cryptographic functions

• Suitable protocols

31

• Is part of the application & has full access
to its memory.

• Measured and verified by HW on load.

• Operation visible only within CPU borders.

• Manageable by the OS, e.g:
- CPU time slots
- Paging and memory policy

• Secrets are provisioned or acquired only
after enclave initialization.

The Enclave – A trusted execution environment embedded in a process

32

33

Security Perimeter

MEE

* MME – Memory Management Engine, elaborated shortly.

• Security perimeter is the CPU
package boundary.

• Data and code unencrypted
inside CPU package.

• Data and code outside CPU is
encrypted and integrity checked.

• Single chip TCB avoids inter-chip
HW attacks that threaten TPMs.

• If the single TCB is the CPU, then
we gain the opportunity for richer
semantics by understanding
platform state & app code.

34

Execution Flow

1. Enclavize sensitive App parts defines
a partition to trusted and untrusted.

2. App runs & creates enclave in
trusted memory.

3. Trusted function transitions flow to
the enclave.

4. Enclave sees all process data, but
external access to enclave is denied.

5. Trusted function returns.
6. App continues normal execution.

Motivation – Some Usage Examples:
• Cloud - Assure customers about the security

standard of the “cloud enclave”. Confidential, also
from vendors with physical access.

• HSM - Implement HSM’s functionality and security
such that existing software that supports HSMs can
be adapted to using SGX instead.

• DRM – On-line content provider that provides
content only to authorized players hosting a
trusted player enclave.

• TOR - A node that could prove to users that it is not
backdoored by its own admin and does not keep a
log of how connections were routed.

35

Enclave Life Cycle

36

Physical Address SpaceVirtual Address Space

37

System
Memory

Enclave
Page
Cache

EPC
M

Invalid
Invalid

Invalid
Invalid
Invalid

BIOSsetupPhysical Address SpaceVirtual Address Space

Enclave Life Cycle

BIOS reserves memory address range for SGX use.

38

ECREATE (Range)

Physical Address Space

Enclave
Page
Cache

Enclave

EPC
M

Invalid
Invalid

Invalid

S EC S InvalidValid, SECS, Range

Invalid

Enclavecreation

System
Memory

Virtual Address Space

Code/Data

Plaintext
Code/Data

Meta d ata

Enclave Life Cycle

ECREATE - Stores enclave attributes (mode of operation, debug, etc.) in metadata.

39

Physical Address Space

Enclave

S EC S

Enclavecreation

System
Memory

Virtual Address Space

Code/Data

Plaintext
Code/Data

ECREATE (Range)
EADD (Copy Page)

Plaintext
Coe/Data

EPC
M

Valid, REG,
LA,SECS

Invalid
Invalid
InvalidValid, SECS, Range

Invalid

Enclave Life Cycle

Meta d ata

Copy page

EADD – Commits new pages to enclave & updates security metadata.

40

Physical Address Space

Enclave

S EC S

Enclavecreation

System
Memory

Virtual Address Space

Code/Data

Plaintext
Code/Data

ECREATE (Range)
EADD (Copy Page)

Plaintext
Coe/Data

EPC
M

Valid, REG,
LA,SECS

Invalid
Invalid
InvalidValid, SECS, Range

Invalid

Enclave Life Cycle

Meta d ata

EADD – Commits code, data or SGX control structure page types.

41

Physical Address Space

Enclave

S EC S

Enclavecreation

System
Memory

Virtual Address Space

Code/Data

Plaintext
Code/Data

ECREATE (Range)
EADD (Copy Page)

Plaintext
Coe/Data

EPC
M

Valid, REG,
LA,SECS

Invalid
Invalid
InvalidValid, SECS, Range

Invalid

Update PTE

Enclave Life Cycle

Meta d ata

42

Physical Address Space

Enclave

Enclavecreation

System
Memory

Virtual Address Space

Code/Data

Plaintext
Code/Data

ECREATE (Range)
EADD (Copy Page)

Update PTE

Plaintext
Code/Data
Plaintext

Code/Data

Code/Data
EPC
M InvalidValid, SECS, Range

Invalid
Valid, REG,
LA,SECS
Valid, REG,
LA,SECS

Invalid

Enclave Life Cycle

Meta d ata

43

Physical Address Space

Enclave

Enclavecreation

System
Memory

Virtual Address Space

Code/Data

Plaintext
Code/Data

ECREATE (Range)
EADD (Copy Page)
EEXTEND

Update PTE

Plaintext
Code/Data
Plaintext

Code/Data

Code/Data
EPC
M InvalidValid, SECS, Range

Invalid
Valid, REG,
LA,SECS
Valid, REG,
LA,SECS

Invalid

Enclave Life Cycle

Meta d ata

EEXTEND - Measures the enclave with SHA256. (detailed shortly)

44

Physical Address Space

Enclave

Enclave initialization

System
Memory

Virtual Address Space

ECREATE (Range)
EADD (Copy Page)
EEXTEND
EINIT

EPC
M InvalidValid, SECS, Range

Invalid
Valid, REG,
LA,SECS
Valid, REG,
LA,SECS

Invalid

Code/DataCode/Data

Code/Data

Code/Data

Code/Data

Plaintext
Code/Data

Plaintext
Code/Data
Plaintext

Code/Data

S EC S

Plaintext
Code/Data

Enclave Life Cycle

Meta d ata

EINIT - Finalizes measurements, validates them & enables enclave’s entry use.

45

Physical Address Space

Enclave

Enclave activeVirtual Address Space

ECREATE (Range)
EADD (Copy Page)
EEXTEND
EINIT
EENTER

EPC
M InvalidValid, SECS, Range

Invalid
Valid, REG,
LA,SECS
Valid, REG,
LA,SECS

Invalid

Code/DataCode/Data

Code/Data

Code/Data

Code/Data

Plaintext
Code/Data

Plaintext
Code/Data
Plaintext

Code/Data

S EC S

Plaintext
Code/Data

System
Memory

Enclave Life Cycle

Meta d ata

EENTER - Verifies enclave entry & sets CPU operation mode to “enclave mode”.

46

Physical Address Space

Enclave

Enclave activeVirtual Address Space

ECREATE (Range)
EADD (Copy Page)
EEXTEND
EINIT
EENTER

EPC
M InvalidValid, SECS, Range

Invalid
Valid, REG,
LA,SECS
Valid, REG,
LA,SECS

Invalid

Code/DataCode/Data

Code/Data

Code/Data

Code/Data

Plaintext
Code/Data

Plaintext
Code/Data
Plaintext

Code/Data

S EC S

Plaintext
Code/Data

System
Memory

Enclave Life Cycle

Meta d ata

Enclave flow is executed using the secured address range, obscured from all other SW.

47

Physical Address Space

Enclave

Enclave activeVirtual Address Space

ECREATE (Range)
EADD (Copy Page)
EEXTEND
EINIT
EENTER
EEXIT

EPC
M InvalidValid, SECS, Range

Invalid
Valid, REG,
LA,SECS
Valid, REG,
LA,SECS

Invalid

Code/DataCode/Data

Code/Data

Code/Data

Code/Data

Plaintext
Code/Data

Plaintext
Code/Data
Plaintext

Code/Data

S EC S

Plaintext
Code/Data

System
Memory

Enclave Life Cycle

Meta d ata

EEXIT – Clears CPU cache & Jumps out of enclave back to OS instruction address.

48

Physical Address Space

Enclave

Enclave destructionVirtual Address Space

ECREATE (Range)
EADD (Copy Page)
EEXTEND
EINIT
EENTER
EEXIT
EREMOVE

S EC SS EC S

System
Memory

Enclave
Page
Cache

EPC
M

Invalid
Invalid

Invalid

Invalid

Invalid

Enclave Life Cycle

EREMOVE – Clears enclave’s trusted virtual address range reserved by ECREATE.

49

System
Memory

Enclave
Page
Cache

EPC
M

Invalid
Invalid

Invalid
Invalid
Invalid

BIOSsetupPhysical Address SpaceVirtual Address Space

Enclave Life Cycle

54

When building an enclave, Intel® SGX generates a cryptographic
log of all the build activities

• Content: Code, Data, Stack, Heap
• Location of each page within the enclave
• Security flags being used
• Order in which it was built

MRENCLAVE (“Enclave Identity”) is a 256-bit digest of the log
• Represents the enclave’s software TCB

MRENCLAVE

Data
Chunk1

SHA-256

Chunk 1
MetaData

MRENCLAVE1

Data
Chunk 2

SHA-256

Chunk 2
MetaData

MRENCLAVE2

Data
Chunk n

SHA-256

Chunk n
MetaData

MRENCLAVEn

Enclave Measurement

56

Memory Encryption Engine (MEE)
• Resides within the CPU as a Memory Controller extension.
• Encrypts, decrypts page swaps and integrity checks them

thus, providing data confidentiality and integrity.
• TRNG generates at boot time separate keys for encryption

and integrity.
• Keys are held in MEE registers, accessible only to HW.
• Does not hide the fact that data is written to the DRAM ,

when it is written, and to which physical address.
• Defends system memory from cold boot attacks.
• Uses version and counter controls to prevent page replay

attack. Problem – A lot of metadata stored in CPU…

57

SGX Anti replay attack under HW limitations
Uses version and counter controls to prevent page replay attack.

• Keeping this metadata for every evicted page is not scalable in
SRAM terms.

• How can we “compress” this?

• Can be implemented as a merkle-tree.

58

Halfway recap
• Enclave properties as a TEE
• SGX Security Perimeter
• lifecycle and execution flow
• Enclave Measurement
• Memory Encryption Engine

• Sealing
• Attestation
• Provisioning

• Overview summery
• SGX usages
• Q&A and open discussion

59

Sealing

• Definition: Cryptographically protecting data when it is
stored outside enclave.

• Sealing enables enclave to pass data between
consecutive runs.

• Future enclave instantiation can acquire former
provisioned sensitive data.

(Enclave shouldn’t ship with sensitive data, but be
provisioned with it after instantiation.)

• Newer SVN (security version number) enclave can read
older SVN data using a Key Recovery Transformation.

60

Sealing Actors

Sealing Authority – Developer

Enclave ISV that Signs the enclave
certificate with its RSA-3072 Private
key.

SIGSTRUCT - Enclave certificate.

• Sealing Authority Public key (Used by
HW to verify Certificate).

• Enclave identity aka MRENCLAVE (Used
by HW to verify enclave Integrity).

• ISV SVN
• Other enclave attributes.

Sealing Authority signature

MRSIGNER - Sealing Identity.

• Created on enclave initialization.
• Accessible only by the TCB.
• Used to seal enclave data.
Includes:
• sealing authority Public Key hash.
• Product ID.
• SVN – Security Version Number.

61

EGETKEY Instruction
• Called by an enclave to retrieve

desired key.
• Key derivation :

• Derived key is enclave and platform
specific.

Key name, Policy, Enclave SVN

EGETKEY Instruction

Intel SGX SVNs Device Key Owner Epoch

Key Derivation

Seal Key, Report Key, etc.

62

Sealing Process
1. Enclave calls EGETKEY:

Policy options are Enclave or Sealing Identity.

2. Sets sealing key SVN with key
recovery transformation.

3. Seals data with yielded key and ISV chosen encryption
scheme.

4. Writes sealed data to untrusted storage.

Key name, Policy, Enclave SVN

Enclave and platform specific key

EGETKEY Instruction

Data sealed under: 1. Processor key
2. CPU FW SVN
3. OwnerEpoch
4. Policy choice

63

Attestation
SGX support local and remote HW based attestation capabilities.

• Local Attestation
Allows one enclave to attest its TCB to another enclave on
the same platform.

• Remote Attestation
Allows an enclave to attest its TCB to another 3-rd party entity
outside of the platform.

64

Local Attestation
Security instructions involved:

MRENCLAVE, Key name, …

Enclave and platform specific key

EGETKEY Instruction

Verifier MRENCLAVE, …

REPORT (Attestation assertion structure)

• Claimer MRENCLAVE
• Claimer MRSIGNER
• Various addresser attributes
• Developer additional information
kg

CMAC tag using verifier key
(To be Verified by "neighbored" enclave)

EREPORT Instruction

“Report”

65

Local Attestation
Protocol flow:

Challenge (B’s MRENCALVE)

1. Invokes EGETKEY
2. Verifies the REPORT:

• HW (REPORT key)
• SW (response details)

3. Invokes EREPORT

Response (REPORT)

REPORT*

Invokes EREPORT

1. Invokes EGETKEY
2. Verifies the REPORT :

• HW (REPORT key)
• SW (response details)

Verifier Claimer

* Optional

Remote Attestation
• SGX uses a Quoting Enclave (QE) to convert LOCAL

attestations to REMOTELY verifiable assertion.

• QE locally verifies REPORT produced by Application
Enclave and signs it as a QUOTE.

• QE uses an asymmetric attestation key that reflects
the platforms trustworthiness.

• App sends Quote to the Relying Party to verify.
Platform

Local attestation Remote attestation

66

Challenge Challenge

REPORT

QOUTE

REPORT

QOUTE

QOUTE

Verify Quote

Service /
Server run by intel

8

Secrets

Remote Attestation
Protocol flow:

Verifier Claimer

67

1. Verify report
2. Create Quote

Provisioning the Attestation Key
• To save expensive secure fuse space, a unique private key is

generated on manufacturing and an unusable shorten form of it
is fused on HW.

• Group public key and other predefined parameters are sent to the
device for it to extract and safely store the functional private key in a
secure NVM.

• Integrity is checked using hardcoded Intel EPID Authority public key.

68

Summary
• Enclave runs in ring-3 privilege level deriving trust

directly from hardware.

• Developers may focus on securing a smaller TCB.

• Application can support multiple enclaves.

• Resources are run & managed by OS, yet protected in

face of a compromised OS/VMM.

• Provides integrity and confidentiality, also in face of HW

DMA attacks.

69

Questions & Open Discussion
• Questions ?
• What are the limitations of SGX?
• Pinpoint the root of trust assumptions.
• Techniques that can be implemented to

try and breach enclave security.
• Are they any drawbacks when utilizing

SGX?
• Innovative usages of SGX capabilities.

70

	Information Security – Theory vs. Reality�� 0368-4474, Winter 2015-2016��Lecture 10:�Trusted Platform Architecture and SGX
	Trusted Computing Architecture
	Background
	Secure boot
	TCG: changes to PC
	TPMs in the real world
	TPM Basics
	Components on TPM chip
	Non-volatile storage
	PCR: the heart of the matter
	Using PCRs: the TCG boot process
	In a diagram
	Example: Trusted GRUB (IBM’05)
	Using PCR values after boot
	Protected Storage
	Protected Storage
	Sealed storage: applications
	Security?
	Attestation
	Attestation: how it works
	Attestation: how it works
	Using attestation�(to establish an SSL tunnel)
	Better root of trust: “late launch”
	Trusting the CPU?
	Security?
	Protecting code on an untrusted platform
	SGX
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 54
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70

