

1/3

Information Security:

Theory vs. Reality

Exercise 1
corrected 17.11.15

Tel Aviv University

0368-4474-01, Winter 2015-2016

Lecturer: Eran Tromer

Submit a ZIP file containing all your work to istvr1516.course@gmail.com by 1 December 2015.

Include your name and student ID in the subject.

Submissions are individual and must be done independently of other students and any course-

specific reference material. Using reference material that is not course-specific is OK, if you state so

explicitly in your code and the body of the submission email; provide a pointer to its origin; and

adapt it to precisely and elegantly answer the actual question.

mailto:istvr1516.course@gmail.com

2/3

A common way to encrypt data is using a stream cipher. A stream cipher gets a secret key as its input, and

generates a stream of pseudorandom bits. To encrypt a plaintext message, one XORs it with the

pseudorandom stream. The security of stream ciphers relies on the fact that to someone who doesn’t know

the key, the stream looks completely unpredictable, and in particular: even if a prefix of the stream is

exposed, the rest should remain unpredictable.

RC4 is a widely used stream cipher, used for WiFi security and many other applications. The internal state of

the RC4 algorithm is a table S of 256 bytes. The initial state of this table is some permutation of the values

0,…,255, and this is the secret key.1 The following code describes the RC4 stream generation algorithm:

Suppose you are given a device which performs RC4 encryption using an unknown secret key, and you

would like to recover this key. By analyzing the architecture of the device, you found that it is vulnerable to

a very strong cache attack: an attacker, running his malicious code on the same machine, can monitor the

RC4 stream generation and observe some of its memory accesses. Specifically, you can learn the precise

address accessed in line 9 (but no other information).

In this exercise we will assume knowledge of the addresses learned by the above monitoring, and exploit it

to decrypt ciphertext. You are given the following files (attached to the exercise):

“ciphertext.bin” contains the (unknown to you) secret plaintext. During the RC4 encryption

which generated this ciphertext, the cache attack was applied.

“indices.txt” contains the output of the cache measurement. Each time the read access in line

9 of the above algorithm was executed, the accessed address was recorded to this file. Each line

contains one address in decimal. The location of S in memory is not known a priori, but you may

assume that consecutive entries in S have consecutive addresses. For your convenience, attached

is the script with which the attack was simulated (rc4outputIndices.py).

Given these, you would like to find the full initial state of the table S. Knowing this state lets you decrypt the

entire ciphertext by yourselves.

A. Write a program which reads “indices.txt” and outputs the file “secret.txt” – the full

initial state of the table S, in the following format: 256 lines, one per entry of S, ordered by index, in

1
 In the full RC4 cipher, the secret initial state of the table is generated from the real secret key using another

deterministic algorithm, as shown in rc4outputIndices.py.

1 def RC4gen(S): # S is a 256-byte table initialized to a secret value

2 i = 0

3 j = 0

4 while moreNeeded():

5 i = (i + 1) % 256

6 j = (j + S[i]) % 256

7 S[i],S[j] = S[j],S[i] #swap
8 Si = S[i]

9 Sj = S[j]

10 K = S[(Si + Sj) % 256]

11 output(K)

3/3

decimal (for example, if S[5] contains the value 200, then line 6 of “secret.txt” should contain

the three characters “200” and a newline).

Attached for your convenience, is a simple Python program “rc4dec.py”. Use it to check your

“secret.txt” correctness. To run this program with Python installed, put “rc4dec.py” in the

same folder as “ciphertext.bin” and “secret.txt”, and then run the following commands:

a. cd <folder in which the files are in>

b. python rc4dec.py

Given the correct “secret.txt”, the plaintext (an image) should – following the script execution

– appear in the working directory (where the rest of the files are).

Your program should work for the general attack scenario, i.e. it will be tested given other

“indices.txt” files. For testing purposes, you may assume that “indices.txt” will be in the

same directory as your program.

Implement your solution in Python (or request the teaching assistant’s permission, in advance, to

submit in another language). Submit your source code and your resulting “secret.txt”. Write

clear, high-quality code and include a brief explanation of your program.

B. In reality, the cache attack can fail to determine memory addresses with enough certainty for some

iterations of the stream generation. Suppose that every certain number of iterations there is a

single iteration for which cache measurements are unreliable and therefore not included in the

data. Assume that it is known exactly for which iteration the measurements are not available. For

the iterations in which the attack works successfully, you can assume that all the read accesses are

disclosed fully (i.e. the whole 32 bit addresses for reads in line 6-10 are available). Explain (at a high

level) how to modify your solution above in order to carry out the attack. Implementation is not

required.

It turns out that the compiler implements the modular reduction operator “%” using this internal function:

C. Describe how an attacker can exploit a (micro)architectural side channel to detect information

about the loop iterations in mod_int. Explicitly specify your assumptions and what you learn.

D. The initial (secret) value of the S array is generated, by some deterministic algorithm, from a secret

password. Suppose that this password is very short (4 characters). Using only the side-channel

leakage about loop iterations in mod_int, how can you find the password?

M1 unsigned int mod_int(unsigned int i, unsigned int m) {

M2 while (i>=m)

M3 i -= m;
M4 return i;

M5 }

