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Abstract: Abstract The interface of protein structural biology, protein biophysics, molecular

evolution, and molecular population genetics forms the foundations for a mechanistic

understanding of many aspects of protein biochemistry. Current efforts in interdisciplinary protein
modeling are in their infancy and the state-of-the art of such models is described. Beyond the

relationship between amino acid substitution and static protein structure, protein function, and

corresponding organismal fitness, other considerations are also discussed. More complex
mutational processes such as insertion and deletion and domain rearrangements and even circular

permutations should be evaluated. The role of intrinsically disordered proteins is still controversial,

but may be increasingly important to consider. Protein geometry and protein dynamics as a
deviation from static considerations of protein structure are also important. Protein expression

level is known to be a major determinant of evolutionary rate and several considerations including

selection at the mRNA level and the role of interaction specificity are discussed. Lastly, the
relationship between modeling and needed high-throughput experimental data as well as

experimental examination of protein evolution using ancestral sequence resurrection and in vitro

biochemistry are presented, towards an aim of ultimately generating better models for biological
inference and prediction.

Keywords: evolutionary modeling; domain evolution; sequence-structure-function relationships;
protein dynamics; protein thermodynamics; gene duplication; protein expression; ancestral

sequence reconstruction

Introduction
At the interface of protein structure, protein biophy-

sics, and molecular evolution there is a set of funda-

mental processes that generate protein sequences,

structures, and functions. A better understanding of

these processes requires both biologically realistic

models that bring structural and functional consid-

erations into evolutionary analyses, and similarly

incorporation of evolutionary and population genetic

approaches into the analysis of protein structure

and underlying protein biophysics. A recent meeting

at NESCent (National Evolutionary Synthesis Cen-

ter in Durham, NC) brought together evolutionary

biologists, structural biologists, and biophysicists to

discuss the overlap of these areas. The potential

benefits of the synergy between biophysical and evo-

lutionary approaches can hardly be overestimated.

Their integration allows us not only to incorporate

structural constraints into improved evolutionary

models, but also to investigate how natural selection

interacts with biophysics and thus explain how both

physical and evolutionary laws have shaped the

properties of extant macromolecules.

Fitness is a biological concept that describes the

degree to which an individual is likely to contribute

to future generations, and to thereby pass on traits

(such as gene sequences) that it carries. Genetic var-

iants may confer greater fitness and therefore selec-

tive advantage to individuals that carry them, or

they may confer lower fitness and thus carriers will

be at a selective disadvantage. Hence those variants

conferring greater fitness are likely to replace other

variants (become fixed) through positive selection,

whereas those that confer a decrease in fitness are

likely to be eliminated. This occurs against a back-

drop of neutral genetic drift. Although simple to

describe, the idea that variants may confer greater

or lesser fitness in this genetic paradigm involves

many layers of complexity. There is a long chain of

molecular and physiological interactions linking the

genetic variation and resulting individual molecular

phenotypes to changes in the probability that an

individual organism survives and reproduces.

Molecular phenotype is characterized by proper-

ties that affect protein function such as protein struc-

ture, protein stability, protein binding specificity, and
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protein dynamics. Ultimately, protein functions include

specific processes, such as binding, catalysis, or trans-

port. These functions generate questions that need to

be answered to better understand protein evolution

and enable downstream applications. What is the rela-

tionship between the above properties, protein func-

tion, and organismal fitness? As folding specificity is

defined, what are the relevant thermodynamic proper-

ties necessary for folding? Misfolded, alternatively

folded, and aggregate states are all possible but which

are selected against? How large is the necessary energy

gap between the native state and possible alternative

conformations and what is the corresponding selective

pressure? Is there a selective pressure against being

too stable or is metastability a neutral emergent prop-

erty of the evolutionary process? What then are the

selective pressures on intrinsically unfolded proteins?

Is it possible to derive general principles, or do the

answers to these questions depend on the specific pro-

tein, organism, and environment?

Preliminary answers to some of these questions

can be found in the literature. The long-standing ob-

servation that natural proteins are not excessively

stable (typical stabilities of a protein domain range

between 3 and 7 kcal/mol or from 5 to 10 kT units1)

has been interpreted as evidence for selection against

functionally detrimental over-stabilization of pro-

teins.2 Such a view reflects a selectionist paradigm,

which posits that every observed trait has been opti-

mized by selection. An alternative view is that the

observed marginal stability of proteins is a result of

mutation-selection balance3–6 on a fitness landscape

where stability is a neutral trait as long as it exceeds

a certain threshold value. Simulations and analytical

studies have shown that a realistic distribution of

protein stabilities can be obtained on such a neutral

landscape with the majority of proteins showing sta-

bility around 5 kcal/mol.5 In this scenario the stabil-

ity of protein domains is established as a result of a

balance between mostly destabilizing mutations and

selection against highly unstable proteins.

Comparative approaches have also been used to

understand the targets of selection in proteins. Pro-

teins of intracellular bacteria are estimated to be

less stable with respect to misfolding (and possibly

aggregation) than orthologous proteins of free living

relatives. This can be interpreted as reduced selec-

tion due to the population size reductions (bottle-

necks) that occur during transmission from host to

host.7 The predicted stability of misfolded structures

is significantly larger for real protein sequences

than for shuffled sequences due to destabilizing fre-

quent contacts and correlated contact pairs.8 Native

contacts of short proteins are better optimized than

those of large proteins, which are expected to

undergo weaker selection since the number of intra-

chain contacts per residues is higher.9

As the field moves forward, it is clear that differ-

ent models are needed to address different questions.

For any model, rigorous assessment of its validity is

required, either through simulations or comparison to

empirical data. Models must generally conform to

observed properties of proteins, such as the observa-

tions that surface residues of globular proteins

undergo substitution more rapidly than those in the

core, and that roughly 80% of nonsynonymous muta-

tions are purged by selection in excess of the expecta-

tion of those eliminated by neutral drift.10 Another

potential benchmark for theoretical models is the

observed coevolution of residues in structured pro-

teins. In the next sections, we will survey the evolu-

tionary models and the different ways of assessing

these models based on evolution influenced by protein

structure and biophysics (Fig. 1).

Common models for protein sequence evolution

Explicit probabilistic models of sequence change

have a central role in the study of molecular evolu-

tion. Probabilistic models are attractive both because

they allow qualitative exploration of protein evolu-

tion through simulation and because they permit pa-

rameter estimation and hypothesis evaluation via

Figure 1. Evolution of proteins under selection for folding to maintain a function. The proteins exist in a population, the size

of which determines the relative influences of drift and selection. The ancestral allele (green) is modified by mutation to

deleterious (red) and nearly-neutral (blue) derived alleles, which are ultimately eliminated or fixed by selection or by drift

randomly. Ancestral alleles are not always lost and derived alleles not always fixed. The process is stochastic rather than

deterministic, described by the interplay of the strength of selection and population level dynamics. The figure is derived from

PDB structures 1D4T (chain A), 1QG1 (chain E), and 1JD1 (chain A), which are used for illustrative purposes. [Color figure can

be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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likelihood-based statistical techniques. Evolution

occurs within populations of organisms but widely

employed inter-specific models of protein evolution

often represent the proteins in a population with a

single protein or codon sequence. In addition, these

probabilistic models are usually site-independent

and Markovian with respect to time. In other words,

the models have the future of an evolutionary line-

age depend on its current state (i.e., sequence) but

not on earlier states visited in the history of a line-

age. For example, the pioneering work of Halpern

and Bruno1 represented protein evolution as a Mar-

kovian process operating on one sequence in each

instant in time as a simplification of the long term

behavior of protein evolution in a population.

Evolutionary biologists commonly rely on mod-

els of sequence change that assume changes at one

sequence position have no impact on whether other

positions will change. The likelihood of the nucleo-

tides or amino acids in an individual column of a

multiple sequence alignment can be determined

with the pruning algorithm of Felsenstein.12 This

assumption of independence between sites allows

the probability of an observed set of aligned sequen-

ces at the tips of an evolutionary tree to be

expressed as the product over alignment columns of

the observed nucleotides or amino acids in those col-

umns.12 This independence assumption is simplistic,

throwing away biological information, and can be

shown statistically to be problematic, but permits

computationally convenient likelihood-based infer-

ence.13 Building upon this computational conven-

ience, complex models that allow for lineage-specific

rate shifts have been developed to phenomenologi-

cally (nonmechanistically) treat signal that may

originate from site-interdependence.14,15

Relaxing assumptions of site-independence in
models of sequence evolution

Understanding the coevolution of residues within pro-

tein structures is important for both the protein

structure and evolutionary biology communities.

There is an emerging strategy for achieving this

understanding. To avoid assumptions of site-inde-

pendence, the protein sequences are typically mapped

to some phenotypic property, such as thermodynamic

stability, folding ability, or some assay for functional-

ity, and the substitution rate is expressed as a func-

tion of the resulting change in this property. These

models have been developed for two specific goals.

The first goal has been the investigation of the rela-

tionship between protein structure, function, foldabil-

ity, and evolution, as well as realistic sequence simu-

lation. Some of the early work in this area has relied

upon extremely simple models of proteins, such as

representing the structure as a self-avoiding walk on

a cubical lattice, or reducing the amino acid alphabet

to as few as two different residues. Several early

models subsequently moved to protein structures

with full amino acid alphabets.16–21

More recent efforts to model and simulate pro-

tein evolution have addressed thermodynamic prop-

erties of proteins, involving calculation of protein sta-

bility or binding affinity, requiring the use of some

effective potential function that includes not only

enthalphic terms (hydrogen bonding, van der Waals

interactions) but also entropic terms (hydrophobicity,

side-chain, and back-bone conformational entropy).

In general, two broad classes of models have been

developed, so called informational (knowledge-based)

models that use pairwise statistical potentials18,22,23

and so called physical models that apply a force field

to a coarse-grained approximation of amino acid side

chains24,25 (see26 for a comparison). These physical

models are quite similar to models used in automatic

‘‘protein design’’27 and differ from each other in the

degree of physical approximation used. A pioneering

study by Dahiyat and Mayo27 used a detailed descrip-

tion of the proteins and searched for the optimal posi-

tion of all side-chains with an automatic design algo-

rithm. In later studies flexibility of the backbone has

also been included in the protein design programs,28

but this may be computationally impractical to imple-

ment in an evolutionary context.

In the physical models, the terms have weights

that are used to optimize the function. Variations in

the force field used include weights derived from all

PDB structures versus weights optimized from a sin-

gle structure, side chain optimization with a fixed

backbone versus no geometric side chain optimiza-

tion, inclusion or exclusion of a binding (intermolec-

ular association) interaction as part of the fitness

function, and an energy gap that can include the

unstructured state, explicit alternative folds, or a

random contacts model.29

Both the informational models and the physical

models have been developed with a balance of com-

putational speed and accuracy in mind, but neither

is yet accurate enough to be useful for questions

that involve explicit sequence-structure-function evo-

lution. In neither approach do biologically observed

sequences score well. Aspects of negative design

(selection against alternative folding/binding states)

that are poorly understood might account for the

poor explanation of native sequences, but fundamen-

tal problems with the assumptions of the thermody-

namic model are a more likely explanation. In simu-

lation work by Grahnen et al.,25 an informational

model that averages interaction propensities across

all PDB structures and contexts shows changes in

the frequencies of hydrophobic residues in the core

and surface during simulation. Additionally, the sub-

stitution process lacks protein context specificity and

support for a covarion model of substitution is never

attained from sequences simulated using this partic-

ular model and simulation scheme. It is conceivable
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that alternative informational models and imple-

mentations (for example, a model with more context-

dependence in the interaction potentials) might have

different evolutionary properties. The physical model

used in the same work retains more detailed fea-

tures of the protein including a hydrophobic core

and appears to progress from an equal rates to a

rates across sites to a covarion model during the

simulation (a complex model of sequence evolution

with shifting rates that retains the assumption of

site-independence, see Ref. 14 for a review). How-

ever, lack of fit to the native state is still problem-

atic, and examination of the structural model

reveals a poorly packed protein with the approxi-

mate amino acid side chain representation inad-

equate. Improvements to the models are clearly

needed to make them more useful for phylogenetic

and sequence simulation purposes.

These structural/thermodynamic models define

static interactions of amino acids within a structure

without sufficient molecular flexibility or structural

optimization upon mutation. A better model would

more clearly connect the targets of selection to eval-

uated parameters in the model. How much selection

acts directly on protein folding thermodynamics is

unclear. Clearly, proteins are selected to function

adequately. Their function may require them to bind

specifically to interaction partners, to catalyze a reac-

tion, or to transport what has been bound. How does

the requirement to function interplay with folding

thermodynamics in terms of selective pressures? Fur-

ther, binding, catalysis, and transport are all governed

by biophysical parameters, but how constant are these

parameters across evolution given that members of

pathways and networks are known to coevolve? What

selective pressures do avoiding aggregation and

requiring binding specificity place on sequences?

Given that our understanding of these issues is

not yet complete, a sequence evolution model, that

is, site-interdependent, but averages phenomenologi-

cally over some of these processes, may be a step for-

ward (see for example30). Currently, existing mecha-

nistic models cannot handle insertion and deletion

(indel) events and models that deal mechanistically

with the insertion and deletion processes are

needed. Improved models for molecular evolution

are needed to handle the functional and structural

divergences that occur frequently following gene

duplication events (i.e., if a phylogeny is to be esti-

mated for a multigene family composed of paralo-

gous groups). Such models will need to include the

changing functional roles that occur at homologous

sites, lineage- and site-specific rate variation, in

addition to insertions and deletions relative to the

common ancestor. If a phylogeny is to be estimated

for an individual domain, but members of the family

span different multi-domain architectures, the model

will need to include domain architecture rearrange-

ments. Simulation studies that can effectively model

these complex evolutionary events would be very

useful in elucidating the robustness of existing phy-

logenetic methods to handling these data.

Selection against alternative states (also termed

folding selectivity and negative design) will also be

an important aspect of models of protein evolution.

The standard way to take into account misfolded

structures of real proteins is through gapless thread-

ing31,32 which involves explicit alternative states or

use of a random contacts model29 that typically aver-

ages over alternative states with the same amino

acid composition and contact density.

Role of population genetic parameters

Protein evolution is not only dependent upon bio-

physical parameters. Underlying parameters associ-

ated with the mutation and fixation processes are

also important. These include the mutation rate, the

recombination rate, and the effective population

size. There is a complex interplay between these pa-

rameters and the biophysical parameters associated

with selection.33 The effective population size is im-

portant in influencing the ability of selection to over-

come stochastic neutral genetic drift. The link

between the strength of selection and the actual

number of individuals in the population is complex,

especially when the actual population size is non-

constant. Several recent studies have begun to look

specifically at the role of population genetic parame-

ters in protein folding.6,34

Halpern and Bruno11 were able to reconcile popu-

lation genetics and protein evolution for the special

situation where mutation rates are sufficiently low to

have each new mutation be fixed (i.e., survive and

eventually spread to all members of a population) or

lost before the next one occurs. In this case, recombi-

nation can be ignored because linked sites are

unlikely to be simultaneously polymorphic. For the

low mutation rate situation, Kimura35 derived a dif-

fusion approximation for the probability that a new

mutation is fixed. The approximation has the fixation

probability be a function of the product of population

size and the difference in relative fitness caused by

the new mutation. These products have been referred

to as ‘‘scaled selection coefficients".36 Halpern and

Bruno recognized that, if an evolutionary model has

parameters that correspond to mutation and others

that reflect natural selection, the Kimura fixation

approximation could be used to convert parameter

estimates to estimates of scaled selection coefficients.

Statistical inference with evolutionary models
where sequence sites do not change

independently

For statistical inference from sequences related by a

phylogenetic tree, the pruning algorithm of Felsen-

stein12 has been extensively employed for statistical

Liberles et al. PROTEIN SCIENCE VOL 21:769—785 773



inference with models of protein evolution with the

assumption that sequence positions (or individual co-

dons within a sequence) change independently. But,

conventional inference approaches become computa-

tionally impractical when sequences cannot be

decomposed into short independently evolving units.

For a data set of protein-coding DNA sequences, the

goal might be to determine (or at least approximate)

the probability of the observed sequence data at the

tips of the tree conditional upon the evolutionary

model, the tree, and values of parameters in the

model. The challenge is that only the data at the

tips of the tree are observed whereas the sequence

at the root of the tree and the subsequent evolution-

ary events are not directly observed. Therefore, cal-

culating the likelihood of the observed data entails

an integration of probability densities over all possi-

ble root sequences and all possible subsequent his-

tories of evolutionary events. Such an integration is

most often computationally intractable for models of

sequence change with dependence among sites.

Fortunately, evaluation of the probability den-

sity of individual substitution histories can be com-

putationally feasible in many cases where integrat-

ing over all possible histories is prohibitive. Jensen

and Pederson37,38 exploited this fact to perform like-

lihood-based inference when models of sequence

change have evolutionary dependence among sites.

The basic idea is to augment the observed sequence

data with a possible substitution history and to then

use Markov chain Monte Carlo techniques to per-

form a random walk over histories that are consist-

ent with the observed data.

Inspired by the approach of Parisi and Echave18

for simulating protein evolution, Robinson et al.39

adapted the ideas of Jensen and Pederson to statisti-

cal inference under a model of protein-coding DNA

evolution that had codons change in a dependent

fashion due to natural selection on protein tertiary

structure (or any other aspect of phenotype for

which the effect of a mutation can be predicted).

More recent work40–42 has greatly improved both the

computational tractability of the inference procedure

and the treatment of protein structure in these evo-

lutionary models. An appealing feature of this line

of research is that the predicted phenotypic effect of

a mutation can be converted into a predicted substi-

tution rate.

Models of protein evolution that incorporate pro-

tein structure have been shown to fit data better

than the corresponding models that ignore protein

structure.41 However, an even better fit to the data

could be achieved with state-of-the-art site-inde-

pendent codon models.42 Despite their having pa-

rameters with biologically meaningful explanations,

the lackluster statistical fit of dependent site models

is clearly disappointing. A silver lining for some phy-

logenetic applications could be that complicated bio-

physics-based models may not always be required.

Lakner et al.43 used simple measures of sequence-to-

structure fit to study phylogenetic likelihood calcula-

tions under site-independent models. They calcu-

lated pseudo-energies for ancestral sequences from

pairwise contact potentials, solvent accessibility

terms and threading, and assessed specificity by con-

sidering a library of decoy structures. They found

that likely substitution histories on phylogenetic

trees mostly contain sequences that are consistent

with the tertiary structure. The difference between

these results and the less satisfactory results of

Grahnen et al.25 and Kleinman et al.24 is likely due

to the shorter evolutionary distances and the corre-

sponding end point constraints that restricted paths

through intermediates.

Phenomenological models

Problems with the structural models described may

be due to problems in accurately describing protein

thermodynamics, but they may also be due to a lack

of understanding of the underlying biological fitness

functions. One alternative is to use purely phenome-

nological models that attempt only to fit (and regen-

erate for sequence simulation) observed sequence

data without considering underlying processes. Such

models are typically judged by likelihood scores, Q-Q

plots, and other measures of goodness of fit as the

only benchmarks. A potential problem with these

models is in their biological use and interpretation.

For example, without models that adequately

describe underlying biological processes, the phylo-

genetic tree estimate may not be reflective of the an-

cestral history of the sequences (a typical goal of

phylogenetic tree reconstruction). In these cases,

other signals, such as protein structure, protein

function, and constraints at other levels of biological

organization, override the ancestral history informa-

tion in the sequences and result in inaccurate tree

estimates.44

Sequence alignment

The context underpinning sequence alignment is a

factor, that is, frequently overlooked when bringing

together amino acid sequence and protein structure.

The alignment represents a series of associations

between the amino acids, which can then be inter-

preted either from a structural or evolutionary per-

spective (reviewed in Ref. 45). The structural per-

spective implies that corresponding amino acids are

playing structurally corresponding roles, whereas

the evolutionary perspective builds upon the

assumption that amino acids have a shared common

ancestor and that one can track nucleotide substitu-

tions in their codon over time. In some cases these

two perspectives coincide, and models that describe

protein evolution in terms of function make struc-

tural sense. In other cases, there may be conflict
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between evolutionary and structural homology

(descent from common ancestry at the level of a

position within a structure rather than a column in

a multiple sequence alignment), that is, not

accounted for in the model. It is unclear how these

conflicts will affect downstream analyses and if the

simpler evolutionary models or the structural mod-

els that do not model evolution make more accurate

statements about common ancestry.

A second concern regarding sequence alignment

is that recent research has shown that the outputs

of different sequence alignment methods tend to pro-

duce different results that are not consistent,46 and

that sequence alignment accuracy degrades sharply

with increasing evolutionary divergence.47 If data-

sets are restricted to orthologs from closely related

taxa (or to slow-evolving genes), sequence divergence

may be less problematic, but if datasets include

highly divergent taxa or span functionally divergent

paralogous groups, alignment errors become increas-

ingly likely and may cause significant errors in phy-

logenetic accuracy.48

There are several possible general solutions to

this problem. One is to incorporate insertion and de-

letion events into models of protein evolution, which

will make sophisticated models even slower and

more complex computationally.49–51 It is clear that

affine gap penalties, like phenomenological models

of sequence evolution, are not sufficiently reflective

of underlying mechanistic processes.52,53 Insertions

and deletions are seldom modeled, since their effect

on stability is more difficult to predict, particularly

for insertions where new sequence is added in addi-

tion to changes in the orientation of existing struc-

tural elements. It is becoming increasingly evident

that large novelties in protein evolution are pro-

duced by large insertion events in which an entire

‘‘domain’’ is added or deleted to a protein.54 The

proper modeling of insertion and deletion events will

be a crucial step towards more realistic models of

protein evolution.

Protein evolution at the level of the domain

Many biological systems, such as metabolic path-

ways, signaling pathways, and gene regulatory net-

works show a high degree of modularity with respect

to the protein domains from which they are con-

structed. Domains are often autonomous and can be

re-used in different contexts, with the potential to

create high molecular functional diversity from a

small number of operations. The modularity of do-

main recombination allows for swift changes to an

organism’s functional repertoire and the potential

for rapid adaptation.55 Domain rearrangement is a

rare event, with rates much lower than the rates of

amino acid substitution. Using structural domain

assignments with hidden Markov models, Apic et

al.56 showed that a tiny fraction of the combinatorial

potential of domain rearrangements is observed in

the protein universe. The pairwise domain combina-

tions have a scale-free network structure.57 How-

ever, there are pairs and triplets of domains that act

as evolutionary modules, and can be viewed as ‘‘su-

pra-domains".58 Which domain combinations have

been discovered is probably a consequence of muta-

tional opportunity, drift, and selection.

Ultimately, the wealth of available genomic data

presents an unrivalled opportunity to study the

functional importance of these molecular innova-

tions, which can be retraced by comparative

genomics with some accuracy. For instance, it was

demonstrated that the evolution of domain architec-

tures could primarily be explained by a simple sce-

nario consisting of the addition or deletion of a sin-

gle domain at the N or C-termini.59,60 One notable

exception to this rule is found in the case of repeat-

ing domains, that often are copied (or deleted) multi-

ple domains at a time and at least equally frequent

at the central region of a gene as at the termini.61

In Arthropods, the majority of new domain

arrangements can be explained by simple, single-step

modular rearrangement events dominantly at the

N and C-termini of the proteins.62 Modular rearrange-

ments strongly impact all levels of the cellular

signaling apparatus and thus have strong adaptive

potential. Furthermore, emerging domains are pre-

dominantly found as single domains, thus most likely

resulting from neighboring genomic regions.63 A com-

parison with plant genome evolution reveals that the

dynamics are qualitatively similar but with very dif-

ferent rates of emergence of novel domains.64 Presum-

ably, this is related to the complex interplay of domain

rearrangements with the frequent whole genome

duplication events observed in plant lineages.

Intrinsically disordered proteins
Of course, not all domains of proteins fit in the tra-

ditional model of a folded structure. Although there

is some controversy over the fraction of proteins that

show intrinsic disorder, their existence is consistent

with the expectation that folding stability is not a

target of natural selection for all proteins. Disor-

dered proteins have shorter half-lives, reducing their

potential for aggregation and misassembly,65 which

may affect selective pressures. Proteins that are par-

tially or totally disordered in the native state should

be accounted for in models of the evolution of protein

stability (see66 for an early review). Roughly 30% of

human proteins are predicted to contain large

unstructured regions.67 These proteins are fre-

quently involved in regulatory processes and contain

short linear motifs, which exploit their ability to

form very precise transient interactions, with high

specificity but low affinity, and they often acquire

structure only when they interact with other pro-

teins or nucleic acids.68 Disordered proteins are
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often coupled to phosphorylation processes, which

enhance their intrinsic flexibility even further and

allow them to adapt to multiple interaction partners,

thus enhancing their molecular complexity. Disor-

dered proteins can be incorporated in biophysically

aware models of evolution as an extreme case of

flexibility, although perhaps one with greater evolu-

tionary constraint than would normally be observed

for extremely flexible regions.

An intriguing relationship between protein dis-

order and organism population size is provided by

the study of proteins that form the centrosome, a

large macromolecular complex that regulates animal

cell differentiation and division. These proteins are

predicted to be more phosphorylated than structured

proteins from the same organism. Intrinsic disorder

was found to increase in evolution along branches of

the phylogenetic tree that lead to an increase of the

number of cell types and a decrease in effective pop-

ulation size, mainly due to large insertions of new

disordered regions, at a rate, that is, larger for cen-

trosomal than for control proteins.34,69 Thus, explicit

consideration of population genetics is likely to be as

important in understanding the evolution of disor-

dered proteins as it is for ordered proteins.

Evolution of homomers
Analyses of all proteins of known three-dimensional

structure,70,71 functional genomics experiments,72,73

and bioinformatic analyses of protein-protein interac-

tion networks74 show that the majority of proteins oli-

gomerize (Fig. 2). Furthermore, they show that about

half of cellular complexes are homomers, or com-

plexes of self-interacting copies of the same gene

product. There are numerous examples for how oligo-

merization benefits protein function and/or stability

(reviewed in Refs. 75 and 76). However, for an oligo-

meric interaction to contribute to fitness, the protein

Figure 2. Symmetries of homomeric protein complexes. Complexes on the left hand side have cyclic symmetry (Cn), which

means all subunits are related by rotation around a single n-fold rotation axis. Complexes on the right hand side have dihedral

symmetry (Dn), which means they have an n-fold rotation axis that intersects a 2-fold rotation axis at right angles. Homomers have

either symmetric face-to-face (e.g., a C2 homodimer, PDB:1QZT), or asymmetric face-to-back interfaces (e.g., a C3 homotrimer,

PDB: 1G2X, or a C4 homotetramer, PDB: 1PQF). Symmetric interfaces result in complexes with dihedral symmetry, while

asymmetric interfaces imply homomeric complexes with cyclic symmetry. Symmetric interfaces evolve more readily than

asymmetric ones and thus there are more dihedral than cyclic complexes (see text). During the course of evolution, proteins can

evolve multiple interfaces and form higher oligomers, such as trimers of dimers (D3, PDB: 1NLS); or dimers of trimers (D3, PDB:

1V9L) or tetramers (D4, PDB: 1HAN). [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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complex first needs to be significantly populated.77

Therefore, the ubiquity of protein oligomers is not

simply due to their adaptiveness but also to the evo-

lutionary pathways by which they emerge. Rewiring

of protein interactions is a common evolutionary

event78 and on average, only two mutations are suffi-

cient to turn a protein surface into an interface.79

In the case of homomers, another major factor

that enables evolvability of interactions is their sym-

metry. Andre et al.77 modeled a random pool of pro-

tein complexes with low energy binding modes, and

showed it is significantly enriched in symmetric

interfaces. Structural symmetry enables a single

mutation to have a two-fold impact80 so a symmetri-

cal, face-to-face interface is statistically more proba-

ble to emerge.81 Symmetric interfaces result in com-

plexes with dihedral symmetry, while asymmetric

(face-to-back orientation within one plane) interfaces

imply homomeric complexes with cyclic symmetry. A

homomeric complex can have both types of interfa-

ces, and many dihedral complexes can be described

as stacks of cyclic complexes. Since symmetric inter-

faces evolve more easily than asymmetric ones in

the first place, and are selected for a number of

functional reasons, dihedral complexes are more

abundant than cyclic complexes.69

One of the benefits of oligomerization is the

increased stability due to the additional buried sur-

face area of interface atomic groups. Destabilizing

mutations can expose hydrophobic residues which

can rapidly lead to aggregation into amorphous or

amyloid aggregates.82–85 There is significant selec-

tion pressure to avoid protein aggregation and dele-

terious gains of function.

Although burying additional protein surface in

interfaces is not the main evolutionary strategy to

increase the overall stability of the proteome,86 oligo-

merization can compensate for a loss in stability,

since protein interface formation and protein folding

are governed by the same biophysical principles.

This overlap is best illustrated by domain-swapped

homomers.87 Recent exhaustive analysis of available

protein structures revealed that about 10% of pro-

tein folds, and 5% of protein families contain do-

main-swapped structures.88 Moreover, proteins

belonging to the same evolutionary family can have

different domains swapped. Domain swapping can

emerge as a compensatory response to a destabiliz-

ing mutation, which can cause a protein subdomain

to unfold from the rest of the protein.89 Unlike

aggregation, domain swapping may preserve protein

function, which may be the reason why these do-

main swapped proteins are observed in nature.90

Role of expression level and nonprotein

selection on evolutionary rate
Not all attributes of protein sequence evolution can

be explained by protein structure. Gene expression

has been described as an important constraint on

the evolutionary rate of proteins.91 Several hypothe-

ses explain this observation. Drummond and Wilke

have explained this as selective pressure for transla-

tional robustness because levels of mistranslated

proteins increase as gene expression increases.92

Another explanation is that of selective pressures to

prevent spurious associations.93–96 As the concentra-

tion of a protein increases, the number of targets the

protein can associate with as it diffuses through a

cell also increases. This then places increasing selec-

tive pressure on binding interfaces to constrain

sequences to those that will interact with favorable

targets with high affinity, while eliminating the sub-

set that can also interact with alternative targets

that are deleterious. This might account for observa-

tions of increased constraint with increased protein

concentration and gene expression and is a hypothe-

sis that should be tested.

Constraints at the level of mRNA

Synonymous substitutions do not change the protein

amino-acid sequence, and their rates have tradition-

ally been regarded to be approximately constant

along the sequence and to approximate the neutral

substitution rate. There is strong evidence which

shows that protein coding genes encode DNA and

RNA level specific functions other than the amino

acid sequence to be translated. Some such functions

may be related to the encoded protein, whereas

others may be independent of it. Examples of the

former include codon bias97–100 and mRNA second-

ary structures which may affect both the rate of the

translation process and its accuracy.101,102 Examples

of the latter include overlapping genes,103–105 nucle-

osome binding regions,106,107 and cis regulatory ele-

ments such as exonic splicing enhancers,108–111 and

functional RNAs such as antisense RNAs112,113 and

micro-RNAs (annotated in miRBase114). Clearly,

such functions would be perturbed by synonymous

mutations and are hence expected to be under

selection.

These situations require more realistic modeling

of the evolutionary process in protein coding genes.

Specifically, variable degrees of selective pressures

at the DNA and RNA layers should be accounted for,

and such models are being developed. For example,

Pond and Muse115 and Mayrose et al.116 have mod-

eled among-site-rate variation of both the synony-

mous and the non-synonymous substitution rates.

However, these models limit the synonymous selec-

tive pressures to follow the reading frame, whereas

DNA and RNA functions may be independent of the

reading frame. For example, a functional RNA sec-

ondary structure may be maintained by the first and

third positions of a certain codon that encodes an

amino-acid site, that is, under weak purifying selec-

tion. In such a case the first and third codon
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positions would be conserved while the second one

would be variable. Limiting the modeling of the

DNA and RNA level selective pressures to the read-

ing frame compromises detection in such a scenario.

Rubinstein et al.117 have relaxed the reading-frame

dependency by allowing a baseline DNA/RNA substi-

tution rate to vary among individual codon positions

and among codons. This relaxed model was shown to

better explain substitution patterns of a large frac-

tion of protein coding genes in that study relative to

the simpler traditional models that do not account

for DNA/RNA level selection, indicating its potential

to detect DNA and RNA level encoded functions. In

addition, it has revealed that accounting for the

DNA/RNA level selective pressures has a dramatic

effect on the inference of positive selection. In sum-

mary, modeling of substitution patterns in protein

coding genes at the codon level is crucial for under-

standing protein function and structure, and should

be articulated in biologically realistic terms.

Fold transitions and divergence over much

longer evolutionary timescales
The sequence-structure relationship is perhaps one

of the most intriguing problems driven by funda-

mental principles of molecular evolution. Proteins

lacking sequence similarities (at the level of two ran-

dom sequences that have saturated in substitutions)

may still share a similar structure. This structure-

function relationship has been addressed from a bio-

physical point of view, where sequences of many pro-

teins correspond to folds that exist in a cellular envi-

ronment and context. Hence, it was hypothesized

and further demonstrated that amino acid conserva-

tion in a given fold family is driven by the contribu-

tion of each individual amino acid to the thermody-

namic stability of folds.118,119 In fact, in families of

closely related proteins, one can observe conserva-

tion of individual amino acids, while in families of

more distantly related proteins one can observe con-

servation at the level of amino acid positions.

Dokholyan and Shakhnovich119 have suggested that

difference in time scales drive such mosaic conserva-

tion in divergent evolution. On shorter time scales

families of homologs appear due to simpler mutagen-

esis, and on longer time scales sequences diverge

enough that one cannot distinguish them from unre-

lated sequences while nevertheless maintaining fold

integrity (Fig. 3). Eventually, the structures diverge

enough that one can no longer identify relationships

among them. This is the complex coevolutionary pro-

cess in action, where site-interdependence becomes a

stronger signal in evolutionary divergence data.120

Using graph theoretical approaches, Dokholyan et

al.121 have constructed a protein domain universe

graph (PDUG) that consisted of nodes, corresponding

Figure 3. Hypothetical evolution of sequences and folds. On short time scales, mutations and selection due to protein fold

(A) cause emergence of a closely related family of protein sequences (A1-A6). On longer time scales, sequences occasionally

cross (yellow arrows) the larger free energy barriers that separate related folds (B, C) in sequence space and establish novel

sequence families (B1-C6). This figure is modified from a figure published in Ref. 149. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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to protein domains, and edges between structurally

similar domains. Interestingly, just by looking at the

PDUG, one can often connect two seemingly unrelated

protein structures through an elaborate network of in-

termediate protein domains (Fig. 4). At such longer

time scales, folds undergo significant change and the

resulting pattern of conserved amino acids is lost.

Appearance of new folds suggests that protein

thermodynamic stability of a specific fold is not the

evolutionary driving force at the times scales of diver-

gence of fold families.122 Stability maintains the

structural integrity of individual folds and fitness

may drive fold appearance and divergence in quests

for functional adaptation to emerging environments.

This leads to the question, how many sequences

correspond to thermodynamically stable folds? This

question was addressed with an analytical expres-

sion for the number of sequences which fold with

given stability into a given structure.123

Dokholyan124 estimated the number of sequences

that correspond to a stable 100-residue protein

structure to be about 1047. This observation suggests

several important conclusions. It is clear that evolu-

tionary processes have not resulted in equilibrium in

sequence sampling under such thermodynamic con-

straint and current representation of the sequences

corresponding to a given fold is severely biased and

under-sampled.125 However, the search for sequen-

ces of stable proteins should be feasible with reason-

ably good force fields and search algorithms. The

estimate for the number of ‘‘designable’’ sequences

was also provided in Ref. 124. Upon simulating mo-

lecular evolution using thermodynamic stability as a

guide,126 one should not expect full recovery of

‘‘native’’ sequences. However, if one fixes the protein

backbone, sequence recovery can reach 60% in the

core of the protein, which is also the most conserved

because of the core’s substantial contribution to sta-

bility. Ultimately, while there are a large number of

sequences corresponding to a stable fold, the number

of all possible sequences is much larger (�10130 for a

100 residue protein).

Evolution of protein dynamics
The relationship between protein dynamics and pro-

tein evolution has emerged as an important topic of

study in this field, complementing analysis of solved

structures. From the simple but necessary required

flexibility of a ligand-binding site to the coherent

conformational transitions of allosteric proteins, pro-

teins must move to function. To gain insight into the

dynamics-function relationship it is worthwhile to

Figure 4. The largest component of the Protein Domain Universe Graph (PDUG) shows the structure of domain relationships

and its interconnectedness based upon structural geometries. This figure has previously been published in149 and is

reproduced with copyright permission from Landes Bioscience and Springer ScienceþBusiness Media. [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com.]
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study how protein motions evolve. Complementing

the large body of evolutionary research dealing with

other protein characteristics such as sequence, struc-

ture, or stability, comparative studies focused at

understanding the evolution of protein dynamics are

very recent and still scarce. Yet, there have been

some advances on this front, which we will attempt

to outline in this section.

There is one system in which the dynamics-func-

tion relationship has been informed by evolutionary

studies: adaptation to extreme environments. Specifi-

cally, the study of a possible role of changes of flexibil-

ity in regulating enzymatic activity for organisms

adapted to cold or hot environments.127 Outside this

system, only recently backbone flexibility (as con-

veyed by B-factor profiles) has been used to perform

systematic studies, which have shown that flexibility

diverges slowly so that it is significantly conserved at

family and superfamily levels.128,129

Comparative flexibility studies are significant,

but lack the necessary detail to deal with compara-

tive studies of large-scale coherent motions. The

standard way of analyzing protein motions uses nor-

mal modes, which describe independent intrinsic

vibrations. Each mode has an associated energy and

amplitude, which are related (the square amplitude

is the inverse of the energy). There are several ways

of obtaining the normal modes, from all-atom Molec-

ular Dynamics (MD) simulations to coarse-grained

Elastic Network Models (ENM). A detailed descrip-

tion of these methods is outside the focus of this sec-

tion. For our purpose, it is enough to highlight that

all methods give very similar results, especially for

the low-energy large-amplitude motions, which are

the most interesting.130,131

Specifically, in many cases the low-energy nor-

mal modes are presumed to be related to protein

function.132 For example, functional transitions

between ligand-free and ligand-bound conforma-

tions, allosteric transitions, and so forth, can usually

be described using one or a few low-energy normal

modes. This functional importance prompted studies

of normal-mode conservation. Low-energy normal

modes have been found to be conserved in several

case-studies.133–135 A systematic study of a large

dataset of proteins representative of all structural

classes and folds shows that this is a general trend:

the low-energy large-amplitude normal modes are

the most evolutionarily conserved.136

The issue naturally arises of whether the collec-

tive normal modes are more conserved because of

their functional relevance or for other reasons. Most

case studies mentioned before assume, explicitly, or

implicitly, the functional interpretation. Some inter-

esting studies compare the divergence of sequence or

structure with that of motions and connect this to

functional aspects (see for example Refs. 137, 138).

Casting doubt on the functional interpretation,

structural similarity seems to grant dynamical simi-

larity, as was found for nonhomologous proteins

with the same architecture139 or even for completely

unrelated proteins.136 An alternative explanation

has been proposed that the low-energy normal

modes are just more robust with respect to muta-

tions.136 This view is supported by preliminary stud-

ies using perturbed Elastic Network Models.140,141

The null model should take into account that the

low-energy normal modes would be conserved even

under no selective constraints and a neutral evolu-

tionary baseline for changes in normal modes needs

to be established.

Relationship between protein dynamics and

structural divergence

The ensembles of conformations that result from ev-

olutionary divergence are very similar to those pro-

duced by thermal fluctuations. This similarity

between the evolutionary and dynamical deforma-

tions was demonstrated in the pioneering work142

and confirmed further in other studies.143,144 An

interpretation, put forward already in Ref. 142 and

embraced by others, is that this has its origin in and

is evidence of the functional relevance of the low-

energy normal modes.

To better understand the observed connection

between evolutionary deformations and dynamical

deformations, a model was proposed in which pertur-

bation of Elastic Network Models accounts for the

effect of mutations on equilibrium conformation.140

This model predicts that the equilibrium conforma-

tion will diverge along the low-energy normal modes

even under random unselected mutations, which

casts doubt on the functional interpretation. If the

perturbed ENM is correct, dynamical deformations

(normal modes) should govern not only evolutionary

divergence, but also the structural change due to per-

turbation. Further support to the idea of functional

signal in ENM perturbation comes from the observa-

tion that the same pattern variation along normal

modes is found for unselected engineered mutants

and for structures of the same protein determined in

different experimental conditions.141

To say that even under random mutations a pro-

tein would diverge along the lowest normal modes is

not to say that such modes are nonfunctional or that

selection plays no role in molding structural diver-

gence. It is possible that natural selection increases

or decreases the contribution of a certain normal

mode to structural variation. However, a careful

assessment demands the use of a null model that

takes into account the dominant effect of the lowest

normal modes even in the absence of selection.

There is some work that suggests that this could be

the case for proteins that experience large functional

conformational transitions.145 Disentangling the

effects of natural selection from those of drift on the
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patterns of structural divergence is a subject on

which further research is needed.

Missing datasets, an experimental wishlist, and

experimental testing

A third factor that adds constraints to evolutionary

processes, in addition to protein biophysics and popu-

lation/evolutionary mechanisms, is the functional

requirements of the molecule as it interacts with

other molecules dynamically in networks and path-

ways (systems biology). To enable evaluation of these

effects and to better define both structure and func-

tion, a number of datasets will be desirable. From

multiple species and across multiple gene families

including those that interact with each other, a better

understanding of how, when, and where individual

proteins are post-translationally modified is impor-

tant. As protein function is defined quantitatively,

physical and enzyme constants, like kd, kcat, Km

across multiple species will be tremendously impor-

tant for studying the evolution of protein functions

(for example, inter-molecular interactions) and the

constraints they impose.

Techniques such as ancestral sequence recon-

struction and detailed experimental studies of muta-

tional epistasis can also shed light on the relation-

ship between sequence coevolution, structure, and

function. In studying the evolution of steroid hor-

mone receptors and their affinities for various

ligands, it was observed that a very small number of

historical mutations are sufficient to cause most of

the changes in function that have occurred, although

further smaller effect mutations also optimized these

new functions.146 In some lineages, permissive and

restrictive mutations (those that have little or no

primary effect but are epistatically required for the

ancestral or derived states to be tolerated) played a

key role in the evolutionary process, opening up

pathways to new functions and closing off others.

X-ray crystallography and molecular dynamics anal-

yses identified the biophysical mechanisms by which

new functions evolved and epistatic mutations

caused their effects. These mechanisms are not lim-

ited to the well-recognized paradigm of effects on

global protein stability, but include dramatic confor-

mational changes that alter the network of interac-

tions between ligand and receptor, the introduction

of new contacts that cause ligand-specific frustration,

and changes in local protein stability that allow the

protein to tolerate specific mutations in specific

regions of the protein. Such mechanisms are not

incorporated into current models of protein evolution.

In recent experimental studies, mutations in an

essential gene folA coding for dihydrofolate reduc-

tase were introduced directly in E. coli under an en-

dogenous promoter and their fitness effect as well as

effect on biophysical properties of the protein (Tm,

kd, kcat, Km) were evaluated.147 The analysis uncov-

ered unexpected mechanisms whereby mutated

proteins escape unfolding and loss of function by

forming symmetric homodimers. Further, it becomes

clear that the cell homeostasis machinery (chapero-

nins and proteases) plays a crucial role in determin-

ing the fitness effects of destabilizing mutations, by

determining the effective concentration of active pro-

teins in the cytoplasm through their effect on pro-

tein turnover. These experiments suggest that

steady state description of dynamic processes in

cytoplasm is much more relevant than just stability

determining equilibrium distribution between the

folded and unfolded states of a protein, according to

Boltzmann’s law. Further experiments along these

lines will elucidate the relative importance of physi-

cal and physiological factors in sculpting fitness

landscape of simple organisms

The TEM-1 family of beta-lactamases is another

model system that has been used for several rea-

sons, including the ease of reverse genetics and phe-

notypic assays, lack of participation in a metabolic

pathway almost ensuring that mutational effects on

phenotype are mediated by changes in the enzyme

itself, and the relative ease of purification and char-

acterization of biophysical and biochemical proper-

ties of this enzyme. Specifically, work with the 16

protein-coding alleles defined by all combinations of

four missense mutations known to jointly increase

drug resistance by over four orders of magnitude

has shown that mutational interactions among these

mutations (what the evolutionary biologist means by

epistasis) sharply constrains the opportunities for

adaptive evolution in this enzyme because many

mutations are only beneficial in some combina-

tion.148 More recently all 16 protein coding variants

were purified and their kinetic and native-form fold-

ing stabilities characterized (Jennifer L. Knies and

DMW, unpublished results). Interestingly, variation

in kcat/Km among alleles accounts for �80% of the

variance for drug resistance, but native-form folding

stability is almost entirely uncorrelated. Moreover,

all alleles have DG in excess of -4 kcal/mol, challeng-

ing the notion that evolution is a balance between

structure and function. Finally, there is almost no

epistasis for either of these mechanistically more

proximal traits. While this is a simple system to

decompose mutational effects on fitness (using drug

resistance as a proxy), we have been unable to do so,

reflecting gaps in our understanding. In this case,

mutations of profound evolutionary importance affect

Tm by less than 5 degrees C, and 3D structure may be

perturbed by less than 1-2 Å RMSD. And after

accounting for kinetics, 20% of the variance in drug

resistance remains a sort of mechanistic dark matter.

Concluding Thoughts
The evolution of biomacromolecules is complex and

there is a constant tension between generating
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simple models and embracing the complexity of mo-

lecular evolution. As models that describe mechanis-

tic processes and fit data well/offer explanatory

power are generated, our corresponding understand-

ing of protein evolution and protein biophysics will

increase. Bridging the gap between protein biophy-

sics and molecular evolution is critical to the

advancement of this understanding. It has been

argued that evolution lies at the heart of biology,

while reductionism draws biology into the realm of

physics. This new synthesis aims to combine both

lines of thinking.
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