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Certain  protist  lineages  bear  cytoskeletal  structures  that  are  germane  to  them  and  define  their  individ-
ual group.  Trichomonadida  are  excavate  parasites  united  by  a  unique  cytoskeletal  framework,  which
includes tubulin-based  structures  such  as  the  pelta  and  axostyle,  but  also  other  filaments  such  as
the striated  costa  whose  protein  composition  remains  unknown.  We  determined  the  proteome  of  the
detergent-resistant  cytoskeleton  of  Tetratrichomonas  gallinarum. 203  proteins  with  homology  to  Tri-
chomonas vaginalis  were  identified,  which  contain  significantly  more  long  coiled-coil  regions  than
control protein  sets.  Five  candidates  were  shown  to  associate  with  previously  described  cytoskeletal
structures including  the  costa  and  the  expression  of  a  single  T.  vaginalis  protein  in  T.  gallinarum  induced
the formation  of  accumulated,  striated  filaments.  Our  data  suggests  that  filament-forming  proteins  of
protists other  than  actin  and  tubulin  share  common  structural  properties  with  metazoan  intermediate
filament proteins,  while  not  being  homologous.  These  filament-forming  proteins  might  have  evolved
many times  independently  in  eukaryotes,  or  simultaneously  in  a  common  ancestor  but  with  different
evolutionary trajectories  downstream  in  different  phyla.  The  broad  variety  of  filament-forming  proteins
uncovered, and  with  no  homologs  outside  of  the  Trichomonadida,  once  more  highlights  the  diverse

nature of  eukaryotic  proteins  with  the  ability  to  form  unique  cytoskeletal  filaments.
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Introduction

The  compartmentalization  of the eukaryotic  cell
and  the  dynamic  nature  of the endomembrane  sys-
tem  rest upon an elaborate  cytoskeleton  (Koonin
2010). Actin  and tubulin, the major components  of
the  cytoskeleton,  are well conserved  in sequence
and  function among  all eukaryotic supergroups
(Kusdian et al. 2013; Wickstead and  Gull  2011).
In  addition to actin and tubulin, the  eukaryotic
cytoskeleton  includes an extended suite  of proteins
that  form a  large range  of morphologically  distinct
filaments  that in metazoa  are  collectively referred to
as  intermediate filament  (IF) proteins  (Coulombe
and  Wong 2004;  Goldman et  al. 2012;  Herrmann
and  Aebi  2004).  Individual  IF  proteins  can  assem-
ble  into higher-order  homo- or heteromultimers
through  long repetitive core  regions  (Herrmann
et  al. 2007). These  regions act as a kind of cel-
lular  Velcro  (Rose et al. 2005),  which mediate  the
formation  of dimeric and trimeric  coiled-coils. The
evolutionary  origin  and radiation  of metazoan  IF
proteins  is not  well understood (Herrmann  and
Strelkov  2011),  especially  due to a  poor conser-
vation  in terms of  primary sequence. In protists  the
situation  is more involved.

Many proteins  have been identified  in a  variety
of  protists that share  common structural proper-
ties,  but  no  homology,  with metazoan IF  proteins
(Fleury-Aubusson 2003; Roberts 1987). An  early
identified  example  are  the articulins, the most abun-
dant  proteins of the  euglenoid  membrane  skeleton
that  are  characterized  by a specific  and  highly-
repetitive  VPV-motif  (Huttenlauch  et al. 1998; Marrs
and  Bouck  1992). Another  group of protists, the
alveolates,  encode  the alveolin proteins  (Gould
et  al. 2008). Similar to articulins,  these proteins
are  characterized by a repetitive  and charged  motif,
EKIVEVPV,  and the proteins  themselves  form a
filamentous  network  that  supports the  alveolar
sacs  residing  underneath the plasma  membrane
of  all alveolates  (Anderson-White  et al. 2011;
Bullen  et al. 2009; El-Haddad  et al.  2013; Mann
and  Beckers 2001).  A third  example  are  the epi-
plasmins  of ciliates that form a large multigene
family.  This filament-forming  protein  family is very
diverse,  reflecting  a rapid evolution  fueled  by whole
genome  duplications  (Damaj  et al. 2009). Epiplas-
mins  are  characterized  by a conserved  central
region  consisting  of a repetitive consensus motif
that  is [ERK]xx[VILT]EY[VIY],  and which is flanked
by  additional  repetitive sequence  motifs  such as
PVQ-  and  Y-rich  domains  (Coffe et al.  1996;  Damaj
et  al. 2009).  Giardins  are  filament-forming  proteins
of  the  excavate parasite  Giardia lamblia,  which

are associated with the microribbons (Crossley
and  Holberton 1983). This  excavate parasite has
an  elaborate  actin  cytoskeleton that,  surprisingly,
is  organized  in  the absence  of canonical actin-
binding  proteins  (Paredez et al. 2011). Others
include  centrin and spasmin  (Gogendeau et al.
2008;  Vigues  et al.  1984) or the tetrins (Brimmer
and  Weber 2000;  Clerot et  al.  2001).  None  of
the  mentioned  protist proteins  that  form or asso-
ciate  with filaments  share any obvious sequence
homology  with metazoan  IFs. These proteins are,
however,  characterized by repetitive  motifs  that are
biased  in terms  of their  amino  acid  composition, a
property  also  known from metazoan  intermediate
filament  proteins  (Fleury-Aubusson  2003; Gould
et  al. 2011). Such  proteins  are  usually restricted
to  a  specific sub-cellular  structure and  often  the
eukaryotic  lineage  in  which  they are  found.

Metazoan genomes  encode  a large variety of
filament-forming  proteins  of the IF family, including
the  well-known  examples  lamin,  vimentin and ker-
atin  (Coulombe  and Wong 2004;  Fuchs  and Weber
1994). It is common  perception  that IF  proteins
are  restricted to metazoa  (Herrmann and  Strelkov
2011;  Peter and Stick  2015) and that an early dupli-
cation  and  modification  of the lamin  gene in the
bilateria,  and  the loss  of the nuclear  localization sig-
nal  in one of the  copies, might  be the  origin of many
extant  cytosolic  IF  proteins  in these organisms
(Erber  et al. 1999; Kollmar  2015; Peter and Stick
2015). The identification  of lamin-encoding genes
in  a range  of phylogenetically  distant  eukaryotic
groups  (Kollmar  2015;  Koreny  and Field, 2016)  and
an  earlier  hydrophobic  cluster  analysis (Bouchard
et  al. 2001), however, indicate  an evolutionary early
origin  of at least some  kind  of “proto-IF  protein”
in  eukaryotes.  A few prokaryotic IF proteins have
been  identified,  too, such as CreS from Caulobac-
ter,  CfpA  and Scc from spirochetes,  and AglZ  from
Myxococcus  xanthus,  but with  their evolutionary
origin  not always fully resolved  (Ausmees  et al.
2003;  Bagchi  et  al. 2008; Mazouni  et al. 2006;
Yang  et  al. 2004;  You et  al.  1996). True homologs
of  IF proteins other than lamin appear absent
from  sequenced  protist genomes.  Hence,  the  ques-
tion  about the nature  of proteins  that  support the
elaborate  cytoskeleton  of  protists, which  in terms
of  morphological  and species diversity  outnumber
metazoa  to a considerable degree,  remains open.

The  Parabasalia  form a monophyletic  group
within  the excavates and they are  characterized
by  unique  lineage-specific  cytoskeletal structures
(Brugerolle  1991; Cepicka et al.  2010; Noda et al.
2012). Parabasalia  include a  long  list of  eco-
logically  and  medically  important  protists, which,



528  H.  Preisner  et  al.

among  others, include  the majority  of flagellated
gut  symbionts  of termites  (Brune and  Dietrich 2015)
and  human  parasites  such as Trichomonas  vagi-
nalis  or  Trichomonas tenax (Hirt  and Sherrard
2015;  Kusdian  and Gould  2014). The  parabasalian
cytoskeleton  typically consists of several character-
istic  features  that include  the pelta, the axostyle,
the  costa and the karyomastigont  (Cepicka  et al.
2010). Both  the axostyle  and the pelta are  formed
by  highly  organized  microtubules (Benchimol  2004;
Rosa  et al.  2013).  The  karyomastigont  comprises
the  basal bodies, the microtubule-organizing  cen-
ter,  the flagella and the filaments that connect
these  to the nucleus  (Brugerolle  1991). The  costa
is  a rod-like rigid  structure exclusively  found in
the  Parabasalia,  albeit some  parabasalian  species
appear  to  lack it (Cepicka et al. 2010).  This  stri-
ated  filament  (or  striated  fiber) protects the  plasma
membrane  against the sheering  forces generated
by  the beating  of the recurrent  flagella  that is
attached  to  the undulating  membrane  (Kulda et al.
1986;  Viscogliosi and Brugerolle  1994). In com-
parison  to other  parabasal filaments, the costa
has  been  described  as the longest and  thickest
of  the striated  filaments  of T. vaginalis  (Lee et  al.
2009) and Tritrichomonas  foetus  (Rosa et al. 2013).
Based  on different striation  patterns,  the costa
was  divided into two sub-types, the A- and  B-type
(Honigberg et al. 1971).  While morphologically  dis-
tinct,  it appears that  the  striated  filaments  of both
types  of costa  are formed by the same  proteins
that  are, however, unique to Trichomonadidae  and
whose  identity  remains  unknown (Viscogliosi  and
Brugerolle  1994).

A proteome study  of the detergent-resistant  pel-
licle  of the ciliate  Tetrahymena  showed  that many
of  the identified  proteins  shared  characteristics
with  metazoan  IF proteins,  albeit,  again,  without
any  significant  sequence  similarity to them  (Gould
et  al. 2011). Many  of the  identified  pellicle pro-
teins  were  united by charged repetitive  motifs  with
a  potential  to form long coiled-coil  regions.  Subse-
quent  characterization of individual candidates with
similar  characteristics  from related  apicomplexans
confirmed  the association  of such proteins  with
unique  cytoskeletal  structures  (Katris  et al. 2014;
Suvorova  et al. 2015; Tran  et  al. 2012).  Those  stud-
ies  motivated  us to test whether  proteins  with  similar
characteristics  could be observed for  the unique
cytoskeleton  of Trichomonadidae. If so, it would (i)
provide  evidence for the presence  of cytoskeletal
proteins  that share  properties  with  metazoan  IF pro-
teins  in yet  another  eukaryotic  group  —  next to
alveolates  — and (ii) offer a more exhaustive set
of  proteins to  study the evolution  of cytoskeletal

proteins, which form and associate  with  non actin
and  tubulin-based  filaments.

Here we present  the  proteomic  profiling of the
detergent-resistant  components  of the cytoskele-
ton  of T. gallinarum  (Fig.  1). We  demonstrate that
the  majority  of identified  proteins lack homologs
outside  of the Trichomonadidae  and are unique to
this  group  of protists. Based  on a transcriptome
assembly  of T. gallinarum and mass spectrom-
etry  analyses  of its extracted cytoskeleton, we
identified  homologs  of  T. vaginalis  and  localized
five  such homologs  in the parasite  that invades
the  human  urogenital  tract. Cytoskeleton pro-
teins  contain  significantly  more  repetitive elements,
such  as coiled-coil  motifs,  than cytoskeleton-
unrelated  proteins.  Most  importantly,  the unique
cytoskeletal  structure of the parabasalian lineage
comprises  proteins  that share  features described
for  other filament-forming proteins of different  pro-
tists.  Together they share  features reminiscent of
metazoan  IF proteins,  but elude themselves from
phylogenetic  analysis due to virtually  no sequence
conservation.

Results

Proteomic Profiling of the
Tetratrichomonas gallinarum
Cytoskeleton

Protocols  for  the  isolation of the detergent-resistant
cytoskeleton  already  exist for T. gallinarum, T.
vaginalis,  Pentatrichomonas  hominis  and  Tritri-
chomonas  foetus (de Souza  and da  Cunha-e-Silva
2003;  Rosa  et al. 2013; Viscogliosi and Brugerolle
1994). However, even  after several rounds of
attempts  trying to optimize  and  adapt the proto-
cols  to isolate  the cytoskeleton  of T. vaginalis,  we
were  unable  to extract a sufficient  amount of sam-
ple  that, based on visual inspection  and Western
blot  analysis, we deemed  suitable  for electrospray
ionization  tandem  mass spectrometry (ESI-MS)
analysis.  Similar  issues  regarding T. vaginalis were
encountered  in previous  studies (Viscogliosi and
Brugerolle  1994)  and it was hence  decided to iso-
late  the cytoskeleton  of T. gallinarum  instead.

The  isolation of the T. gallinarum cytoskeleton
leads  to a highly-enriched  fraction  of forked struc-
tures  that  resemble  the pelta (at the top  of the
fork),  from which  the costa  and  the axostyle indi-
vidually  emerge (Fig.  1B; Supplementary  Material
Fig.  S1A). In their appearance,  these structures
look  identical  to those  described  by Viscogliosi and
Brugerolle  (1994).  A silver-stained  SDS-PAGE  of
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Figure  1.  The  cytoskeleton  of  T.  gallinarum  and  T.  vaginalis. (A)  The  cartoon  illustrates  the  pelta-axostyle-
costa-karyomastigont complex  and  its  associated  structures  that  represent  the  main  cytoskeletal  structures
of the  parasite.  The  karyomastigont  system  in  this  case  comprises  nucleus  associated  filaments  and  all  five
kinetosomes. The  extracted  cytoskeletal  fraction  (B)  showing  the  cytoskeleton  was  analyzed  by  the  multiplex
fluorescent blot  (C),  separated  on  the  silver  stained  gel  (D)  and  used  for  mass  spectrometry  analysis  (ESI-MS).
The multiplex  fluorescent  blot  visualizes  the  detection  of  tubulin  (red  signal)  and  SCSalpha  (green  signal)  within
the fractions  total  cell  lysate  (TCL),  cytoskeleton  (CYT)  and  hydrogenosomes  (HYD)  indicating  the  absence
of hydrogenosomes  as  a  likely  contaminant  in  the  cytoskeleton  fraction.  The  two  bands  of  SCSalpha  in  the
hydrogenosomal fraction  are  frequently  observed  (Woehle  et  al.  2014;  Zimorski  et  al.  2013).  To  verify  the
data, triplicates  were  applied  for  ESI-MS,  see  Supplementary  Material  Figure  S1.  Scale  bar:  10  �m.  Molecular
weights in  C  and  D  in  kilodalton.

the  sample  reveals a rich  proteinaceous  complex-
ity  (Fig. 1D).  The  most abundant protein  migrating
at  55 kDa most likely represents  tubulin  with  a
predicted  mass of 50.1  kDa (for TVAG_467840)
(Fig.  1D). There are  several more intense and  dis-
tinct  bands  within the range of 100-140  kDa,  whose
migration  pattern  largely  matches that of a previous
analysis  (Viscogliosi  and Brugerolle  1994). That
study  had isolated  the cytoskeleton, too, but in the
absence  of genome data at that time  the identity
of  the  proteins  remained  unknown.  The  most abun-
dant  proteins  in Trichomonas species  are  those of
the  substrate-level  phosphorylation  pathway  of the
hydrogenosomes  and they are  a  common  source

of contamination  (Garg et al. 2015;  Rada  et al.
2011;  Twu et  al. 2013). A multiplex fluorescent
blot  confirmed the absence  of the hydrogenosomal
marker  protein  SCS  (succinyl-CoA  synthetase) in
the  isolated fraction  and the presence of  tubulin as  a
marker  for the  main  component  of the cytoskeleton
(Fig.  1C). By  liquid chromatography  ESI-MS,  three
individual  replicates  of cytoskeleton isolated from
three  separate T. gallinarum cultures were ana-
lyzed.  For the identification  of the proteins through
ESI-MS,  however, it was first necessary to gener-
ate  a de novo transcriptome  library of T. gallinarum,
because  no sufficient amount  of sequence data for
this  organism  were  yet available.
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RNA  sequencing  of T.  gallinarum  M3  generated
a  total of 20,982,889  reads, of which  20,638,776
passed  quality  filtering.  The  subsequent  assembly
yielded  64,756  contigs  (N50  length of 694), which
were  filtered  for isoforms and then  screened  for
open  reading frames (ORFs).  A total  of  37,740
ORFs  were retrieved  and  of these, 26,130 share
homology  to genes  (and  with 11,268  unique
matches)  of the sequenced  genome  of T. vagi-
nalis  strain G3 (TrichDB,  v2.0)  (Aurrecoechea  et al.
2009).

Using the translated transcriptome  assembly  of
T.  gallinarum as a source (Supplementary  Material
Table  S1), we identified 582 proteins  present  with
a  minimum  of two peptides  per  protein  in each  of
the  three replicate  cytoskeleton samples  analyzed
(Supplementary  Material Table  S2). Homologs  for
these  proteins were  identified  in T. vaginalis using
reciprocal  best BLAST  search.  Results were man-
ually  curated  by filtering  them  according  to their
TrichDB  annotation  to omit  obvious cytoskeleton-
unrelated  candidates  such as  ribosomal  proteins
(Supplementary  Material Table S2). This  yielded
203  potential  cytoskeleton  proteins  in T. vagi-
nalis.  The  203 proteins  were first sorted  according
to  their  EuKaryotic Orthologous  Groups  associ-
ation  (KOGs;  Koonin  et al.  2004;  Tatusov  et al.
2003). For 113 proteins no class was available
and  for an  additional  30, the predicted  function
was  either  of unknown nature  or just a general
prediction  of function  (Supplementary  Material  Fig.
S4).  The  remaining  proteins  could be  assigned  to
three  major categories:  ‘cellular  processes  and  sig-
nalling’  (47 proteins  including  actin  and  tubulin),
‘information  storage  and processing’  (8 proteins)
and  ‘metabolism’  (7  proteins). Note that  three  pro-
teins  were assigned  to more than one  sub-category
(Fig.  S4).

Proteins that were distinctly  identified  with
a  high  number  of peptide  spectrum matches
(PSM)  were, as already indicated  by the  silver
stained  SDS-PAGE (Fig. 1D),  the tubulin  beta-
(TEGb007706;  corresponding  to TVAG_467840)
and  epsilon  chain (TEGb007357;  correspond-
ing  to  TVAG_008680)  with PSM values  of
1,228  and 456, respectively,  and a total cover-
age  of 75% for each  protein.  Next to tubulin,
the  proteins  TEGb005933  (TVAG_339450),
TEGb003426  (TVAG_474360), TEGb019317
(TVAG_117060),  TEGb017573  (TVAG_030160)
and  TEGb012599  (TVAG_059360), were detected
with  PSM values  ranging  between  111  and 330
and  sequence  coverage  between 63 and 76%
(Table  1; Supplementary  Material  Table S2).  To
find  homologs,  a broader BLAST  search  outside

of the Trichomonadidae  against RefSeq was
performed.  For TVAG_339450,  TVAG_474360
and  TVAG_117060  no  significant (cutoff e-
value  of ≤  1e-10) homologs  could be found.
For  TVAG_030160,  homologs  encoding WD40
domains  were  identified  in a range of organ-
isms  and  with e-values  ≤ 1e-138. Among them
were  uncharacterized protist proteins such as
TTHERM_01094880  (Tetrahymena thermophila;
e-value  8e-141), but also ones of Angomonas
deanei,  a trypanosomatid  parasite  (EPY27992.1,
e-value  2e-134) or the  alga Chlamydomonas  rein-
hardtii  (XP_001690930;  e-value  2e-137) that are all
annotated  as “flagella-associated”  proteins. Also for
TVAG_059360,  BLAST hits to proteins  from  diverse
organisms  were found (all e-values  ≤ 2e-150), many
of  which were  annotated as “sperm-associated
antigen”.  It  was peculiar  that all  five proteins  were
predicted  to harbor  many repetitive  elements  as
predicted  by SMART (Letunic  et al. 2015) (Fig. 2).
In  addition,  for TVAG_339450,  TVAG_474360 and
TVAG_117060,  coiled-coil  regions were widely
detected  throughout  their  amino  acid sequences
by  COILS  (Lupas  et al. 1991) (Supplementary
Material  Fig.  S2).  This  prompted  us to further
analyze  the sequence characteristics,  such as
amino  acid  composition  and the potential to encode
coiled-coils  regions, of  the  identified cytoskeleton
proteins.

Cytoskeleton-associated Proteins Harbor
an Elevated Number of Long Coiled-coil
Regions

Elongated  coiled-coil  regions  that occupy much of
the  central region  of  proteins  are  a characteristic
feature  of most metazoan  IF proteins (Herrmann
et  al. 2007; Rose et al. 2005) and, more  gener-
ally,  an enrichment  for  repetitive  charged sequence
motifs  has  been  found among  cytoskeletal scaf-
fold  proteins of excavates and  ciliates  (Elmendorf
et  al. 2003;  Gould et al. 2011;  Kloetzel et al.
2003). We tested whether  proteins  of our isolated
detergent-resistant  cytoskeleton  might  exhibit sim-
ilar  sequence  features. We  compared  our core set
of  203 cytoskeleton-associated  proteins (CYT)  to
(i)  a set of 301 hydrogenosome-associated  proteins
(HYD;  Garg  et al.  2015) and to (ii) a size-equivalent
set  of 203  randomly selected proteins of T. vagi-
nalis  (RDM) (Fig.  3; Supplementary  Material Fig.
S3).  Figure 3A shows the distributions  of  the num-
ber  of detected  coiled-coils  per  protein in the
cytoskeleton  and  hydrogenosomal  sets;  these two
distributions  were found to  be statistically differ-
ent  (Mann-Whitney  test (MWt), p-value < 2.1e-6).
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Table  1. Properties  of  the  five  cytoskeleton  proteins  localized  and  in  comparison  to  actin  and  tubulin  as  references.  Five  candidates  were  chosen
for immunofluorescence  localization  studies  according  to  the  PSM  (peptide  spectrum  matches)  value  and  the  molecular  weight.  The  tubulin  beta
chain (TVAG_467840)  and  actin  (TVAG_172680)  were  also  identified  as  part  of  the  cytoskeleton  proteome.  Database  values  are  adopted  from
TrichDB v2.0.  In  addition,  based  on  the  transcriptome  of  T.  vaginalis  (Gould  et  al.  2013),  the  absolute  expression  values  of  the  proteins  are  listed.
Cov %,  coverage  of  predicted  protein  sequence;  UP,  unique  peptides;  AA,  amino  acids;  MM,  molecular  weight;  IEP,  isoelectric  point.

T.  vaginalis  Mass  spectrometry
data of  T.  gallinarum

TrichDB  annotated
properties

Accession  numbers  Annotation  E  value  Expression
absolute

Coverage  %  UP  PSM  AA  MW  (kDa)  IEP

T.  gallinarum  T.  vaginalis

TEGb005933  TVAG_339450  unknown  0.0  665  65  67  256  977  113.5  4.9
TEGb003426 TVAG_474360  unknown  0.0  2267  65  66  244  1042  119.1  4.8
TEGb019317 TVAG_117060  unknown  0.0  502  70  64  330  878  100.5  4.9
TEGb017573 TVAG_030160  F-box  and  WD

domain protein
0.0 682  76  33  163  605  65.7  6.9

TEGb012599 TVAG_059360  Sperm
associated
antigen  6

0.0  941  63  30  111  505  55.0  7.1

TEGb007706 TVAG_467840  Tubulin  beta
chain

0.0  29130  75  27  1228  452  50.1  4.7

TEGb007619 TVAG_172680  Actin  0.0  18485  8  9  24  386  43.0  5.3
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Figure  2.  Distribution  of  recognizable  and  conserved  domains  among  the  five  selected  T.  vaginalis  proteins.
The motifs  shown  are  based  on  the  prediction  by  the  SMART  algorithm  (Simple  Modular  Architecture  Research
Tool; Letunic  et  al.  2015).

The  same  was  true  for the comparison  with  the
random  set (Supplementary  Material  Fig.  S3A),
which  was  found to be significant,  too (MWt, p-
value  < 3e-12).  Isolated  cytoskeleton proteins  also
differ  with respect  to the  length of the  sequence
predicted  to form coiled-coils.  The length of each
coiled-coil  unit within the CYT set was found to
be  significantly  increased  as compared  to the HYD
dataset  (MWt, p-value  < 1.9e-5, Fig. 3B) and  with
respect  to the RDM dataset  (MWt, p-value  < 0.022,
Fig.  S3B).  Moreover, CYT proteins  were found to
contain  significantly  more  repetitive  motifs  per  pro-
tein  when compared to the HYD  dataset (MWt,
p-value  <  0.0003,  Fig. 3C)  and the RDM  dataset
(MWt,  p-value  < 4.8e-5, Supplementary Material
Fig.  S3). To consider  the possibility  that long pro-
teins  tend to have  more coiled-coils  and  repetitive
motifs  than smaller ones, we conducted  an addi-
tional  analysis  and filtered  the two control datasets
(RDM  and HYD) for proteins similar  in length  to
the  CYT dataset.  Here, the comparison  between
the  CYT and HYD  dataset was  still significantly
different  for all three  parameters  tested: number
of  coiled-coils  (MWt,  p-value  < 4.8-6), length of

coiled-coils  (MWt, p-value  < 1.3-9)  and number
of  repetitive motifs  (MWt, p-value  < 0.0001). The
re-analysis  between  the CYT  and  RDM  dataset
confirmed  the  primary result, except for the num-
ber  of repetitive motifs,  which  now was no longer
found  to be significant  (number of coiled-coils, MWt,
p-value  < 1.8-10; length  of coiled-coils, MWt,  p-
value  < 0.  0004;  number  of repetitive motifs, MWt,
p-value  < 0.73).

Homologous Proteins of T. vaginalis
Localize to Defined Filamentous
Structures

We tested  whether  homologs  of proteins isolated
from  the T. gallinarum cytoskeleton  and identified
through  the ESI-MS analysis  are  homologous and
associated  with the cytoskeletal  framework of T.
vaginalis.  We  chose the five proteins  with the high-
est  PSM scores (Table 1) and expressed them
as  hemagglutinin  (HA)-fusion  proteins  in T. vagi-
nalis.  The  first protein,  TVAG_339450,  labels a
single  long  filament-like  structure that runs along
the  cell’s periphery, suggesting  it is  a costa-related
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Figure  3.  Coiled-coils  and  other  repetitive  units  are  increased  among  proteins  of  the  cytoskeleton  proteome.
(A) The  box  blot  displays  the  number  of  predicted  coiled-coils  within  203  proteins  present  in the  extracted
cytoskeleton (CYT)  fraction  compared  to  301  hydrogenosomal  proteins  (HYD;  based  on  Garg  et  al.,  2015) as  a
control. (B)  The  box  blot  indicates  the  length  of  coiled-coils  in  amino  acids  (aa)  based  on  the  same  dataset.  (C)
The bar  diagram  shows  the  distribution  of  the  number  of  repetitive  units  per  protein  in  the  compared  datasets.
One unit  consists  of  at  least  3  repetitive  motifs,  each  being  at  least  10  amino  acids  long.  Here  the  number
of proteins  containing  1,  2,  3  or  4  repetitive  motifs  is  significantly  higher  in  the  CYT  dataset  than  in  the  HYD
dataset. In  contrast  to  the  dataset  of  randomly  selected  proteins  (RDM;  Fig.  S3),  the  HYD  dataset  contains
proteins harbouring  more  than  five  repetitive  motifs.

protein  (Fig. 4, Supplementary  Material  Figs  S6-
S8).  As the  protein  does not co-localize  with the
tubulin  marker,  it  can be ruled  out  that the long
filament  resembles  the  axostyle or  the  recurrent
flagellum  that is associated  with  the undulating
membrane.

The  second  candidate, TVAG_474360,  has a
more  complex  localization  pattern. It was observed
to  cluster  towards the apical  end of the nucleus (i.e.
in  the region of the pelta)  and  from there  to form or
associate  with  filaments  that appeared  to  envelope
the  nucleus (Fig.  4; Supplementary Material  Fig.
S6).  In addition, TVAG_474360  was  found  to cluster
inside  the cytosol and  at the end of the  axostyle,
perhaps  as a result of overexpression, although
this  was not observed  for any other construct.  Also,
the  native  expression  of TVAG_474360  is the high-
est  among the selected candidates  (Table 1). In
any  case,  the pelta-associated  labeling  is resilient

and also  observed  among  the isolated cytoskele-
tons  (Supplementary  Material  Fig.  S7), suggesting
it  is associated  with  the  centrosome-like structure
of  T. vaginalis also known  as the  atractophore
(Bricheux  et al. 2007). Intriguingly,  the heterolo-
gous  expression of TVAG_474360  in T.  gallinarum
induces  the formation of  additional  striated fila-
ments.  A single  straight and thick rod-like structure
traverses  the cells centrally, which  protrudes from
the  anterior- and  posterior ends of  the cell (Fig. 5A).
Transmission  electron  microscopy of the mutants
reveal  this structure to consist  of an accumulation of
individual  striated and  thinner  filaments  that resem-
ble,  but occur  independently,  of the actual wildtype
forms  of the  costa and the  parabasal filaments
(Fig.  5B).

The  third protein,  TVAG_117060,  labels a fork-
like  structure just beneath the  pelta  and in
close  proximity  of the nucleus and could possibly



534  H.  Preisner  et  al.

Figure  4.  Immunofluorescence  localization  in  T.  vaginalis  of  the  five  cytoskeleton  candidate  proteins.  All  pro-
teins were  expressed  as  hemagglutinin-fusion  proteins  (anti-HA,  green)  and  co-localized  with  tubulin  (red)  that
labels in  particular  the  axostyle.  Scale  bar:  10  �m.

represent two parabasal  filaments  of the para-
site  (Fig.  4; Supplementary  Material Fig.  S6). The
fourth  protein,  TVAG_030160, co-localizes  with the
axostyle,  spanning  from the anterior pelta end to
almost  the posterior end, but is excluded  from  the
axostyle’s  most  terminal end that protrudes  the cell.
Furthermore,  it appears to accumulate  in the  pelta
region  and somehow envelope the nucleus  (Fig. 4;
Supplementary  Material  Fig.  S6). Conspicuously,
Western  blot analysis  indicated that this protein  is
present  in two  different forms, with a faint  signal
at  66 kDa  (in accordance  with its mass  prediction
of  55.7 kDa based on the  TrichDB  annotated  ORF)
and  with a dominant  signal of about 110  kDa, sug-
gesting  it may  dimerize (Supplementary  Material
Fig.  S5). The  fifth protein,  TVAG_059350,  does  not
co-localize  with the  axostyle and appears  to form
some  sort  of filaments around  the nucleus and
additionally  some  kind of thin  filaments  that span
the  entire length of the cell  (Fig. 4;  Supplementary
Material  Fig. S6).

Discussion

Specialized  cytoskeletal  structures are often unique
to  individual protist groups. The  apomorphic and
eponymous  structure of the Parabasalia is the
parabasal  apparatus.  It is  part  of the more  intri-
cate  cytoskeletal scaffold  that  includes  the pelta,
axostyle,  parts of the karyomastigont  system
and  several other  accessory  rootlet  filaments. A
main  component  of the eukaryotic  cytoskeleton is
tubulin,  but microtubules  — together  with  other
well-known  accessory  proteins we also identified
—  account only for the composition of  the flag-
ella,  pelta and axostyle.  Our  study, based on
the  proteomic  profiling  of the  detergent-resistant
cytoskeleton  of T. gallinarum  and  subsequent
verification  in T. vaginalis,  identified  dozens of pro-
teins  of (previously)  unknown  function that  share
some  features  characteristic for  metazoan IFs,
albeit  sharing no sequence  homology  with the
latter.



Cytoskeleton  of  Parabasalian  Parasites  535

Figure  5.  Heterologous  expression  of  TVAG_474360  in  T.  gallinarum. (A)  Immunofluorescence  microscopy
images show  the  localization  of  the  hemagglutinin  (HA)-  tagged  TVAG_474360  (green).  Scale  bar:  10  �m.
(B) Transmission  electron  microscopy  images  of  longitudinal  sections  through  three  exemplary  cells.  The  cells
show additional  striated  filaments  (highlighted  by  the  dashed  boxes  and  indicated  by arrow  heads)  that  together
aggregate to  form  a  single  thick  rod.  The  striated  pattern  of  the  additional  filaments  looks  similar  to  that  of  the
costa (C)  and  the  parabasal  filaments  (Pf),  but  they  differ  in  width  and  were  not  observed  to  co-localize  with
either of  the  two  naturally-occurring  filaments.  Axostyl,  Ax;  Nucleus,  N;  Hydrogenosomes,  H.  Scale  bar:  1  �m.

Proteome  profiling  of the T.  gallinarum  cytoskele-
ton  revealed 203 proteins  that  share  reciprocal
best  BLAST  hit homology to proteins  of T. vagi-
nalis.  Among these were  homologs of well-known
cytoskeleton  proteins  such as actin,  tubulin, cen-
trin  and dynein, all of which had  high  peptide
spectrum  matches (PSM; Supplementary Material
Table  S2), but also many new potential cytoskeletal
protein  candidates  with previously  unknown  func-
tion.  This observation  provides indirect  support
for  the reliability  of  the  protocol  used for  the iso-
lation  of the cytoskeleton. For the  five proteins
of  the cytoskeleton with the highest PSM  values
next  to the  canonical  cytoskeletal proteins  (listed
in  Table  1),  we could show them  to label  filamen-
tous  structures that are, or  associate  with,  the T.
vaginalis  cytoskeleton.

TVAG_339450 is likely  a major, detergent-
resistant  component  of the costa.  As a  rod-like
structure,  the costa can  be clearly distinguished
from  the recurrent flagellum  of the undulating
membrane  that constitutes  the typical microtubule
organization  (Benchimol et al. 2000;  Delgado-
Viscogliosi  et al. 1996; Rosa et  al. 2013).
TVAG_339450  does not co-localize  with tubulin,
the  main  component  of  pelta, axostyle  and flagella
(Fig.  4; Supplementary  Material  Fig. S6). In com-
parison  to the parabasal  filaments, the costa  has
been  described as the longest  and  thickest  striated
filament  of T. vaginalis (Lee et al., 2009) and T.
foetus  (Rosa et al., 2013). This  is in line with the
observed  labeling pattern  of  TVAG_339450 (Fig.  4;
Supplementary  Material  Fig.  S6).  Western blotting
confirmed  the predicted  mass of  around 118 kDa
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for TVAG_339450 (Fig. S5), which is furthermore
coherent  with a previous  study that generated
antibodies  against the isolated cytoskeleton  of
T.  vaginalis (Viscogliosi  and  Brugerolle  1994). The
antibodies  decorated  the isolated costa  and a band
of  118  kDa in the accompanied Western  blot anal-
ysis.  This  very confined  localization  to the  costa
is  also  observed for our  HA-tagged  TVAG_339450
among  the  isolated  cytoskeleton  structures (Sup-
plementary  Material Fig.  S7). The main  function  of
the  costa, a semi-rigid  rod,  is the  stabilization  of
the  undulating  membrane to which  the recurrent
flagellum  is attached (Cepicka et al.  2010;  Rosa
et  al.  2013). Proteins  known to be specialized  in
buffering  shearing  forces and  to protect  against
mechanical  stress  are IF proteins  (Goldman  et al.
2012;  Herrmann  et al. 2007). IF proteins  can dif-
fer  with regard  to their  sequence  and  biochemical
properties,  but are generally  united by a common
architecture  that is defined  through  long  coiled-coil
motifs  (Coulombe  and Wong 2004;  Herrmann  and
Aebi  2004). The  same  is true  for TVAG_339450,
which  shows  this  costa  protein  to unite some
features  that are  characteristic  for metazoan IF pro-
teins,  albeit not  being  homologous to any known
protein  of the metazoan  IF  family.

The coiled-coil  containing  cytoskeleton  proteins
TVAG_474360  and TVAG_117060 did  not  localize
to  the costa, but to other  filamentous  structures
(Fig.  4; Supplementary  Material  Figs S6,  S8).  In
the  case  of  TVAG_117060  these  might  be  the
parabasal  filaments,  although  the localization  in
isolated  cytoskeleton structures  is more  punctu-
ate  in close  proximity  to the pelta (Supplementary
Material  Fig.  S7). For TVAG_474360  the situa-
tion  is more complicated.  In several independent
experiments  the  protein  always associated  with
the  pelta  and several defined  filaments  embrac-
ing  the entire  nucleus, almost  resembling  a thin
ring,  suggesting  it could  act as a  crosslinker
between  the microtubule-based  cytoskeleton  and
a  structure  of unknown  nature,  a  function  simi-
lar  to that reported  for some IF-proteins  (Eckert
et  al. 1982; Kalnins  et al. 1985). In some  cases,
such  crosslinking  IF proteins  were observed  in
the  close proximity  of the  nucleus (Goldman  et al.
1985;  Trevor  et al. 1995)  and a localization  similar
observed  to that of TVAG_474360. With a sim-
ilar  pattern TVAG_030160  co-localized  with the
pelta,  most of the axostyle and accumulated  in
close  proximity  of the nucleus (Fig.  4; Supple-
mentary  Material  Figs  S6, S8).  This  protein  also
appears  to form a stable dimer (Supplementary
Material  Fig.  S5), but this observation  requires  an
analysis  dedicated to the protein  in question. In

contrast, TVAG_059360  does neither  co-localize
with  the axostyle nor the  nucleus distinctly. Instead,
it  appears  net-like  around  the nucleus  and  branches
from  there through  the cell (Fig.  4; Supplementary
Material  Figs  S6, S8). The  latter two proteins are
both  not predicted  to form  long coiled-coils, but
WD40  or ARM domains  (armadillo/beta-catenin  like
repeat),  respectively (Fig.  2). The  functions of these
two  domains  are  rather  versatile, but  both  are also
found  in proteins associated  with  the cytoskeleton
(Stirnimann  et al. 2010;  Tewari et al. 2010).

Based  on their association  with the
nucleus,  TVAG_474360,  TVAG_030160 and
TVAG_059360,  might  be  relevant for the  posi-
tioning  of the nucleus  and  its anchoring to the
karyomastigont  system (Brugerolle 1991; Cepicka
et  al. 2010), but a dedicated  study to unravel
their  function,  and  the reason  for the potential
dimerization  of TVAG_030160,  is required. In  any
case,  the heterologous  expression  of the  coiled-coil
protein  TVAG_474360  in T. gallinarum,  and the
formation  of many additional striated filaments
as  a result (Fig. 5), suggest  this protein (and its
homologs)  to be responsible  for the formation of
striated  filaments  in  Trichomonadidae.  Most  likely
this  protein  itself forms those striated filaments,
but  we cannot rule  out it only acts as  an accessory
protein  that recruits others.

Independent  of their function within the
cytoskeleton,  there  is something  peculiar about
a  few dozen  of the  proteins  identified. Based  on
a  search  algorithm  specific  for charged repeat
motif  proteins that were found enriched among
a  ciliate pellicle  (Gould  et al. 2011),  we found
a  similar tendency  among  the  proteins of the
cytoskeleton  albeit not  as dominant  (Fig. 3A;
Supplementary  Material  Fig. S3A).  Such motifs,
sometimes  predicted  to also form  long coiled-coils,
have  been  routinely  identified  among structural
scaffolding  proteins  of protists that  form filaments,
thin  and thick, and  these include: the euglenoid
articulins  (Marrs and Bouck  1992), the autoantigen
I/6  of  Trypanosoma  brucei (Detmer et al. 1997),
SF-assemblin  of the basal apparatus  of green
algae  and  many other protists  (Weber et al. 1993),
the  FAZ1 (a Flagellum  Attachment  Zone related
protein)  of T. brucei  (Vaughan  et al. 2008),  the
alveolins  of T. thermophila  (El-Haddad  et al. 2013;
Gould  et al. 2011), the H49/calpain  protein of
T.  cruzi (Galetovic et al. 2011) and the 477 kDa
centrosome-associated  protein  of T. vaginalis
(Bricheux  et al. 2007). This  is to  name just a  few
and  plenty more  must  be present  (Dawson and
Paredez  2013;  Fleury-Aubusson  2003; Roberts
1987). While  coiled-coil  containing  proteins  are
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involved  in  diverse  processes,  long and  centrally-
located  coiled-coil  regions are  characteristic  for
IF  proteins (Herrmann and Strelkov  2011;  Mason
and  Arndt 2004;  Rose et al. 2005) and  exactly
these  were  found enriched among proteins of the
isolated  cytoskeleton  (Fig.  3B;  Supplementary
Material  Fig.  S3B).

The identification  of the first IF  proteins  stems
from  research on the cytoskeleton  of vertebrates.
The  first intermediate  filaments  were  found  in mus-
cle  cells of chick embryos (Ishikawa  et al. 1968).
Later  the name ‘intermediate  filaments’ became
more  commonly  used  to indicate  their general,  but
not  obligate, intermediate width  between actin fila-
ments  and microtubules (Fuchs  and Weber  1994).
Ever  since, the definition  of IF  proteins orbits  around
those  families that have been identified  in ver-
tebrates.  Now consider  two things:  First, already
among  vertebrates  the IF  protein families  are
diverse  and not ubiquitously  present, also  because
of  the  flexible  architecture  of coiled-coils  that can
deviate  a lot from  the  canonical IF  heptad  repeat
pattern  (Hicks et al. 1997;  Holberton et al. 1988;
Mason  and Arndt 2004). Second, vertebrates make
up  only a very small  portion  of extant eukaryotic
diversity  (Baldauf  2008; Burki 2014). It is quite pos-
sible  that  vertebrate  IF protein  families  represent
only  a small  fraction  of the proteins  that  can form  fil-
amentous  structures  in eukaryotes, and  only those
that  originate from  an ancient  duplication  of lamin
genes  are recognizable  as a family of  homologous
proteins  inside metazoa.  IF protein  evolution is diffi-
cult  to track across phylogenetically  distant groups
(Bouchard et al. 2001;  Fleury-Aubusson 2003;
Gould  et al. 2011).  If  so, the two  case  examples  of
the  alveolate  pellicle proteome  (Gould  et al.  2011)
and  the cytoskeleton  proteome  of an excavate (this
study)  — two phylogenetically  independent  super-
groups  and  independent  of opisthokont  metazoans
—  suggest  that we can  expect  to  find a similar
diversity  among  the majority, if  not all, individual
eukaryotic  supergroups.

Our data  show that several of the identified
detergent-resistant  cytoskeleton  proteins  share
features  that  are  considered  a trade mark of
metazoan  IF  proteins.  This includes  the length of
individual  coiled-coil  forming motifs, the number of
total  coiled-coil  sequences  and  the  cytoskeleton-
associated  scaffolding  nature  of the localization
pattern  we observe,  that is their  function inside  the
eukaryotic  cell. More than 50% (113) of the 203
proteins  identified have no  significant sequence
similarity  (E-value  of 10e-10)  to proteins  of any
other  organism  outside  of the  Trichomonadida  and
none  to canonical  metazoan IF protein  families.  The

presented data cannot  claim  that it has uncovered
dozens  of new IF proteins similar to those of meta-
zoa  per  se, but it encourages  to dig deeper and
it  provides a source  from  where  to start. Consid-
ering  the morphological  complexity  of protists,  it is
hard  to imagine  how  these single cells would real-
ize  their many  unique  scaffolding  structures, if not
also  with the support of proteins  that are analog
to  metazoan  IFs. Future  studies will now need to
characterize  individual  candidates  and  for instance
demonstrate  that some  of these proteins can form
filaments  autonomously  in  vitro and induce such in
other  heterologous  systems like yeast.

We conclude  that many  of the discussed
cytoskeleton  proteins  share properties  described
for  metazoan  IFs, but that are  at the same  time
specific  to the  parabasalian  lineage.  They evolved
either  rapidly, the  primary sequence no  longer serv-
ing  as a reliable  source to screen for phylogenetic
relationships,  or  independently.  A combination of
the  two options is plausible  and would complicate
the  matter  of identification  and classification even
further.  Rapid evolution  for  the coiled-coil  forming
domains  of such  proteins  has  been  observed for
syntenic  genes  of apicomplexan  parasites (Gould
et  al. 2011), and the limited  amount  of interac-
tions  with other  cytosolic  proteins  is thought to lift
the  sequence constrains  of such proteins in gen-
eral  (Fleury-Aubusson  2003). On the contrary, if
the  many  cytoskeleton  proteins  of  these phyloge-
netically  distant  eukaryotic groups  are of multiple
evolutionary  origins, then  they provide  an excellent
example  of extensive convergent evolution. Either
way,  such observations  require us to discuss the
restrictive  use of the  term IF protein  only for meta-
zoa.

Methods

Cell  cultivation:  Trichomonas  vaginalis  FMV-1  (kindly  provided
by M.  Benchimol,  University  Santa  Ursula,  Rio  de  Janeiro,
Brazil)  was  cultivated  in  Tryptone  Yeast  extract  maltose  Medium
(TYM)  containing  2.22%  (w/v)  tryptose,  1.11%  (w/v)  yeast
extract, 15  mM  maltose,  9.16  mM  L-cysteine,  1.25  mM  L(+)
ascorbic  acid,  0.77  mM  KH2PO4,  3.86  mM  K2HPO4,  10%  (v/v)
heat-inactivated  horse  serum,  0.71%  (v/v)  iron  solution  [=  1%
(w/v) Fe(NH4)2(SO4)  x  6H2O,  0.1%  (w/v)  5-sulfosalicylacid)]
adjusted  to  pH  6.2  and  incubated  anoxically  at  37 ◦C.  Tetra-
trichomonas  gallinarum  M3  isolated  from  the  caecum  of
Melaegris  gallopavo  (kindly  provided  by  Prof.  Tachezy,  Depart-
ment  of  Parasitology,  Charles  University  of  Prague,  Czech
Republic)  was  cultivated  anoxically  in  TYM  with  pH  7.2  at  37 ◦C.

Cytoskeleton  extraction  of  T.  gallinarum:  Based  on
different  cytoskeleton  extraction  protocols  (de  Souza  and
da Cunha-e-Silva  2003;  Palm  et  al.  2005;  Viscogliosi  and
Brugerolle  1994),  five  hundred  ml  cell  culture  of  T.  gallinarum
with approx.  7  x  106 cell/ml  were  collected  by  centrifugation  at
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1,500  x  g  for  10  min  at  room  temperature  (RT).  The  cell  pellet
was washed  twice  in  Ringer  solution:  0.12  M  NaCl,  3.5  mM  KCl,
2.0 mM  CaCl2,  2.5  mM  NaHCO3,  pH  7.2  with  centrifugations  at
999 x  g,  10  min,  RT.  Washed  cells  were  then  resuspended  in
30 ml  ice-cold  Triton  solution:  10  mM  Tris  base,  2  mM  EDTA,
2 mM  DTT,  1  mM  ATP,  2  mM  MgSO4,  200  mM  KCl,  1.5%  Tri-
ton X-100,  pH  7.8  including  one  1x  complete  Mini  protease
inhibitor  tablet  (Roche).  The  solution  was  vortexed strongly  for
2 min,  incubated  on  ice  for  2  min  and  this  was  repeated  three
times. After  cell  lysis  was  confirmed  via  light  microscopy  the  cell
extract was  centrifuged  at  277  x  g  for  15  min,  RT.  For  increas-
ing the  output  and  purity  of  the  isolated  cytoskeleton  complex,
a sucrose  gradient  centrifugation  was  applied.  Therefore,  the
resulting  pellet  was  transferred  on  top  of  1  ml  2  M  sucrose  and
centrifuged  at  1,000  x  g,  15  min,  4 ◦C  resulting  in  an  upper  band
and a  lower  band.  The  upper  band  was  transferred  on  top  of  1  ml
1.5 M  sucrose  and  centrifuged  at  10,000  x  g,  15  min,  4 ◦C.  The
pellet was  transferred  on  top  of  a  four-step  gradient  containing
1 M,  1.5  M,  2  M  and  2.5  M  sucrose  (from  top  to  bottom)  within
a 2  ml  tube  and  centrifuged  at  19,000  x  g,  1  h,  4 ◦C.  This  led  to
three  different  pellets  along  the  tube.  The  purest  and  most  highly
concentrated  cytoskeleton  fraction  could  be  obtained  from  the
upper-most  pellet  in  the  interface  of  1  M  and  1.5  M  sucrose.  This
pellet was  washed  twice  in  PBS  with  centrifugations  at  12,000
x g,  5  min,  4 ◦C,  yielding  a  highly  concentrated  cytoskeleton
fraction as  evident  through  microscopy  and  Western  blotting
(Fig.  1).

The  transcriptome  of  T.  gallinarum:  RNA-Seq  reads  were
obtained  using  Illumina  sequencing  based  on  T.  gallinarum  M3
RNA (NCBI,  accession  SRA318841),  which  was  isolated  as
described  for  T.  vaginalis  (Woehle  et  al.  2014).  A  quality  filtering
step was  applied  to  the  reads  so  that  the  first  nine  nucleotide
(nt) positions  were  rejected  according  to  a  FastQC  analy-
sis (http://www.bioinformatics.babraham.ac.uk/projects/fastqc)
that showed  low  quality  for  the  first  9  base  calls.  Subsequently,
only reads  with  a  minimum  of  25  nt  were  retained.  In  addi-
tion, all  reads  containing  25%  of  low  quality  bases  (25%  of  all
bases with  values  ≤  Q15)  identified  by  a  self-written  Perl  script
were  rejected  as  well.  The  reads  were  assembled  via  Trinity
assembler  (version  r20131110)  (Grabherr  et  al.  2011).  From
all assembled  contigs  only  the  longest  isoform  of  a  candidate
was  selected.  Open  reading  frames  (ORFs)  were  identified  and
translated  into  the  corresponding  amino  acid  (aa)  sequences  by
getorf from  EMBOSS  6.6.0  (Rice  et  al.  2000)  and  a  self-written
Perl script  was  used  to  select  only  the  longest  ORF  per  can-
didate. To  define  an  ORF,  only  stop  codons  were  considered
(option-find  0).  Furthermore,  only  sequences  with  a  minimum
of 100  aa  as  a  minimum  for  protein  identification  were  used.  For
those sequences  the  best  matches  with  T.  vaginalis  annotated
genes were  determined  by  using  the  BLAST  program  (version
2.2.28) (Altschul  et  al.  1997)  in  combination  with  the  database
TrichDB  (version  1.3)  (Aurrecoechea  et  al.  2009)  based  on  an
e value  cutoff  at  ≤  1e-10.

Protein  identification  by  liquid  chromatography  electro-
spray ionization  tandem  mass  spectrometry:  Cytoskeletal
fractions  of  T.  gallinarum  were  separated  in  a  polyacrylamide
gel (∼  4  mm  running  distance).  Protein  containing  bands  from
the silver  stained  gel  were  cut  out,  destained,  reduced,  alky-
lated  with  iodoacetamide  and  digested  with  trypsin  (1:50  w/w
Serva,  Heidelberg,  Germany)  overnight  at  37 ◦C  as  described
(Poschmann  et  al.  2014).  After  that,  resulting  peptides  were
extracted  from  the  gel  and  subjected  to  liquid  chromatography
in 0.1%  trifluoroacetic  acid.

Before  mass  spectrometric  peptide  identification,  peptides
were  separated  by  an  Ultimate  3000  Rapid  Separation  liq-
uid chromatography  system  (Thermo  Scientific,  Dreieich,

Germany)  on  an  analytical  column  (Acclaim  PepMapRSLC,
2 �m  C18  particle  size,  100 Å pore  size,  75  �m  inner  diame-
ter, 25  cm  length,  Thermo  Scientific,  Dreieich,  Germany)  over
a two  h  gradient  as  described  earlier  (Hartwig  et  al.  2014).
Using  a  nano  electrospray  ionization  source,  peptides  were
transferred  to  an  Orbitrap  Elite  high  resolution  mass  spectrome-
ter (Thermo  Scientific,  Bremen,  Germany)  operated  in  positive
mode  with  capillary  temperature  set  to  275 ◦C  and  a  source
voltage  of  1.4  kV.  The  orbitrap  analyzer  of  the  instrument  was
used for  survey  scans  over  a  mass  range  from  350  –  1,700  m/z.
A resolution  of  60,000  (at  40  m/z)  was  used  and  the  target
value  for  the  automatic  gain  control  was  set  to  1,000,000  and
the maximum  fill  time  to  200  ms.  Fragment  spectra  of  the  20
most intense  2+  and  3+  charged  peptide  ions  (minimal  signal
intensity  500)  were  recorded  in  the  linear  ion  trap  part  of  the
instrument  after  collision  induced  dissociation  based  fragmen-
tation using  an  available  mass  range  of  200-2,000  m/z  and  at  a
resolution  of  5,400  (at  400  m/z).  A  maximal  fill  time  of  300  ms
and an  automatic  gain  control  target  value  of  10,000  were  used
for the  analysis  of  peptide  fragments  and  already  fragmented
ions were  excluded  from  fragmentation  for  45  seconds.

Protein  identification  from  mass  spectrometric  data  was  car-
ried out  using  the  MASCOT  search  engine  (version  2.4.1,  Matrix
Science,  London,  UK)  embedded  in  the  Proteome  Discov-
erer environment  (version  1.4.1.14,  Thermo  Scientific,  Dreieich,
Germany)  with  standard  parameters  for  spectrum  selection.
Searches  were  carried  out  in  a  T.  gallinarum  specific  database
containing  37,740  ORFs  (obtained  from  the  transcriptome  anal-
ysis) with  tryptic  cleavage  specificity  allowing  a  maximum  of
one missed  cleavage  site.  The  precursor  mass  tolerance  was
set to  10  ppm,  the  fragment  mass  tolerance  to  0.4  Da,  car-
bamidomethyl  at  cysteine  as  static  modification  and  methionine
oxidation  and  N-terminal  acetylation  as  variable  modification.
For peptide  evaluation,  the  percolator  node  was  used  with  stan-
dard parameters  (strict  target  false  discovery  rate  1%,  validation
based on  q-value).  Only  peptides  passing  the  “high  confidence”
filter (1%  false  discovery  rate)  were  used  for  protein  assem-
bly and  only  proteins  reported  with  a  minimum  of  two  peptides
were considered.  The  mass  spectrometry  proteomics  data  have
been deposited  to  the  ProteomeXchange  Consortium  via  the
PRIDE partner  repository  (Vizcaino  et  al.  2014)  with  the  dataset
identifier  PRIDE:  PXD003212.

Protein  datasets:  Out  of  all  the  proteins  identified  by  mass
spectrometry,  we  retained  only  those  proteins  supported  by  at
least two  peptides.  This  resulted  in  a  dataset  of  582  proteins
(Supplementary  Material  Table  S2).  Homologous  proteins  in
T. vaginalis  were  next  identified  using  reciprocal  blast:  best
BLASTp  hit  with  25%  identity  and  a  minimum  e  value  of  ≤
1e-10,  without  low  complexity  filter  against  the  latest  version  of
TrichDB  (version  2.0,  March  2015)  (Aurrecoechea  et  al.  2009).
This resulted  in  271  pairs  of  putative  orthologous  proteins.  Sub-
sequently,  this  list  was  manually  filtered  to  exclude  cytoskeleton
unrelated  proteins,  such  as  several  ribosomal  subunits.  This  fil-
tering  was  performed  based  on  TrichDB  annotations.  A  final  set
of 203  cytoskeleton  associated  proteins  was  obtained.

For statistical  purposes  we  established  two  control  datasets.
The first  was  composed  of  301  hydrogenosomal  proteins.  This
set was  based  on  manually  filtering  the  359  proteins  compris-
ing the  core  hydrogenosomal  proteome  (Garg  et  al.  2015)  to
exclude  hydrogenosomal  unrelated  proteins,  such  as  diverse
ribosomal  subunits.  The  second  set  was  obtained  by  randomly
selecting  203  proteins  from  TrichDB.  In  an  additional  run,  the
random  control  datasets  was  normalized  for  their  length  to
match  those  of  the  cytoskeleton  dataset.

The  number  and  length  of  coiled-coils  within  proteins  were
detected  by  NCOILS  (Lupas  et  al.  1991).  Repetitive  motifs  were
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detected  by  RADAR  (Heger  and  Holm  2000).  A  repetitive  motif
was considered  to  be  at  least  three  repetitive  segments,  each
with a  minimal  length  of  ten  amino  acids,  as  used  before  for
identifying  cytoskeleton  related  proteins  (Gould  et  al.  2011).
Functional  annotation  was  assigned  to  the  203  cytoskeleton
associated  cytoskeleton  proteins,  based  on  the  KOG  database
(Koonin  et  al.  2004;  Tatusov  et  al.  2003).  Protein  domains
of the  five  candidate  proteins  (TVAG  339450,  TVAG  474360,
TVAG 117060,  TVAG  030160  and  TVAG  059360)  were  ana-
lyzed  using  SMART  (Letunic  et  al.,  2015).  Coiled-coil  motifs
of TVAG  339450,  TVAG  474360,  TVAG  117060  were  identified
using COILS  (Lupas  et  al.  1991).

Cloning  and  localization  analysis:  The  gene  sequences
of all  analyzed  proteins  were  amplified  by  specific  primers
(Supplementary  Material  Table  S3)  with  a  proof-reading  poly-
merase.  PCR  products  were  ligated  into  the  expression  vector
pTagVag2  (Zimorski  et  al.  2013)  to  label  the  proteins  with  a
C-terminal  hemagglutinin  (HA)  tag.  The  final  expression  con-
structs  were  verified  by  standard  sequencing.  Transfection
using  electroporation  (Delgadillo  et  al.  1997)  was  done  using
approx.  2.5  x  108 cells  of  T.  vaginalis  and  30  �g  expression  vec-
tor. After  four  h  of  anoxic  incubation  at  37 ◦C,  geneticin  (G418)
was added  to  a  final  concentration  of  100  �g/ml  to  initiate
selection.

Protein  probes  were  separated  through  a  8%  or  a  12%  SDS-
PAGE and  blotted  onto  a  Porablot  nitrocellulose  membrane
(Macherey-Nagel)  via  the  standard  preset  of  the  Trans-Blot
Turbo  Transfer  System  (BioRad).  Membranes  were  blocked
in blocking  buffer:  5%  milk  powder  +  Tris-Buffered  Saline
(TBS)  for  1  h,  RT.  Membranes  of  chemiluminescence  blots
were incubated  with  a  primary  monoclonal  mouse  anti-HA
antibody  (Sigma-Aldrich  H9658)  in  blocking  buffer  (1:5,000)
over night  (ON)  at  4 ◦C.  After  three  washes,  each  10  min  in
TBS-T (TBS  +  0.1%  Tween  20),  membranes  were  incubated
with a  secondary  anti-mouse  and  horseradish  peroxidase-
conjugated  antibody  (produced  in  rat,  ImmunoPure,  Pierce,
ThermoFisher  Scientific)  in  TBS-T  (1:10,000))  for  a  mini-
mum of  1  h  at  RT,  followed  by  three  washes  of  10  min.  Prior
to detection,  membranes  were  treated  with  WesternBright
ECL  spray  (Advansta).  The  chemiluminescence  reaction  was
analyzed  with  the  ChemiDoc  MP  System  (BioRad).  Mem-
branes  of  multiplex  fluorescent  blots  were  incubated  overnight
with primary  antibodies  (anti-HA  (produced  in  mouse,  H9658,
Sigma-Aldrich)  and  anti-SCS  (produced  in  rabbit,  Eurogen-
tec)) in  blocking  buffer  (1:2,000)  at  4 ◦C.  After  five  washes
for 5  min  in  TBS-T,  membranes  were  incubated  with  sec-
ondary  antibodies  [(Alexa  Fluor®488  goat  anti-Rabbit  IgG
H+L,  A-11008);  Alexa  Fluor®594  donkey  anti-Mouse  IgG
H+L, A-21203  (ThermoFischer  Scientific)]  in  TBS-T  (1:2,000)
for 2  h  at  RT  followed  by  six  washes  of  5  min  prior  to
immunofluorescence  detection  using  the  ChemiDoc  MP  Sys-
tem (BioRad).

For  immunofluorescence  microscopy  a  12  ml  culture  of  T.
vaginalis  with  approximately  7  x  106 cell/ml  was  centrifuged  at
914 x  g  for  8  min,  RT.  The  cell  pellet  was  washed  twice  in  1  ml
Phosphate  Buffer  Saline  (PBS)  and  centrifuged  at  550  x  g  for
2 min,  RT.  The  latter  centrifugation  setup  was  then  maintained
throughout  the  procedure.  Cells  were  fixed  and  permeablized
in 1  ml  fix-perm-solution  (3.5%  paraformaldehyd,  0.5%  Triton
X-100  in  PBS)  and  incubated  for  20  min  on  a  tube  rotator,
RT. Cells  were  collected  by  centrifugation  and  resuspended
in 1  ml  blocking-PBS  (0.1%  BSA  in  PBS)  and  blocked  on  a
tube rotator  for  20  min,  RT.  Cells  were  collected  by  centrifu-
gation  and  resuspended  in  0.5  ml  primary  antibody  solution
[(anti-HA  (produced  in  rabbit,  H6908,  Sigma-Aldrich)  and  anti-
tubulin (IG10,  produced  in  mouse,  from  Bricheux  et  al.  2007)

diluted  in  blocking-PBS,  1:1,000)]  and  incubated  on  a  tube  rota-
tor, 2  h,  RT.  Cells  were  washed  twice  in  PBS,  resuspended
in 0.5  ml  secondary  antibody  solution  [(Alexa  Fluor®488  goat
anti-Rabbit  IgG  H+L,  A-11008  and  Alexa  Fluor®594  don-
key anti-Mouse  IgG  H+L,  A-21203,  ThermoFischer  Scientific)
diluted  in  blocking-PBS  1:1,000)]  and  incubated  on  a  tube  rota-
tor, 2  h,  RT,  in  the  dark.  Cells  were  washed  twice  in  PBS.
Washed  cells  were  mounted  in  DAPI  solution  (Fluoroshield,
Sigma)  plus  PBS,  1:1.  Imaging  was  conducted  via  a  Nikon
ECLIPSE  Ti  immunofluorescence  microscope.

For TEM  cells  were  pelleted  at  1000  g  for  10  min  and  washed
three times  with  PBS  [0.8%  (w/v)  NaCl,  0.02%  (w/v)  KCl,
0.144%  Na2-  HPO4,  0.024%  (w/v)  KH2PO4;  pH  7.4].  After
fixation over  night  at  4 ◦C  in  fixation  buffer  [2.5%  (v/v)  glu-
taraldehyde  in  0.1  M  Na-cacodylate  buffer  pH  7.3]  the  cells  were
washed  four  times  for  10  min  with  0.1  M  Na-cacodylate  buffer  pH
7.3. Post  fixation  was  done  within  two  hours  incubation  with  2%
(w/v) osmiumtetroxide  diluted  in  0.1  M  Na-cacodylate  buffer  pH
7.3 containing  0.8%  (w/v)  potassium  ferricyanide  III.  The  cells
were washed  again  four  times  like  before  and  were  then  dehy-
drated  by  incubation  with  50%  (v/v),  70%  (v/v),  80%  (v/v),  90%
(v/v) and  absolute  acetone  (15  min  each).  Impregnation  was
done overnight  in  1:1  acetone–epon  mixture.  The  samples  were
polymerized  in  pure  epon  within  48  h  at  60 ◦C.  Ultra-thin  sec-
tions of  embedded  samples  were  collected  on  formvar  coated
nickel  grids  (400  square  mesh)  and  contrasted  with  subsequent
incubation  with  saturated  uranyl  acetate  solution  and  with  1%
lead citrate  for  5  min.  Pictures  were  obtained  using  a  Zeiss  CEM
902 operated  at  80  kV  equipped  with  a  wide-angle  Dual  Speed
2K CCD  camera  (TRS,  Moorenweis  Germany).
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