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Abstract
Motivation: Currently used methods for estimating branch support in phylogenetic analyses often rely on the classic Felsenstein’s bootstrap, 
parametric tests, or their approximations. As these branch support scores are widely used in phylogenetic analyses, having accurate, fast, and 
interpretable scores is of high importance.
Results: Here, we employed a data-driven approach to estimate branch support values with a probabilistic interpretation. To this end, we simu
lated thousands of realistic phylogenetic trees and the corresponding multiple sequence alignments. Each of the obtained alignments was used 
to infer the phylogeny using state-of-the-art phylogenetic inference software, which was then compared to the true tree. Using these extensive 
data, we trained machine-learning algorithms to estimate branch support values for each bipartition within the maximum-likelihood trees 
obtained by each software. Our results demonstrate that our model provides fast and more accurate probability-based branch support values 
than commonly used procedures. We demonstrate the applicability of our approach on empirical datasets.
Availability and implementation: The data supporting this work are available in the Figshare repository at https://doi.org/10.6084/m9.figshare. 
25050554.v1, and the underlying code is accessible via GitHub at https://github.com/noaeker/bootstrap_repo.

1 Introduction
To estimate the reliability of individual clades in an inferred 
phylogenetic tree, it is a common practice to employ both 
parametric and nonparametric approaches. Felsenstein 
(1985) proposed using the nonparametric bootstrap (Efron 
and Tibshirani 1993), in which resampling of alignment col
umns is used to generate a set of pseudoalignments. From 
each such pseudoalignment, a pseudotree (also called a boot
strap tree) is generated. The bootstrap support of each branch 
(a bipartition of the unrooted tree) is defined as the fraction 
of bootstrap trees in which this bipartition exists. While boot
strap computations have become the standard in any phylo
genetic analysis, this nonparametric bootstrap necessitates 
the repetition of the tree-search process numerous times, a 
task that demands a substantial amount of computational 
time, especially in the case of maximum-likelihood-based 
tree-searches. Hence, state-of-the-art tree-search software in
corporate approximate versions of the standard bootstrap 
approach, e.g. ultrafast bootstrap in IQTREE (Minh et al. 
2013, Hoang et al. 2018) and rapid bootstrap in RAxML 
(Stamatakis et al. 2008). The primary advantage of the boot
strap approach lies in its nonparametric nature, i.e. it does 
not rely on any distributional assumptions that could poten
tially be incorrect. However, Efron et al. (1996) showed that 
Felsenstein’s bootstrap provides only a first-order approxi
mation to the actual support values and may become poor 

depending on the curvature of the tree-space. To address this 
limitation, Efron proposed conducting additional second- 
level bootstrap replications, which would be utilized to cor
rect the standard bootstrap score, accounting for the curva
ture of the tree-space. The number of second-level bootstrap 
replicates should be substantially greater than that of the 
first-level approximation, demanding significant computa
tional resources. Indeed, this correction is not implemented in 
any common phylogenetic software.

Fast parametric and semiparametric alternatives to the 
bootstrap were developed and incorporated in state-of-the- 
art tree search software. The aLRT test (Anisimova and 
Gascuel 2006) was suggested as a fast and robust approxima
tion to the standard likelihood ratio test. The test statistic is 
computed as twice the difference between the log-likelihood 
of the best topology to the log-likelihood of its best nearest 
neighbor interchange (NNI) topology around the branch in 
question. This statistic is then compared to a mixture distri
bution composed of χ2

0 and χ2
1 components. The aBayes test 

(Anisimova et al. 2011) is a Bayesian modification of the 
aLRT statistic, which approximates the posterior probability 
of a configuration around the branch in question based on 
the log-likelihood scores of the three possible NNI configura
tions. In both aLRT and aBayes tests, optimization is per
formed solely for the branch in question and its four adjacent 
branches, thus reducing running-time. The SH-like local 
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branch support test is another variation of the aLRT test, 
which relies on resampling the data following the SH test 
(Shimodaira and Hasegawa 1999).

Different branch support values have distinct interpreta
tions and demonstrate varying sensitivity to model misspecifi
cations. For instance, bootstrap supports are generally more 
conservative compared to posterior probability values 
(Douady et al. 2003). Anisimova et al. (2011) compared 
Bayesian posterior probabilities, parametric support values, 
and the nonparametric bootstrap, based on simulations and 
empirical data analysis. For a given support threshold α, they 
calculated the false positive rate (FPR), false negative rate 
(FNR), and the Matthews correlation coefficient (MCC) by 
labeling branches as “correct” when the support value is 
above a specified threshold. The authors demonstrated that 
for the task of binary prediction, both aLRT and aBayes sup
port values significantly outperformed nonparametric 
approaches. The authors asserted that, despite the desirability 
of a probabilistic interpretation for branch support, none of 
the mentioned methods for assessing such support can pro
vide it, even when the underlying model is correctly specified.

In this work, we propose employing machine-learning 
algorithms to develop a new branch-support score. The score 
relies on multiple features extracted from the multiple se
quence alignment (MSA) and the reconstructed maximum- 
likelihood tree. The machine-learning model was optimized 
on extensive training data. Analyzing test data, we demon
strate that this score is more accurate than previously sug
gested scores. This is also true under model misspecification 
conditions. One of the limitations of previously developed 
branch support scores is their interpretation. Our score is cal
ibrated to represent the probability of each bipartition to ex
ist in the true tree. We demonstrate that the probabilities 
obtained by our model are more accurate than those obtained 
using the widely used support values provided by state-of- 
the-art phylogenetic software. Finally, our trained model is 
substantially faster than the classic Felsenstein’s bootstrap.

2 Materials and methods
2.1 Bipartition inference as a machine-learning 
classification task
We conceptualize branch support estimation as a classifica
tion task (as in Anisimova et al. 2011). We classify only 
bipartitions that are found in the inferred maximum- 
likelihood tree. The y label for each such bipartition is 1 
when the bipartition is found in the true tree, i.e. the tree that 
generated the data (and y¼0 otherwise). The true label is 
known from simulated data. We aim to predict this label 
based on a set of features extracted for each bipartition, e.g. 
the branch length associated with this partition in the 
maximum-likelihood tree. Independently generated labeled 
data are also used to evaluate performance. The trained clas
sifier outputs a score for each bipartition. This predicted la
bel, ŷ, is based on a cutoff value, C. If the machine-learning 
score is higher than C, ŷ ¼ 1 (ŷ ¼ 0 otherwise). We define 
true-positive predictions as those with ŷ ¼ y ¼ 1. Such bipar
titions were supported based on the machine-learning classi
fier, and are also found in the true tree. Similarly, false 
positive predictions (ŷ ¼ 1; y ¼ 0) are those bipartitions of 
the maximum-likelihood tree that were supported by the 
machine-learning algorithm, yet they do not appear in the 
true tree. This allows us to compute confusion matrices for 

our classifier. We used C¼0.5 for computing confusion ma
trices. One can consider the classic Felsenstein’s bootstrap 
methodology as such a machine-learning algorithm, in which 
there is only one feature (the bootstrap score), and no train
ing is performed. Notably, training of a classifier based on a 
single feature such as the Felsenstein’s bootstrap should not 
change the ranking of results, and thus should not have any 
significant effect on performance measurements such as the 
area under the ROC curve (AUC).

2.2 Branch support methods without 
machine-learning
Assume that we use a specific program for tree inference and 
for branch support, e.g. IQTREE (Minh et al. 2013) with its 
ultra-fast bootstrap estimate. We evaluated the performance 
of this branch support methodology within a classification 
scheme. To this end, we used a test database of true trees 
along with their corresponding set of inferred trees. Internal 
branches (bipartitions) in these inferred trees are associated 
with ultra-fast bootstrap values. True trees were generated 
using simulations (see below). This allowed us to estimate 
confusion matrices and from these confusion matrices, per
formance was evaluated using AUC, MCC, FPR, FNR, and 
F1 score.

The branch support values are often generated via pro
grams that implement specific maximum-likelihood-based 
heuristic approach. All combinations of tree inference and 
branch support methods that were evaluated, are listed 
in Table 1.

2.3 A novel machine-learning approach for 
branch support
Various features can be extracted for each branch in ques
tion, e.g. its length and the lengths of the surrounding 
branches. We thus examined whether using multiple features 
can provide accurate classifications (See below for a list of 
features). Following feature selection, we generated a trained 
machine-learning classifier and evaluated its performance. 
We generated training data that include a large set of true 
trees, inferred trees, whether each branch in the inferred tree 
is in the true tree, and their associated branch support scores. 
The following classifiers were considered: Gradient Boosting 
Trees, Random Forest, and Neural Networks (see below).

2.4 Interpreting branch support scores as 
probabilities
Ideally, the branch support values should reflect probabili
ties, thus providing meaningful and intuitive interpretation. 
For example, we would like that on average, a branch sup
port of 70% would signify that the branch is correctly placed 
in the true tree in 70% of the cases. We used the term calibra
tion accuracy (see definition below) as a measure of how well 
a specific branch score corresponds to probabilities. We com
pared calibration accuracies of the developed machine- 
learning classifier as well as standard branch-support values. 
As we show below, the developed classifier outperforms pre
vious approaches, both in terms of classification and calibra
tion accuracy.

2.5 Simulation of MSAs
We generated train and test data as follows. Dataset1 (DS1) 
included 6000 simulated MSAs with 100–10 000 sites and 
between 30 and 1000 taxa. Each such MSA was simulated 
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along a different tree topology using AliSim (Ly-Trong et al. 
2022), based on the script provided in the Github repository 
of RAxML-grove (H€ohler et al. 2022). The 6000 different 
trees were randomly sampled from the RAxML-Grove data
base, which contains trees derived from empirical datasets 
(H€ohler et al. 2022). Each such MSA was simulated using the 
DNA model associated with that tree in RAxML-Grove. DS1 
was further divided to train (DS1.a) and test data (DS1.b). 
Specifically, 70% of the MSAs in DS1 were randomly se
lected to form the training data and the remaining 30% were 
used as test data. Each MSA and its associated bipartitions 
derived from the maximum-likelihood tree were either in the 
train data or in the test data, never in both. We ensured that 
the number of sequences included in the MSAs is similar be
tween the train and test set by dividing the data to five 
equally sized bins, and sampling 70% of the MSAs from each 
bin for the training data. Dataset2 (DS2) included 750 addi
tional MSAs simulated along 250 independent trees sampled 
from RAxML-Grove database. DS2 served as validation 
data, specifically to assess the impact of model misspecifica
tion. DS2 comprise three datasets: DS2.a, in which there is no 
model misspecification (i.e. we used the model assigned by 
RAxML-Grove), was simulated along the 250 independent 
trees similar to DS1; DS2.b was simulated using the same 
trees as DS2.a but using the Jukes and Cantor (JC) model 
(Jukes and Cantor 1969) in all simulations; DS2.c was also 
simulated along the same 250 trees as DS2.a, but using the 
GTRþFþGþI model (Rodr�ıguez et al. 1990). The trees, the 
models, and the MSAs have been deposited in the Figshare re
pository at https://doi.org/10.6084/m9.figshare.25050554.v1.

2.6 Tree-searches and bootstrap estimates
For each MSA in DS1 and DS2, we performed a tree-search 
including bootstrap estimates in FastTree (Price et al. 2010), 
RAxML-NG (Kozlov et al. 2019), and IQTREE (Nguyen 
et al. 2015). In FastTree, we used the default local support 
test, which is based on SH test on three alternative topologies 
(Shimodaira and Hasegawa 1999). In DS1 and DS2.a, tree- 
searches were conducted assuming the default GTRþCAT 
model. In DS2.b and DS2.c, tree searches were carried out as
suming GTRþCAT and JCþCAT models, respectively. In 
RAxML-NG, we utilized the default search configuration 
and the default nonparametric bootstrap configuration, 
where the number of replicates is automatically determined. 
Similarly, in IQTREE, we employed the default search config
uration. For the bootstrap analysis, we used the ultrafast 
bootstrap approximation using 1000 replicates, the aBayes 
test (Anisimova et al. 2011), and the parametric aLRT test 
(Anisimova and Gascuel 2006). In both RAxML-NG and 
IQTREE, tree searches within DS1 and DS2.a were con
ducted assuming the same model used for the MSA simula
tion. Tree searches within DS2.b, DS2.c were conducted 
assuming GTRþFþGþI and JC models, respectively.

2.7 Data preparation
Each analyzed MSA was simulated along a “true” tree (corre
sponding to a tree obtained from the RAxML-Grove data
base). The MSA is also associated with a corresponding 
inferred maximum-likelihood tree, together with its branch 
support estimates. Each bipartition of an inferred maximum- 
likelihood tree was labeled with a value of 1 if it is present in 
the true tree and 0 otherwise. Subsequently, as elaborated in 
the next section, we extract features from each bipartition, 
both from the inferred tree and from the MSA. This process 
results in a dataset in which each row represents a single bi
partition, encompassing its corresponding features and a la
bel indicating whether it is present in the true tree. Three 
such datasets were generated, each one inferred by a different 
tree search software: RAxML-NG, FastTree, and IQTREE. A 
machine-learning classifier was trained and evaluated on 
each such dataset. This was compared to several branch sup
port scores obtained by the corresponding soft
ware (Table 1).

2.8 Features
For each bipartition within an inferred tree, the following fea
tures were extracted: (1) number of sequences; (2) number of 
MSA columns; (3) number of unique MSA columns; (4) per
centage of constant sites; (5) PyPythia MSA difficulty (Haag 
et al. 2022); (6) branch length at the partition site; (7) branch 
length divided by the mean branch length across the tree; (8) 
branch length divided by the mean branch length among the 
four neighboring branches; (9–14) median, 25th percentile, 
75th percentile, variance, skewness, and kurtosis of branch 
lengths distribution in the tree; (15) total tree divergence, i.e. 
sum of branch lengths; (16) tree deviation from ultrametricity 
as defined in Tria et al. (2017); (17–18) the count and pro
portion of taxa on the smaller or equal side of the bipartition; 
(19–20) the cumulative sum of branch lengths and the corre
sponding fraction on the smaller or equal side of the biparti
tion; (21–25) the average, minimum, maximum, minimum- 
to-maximum ratio, and variance of the neighboring branches; 
(26) the parsimony bootstrap score (fraction of trees in which 
the bipartition exists across 100 parsimony trees generated 
by RAxML-NG); (27) the mean transfer distance (Lemoine 
et al. 2018) across these 100 parsimony trees; (28–31) same 
as (26–27), but considering the average and minimum values 
for the neighboring bipartitions; (32–33) the fraction of trees 
in which the bipartition exists and the mean transfer distance 
(Lemoine et al. 2018) across the set of suboptimal ML trees 
obtained by RAxML-NG; (34–37) Same as (32–33), but con
sidering the average and minimum values for the neighboring 
bipartitions; (38–39) minimal and maximal log-likelihood 
difference between the current tree and the two NNI neigh
bors around the bipartition following branch-length optimi
zation. Features 32–37 rely on suboptimal trees. The 
RAxML-NG software is the only software that returns 

Table 1. Several branch support methods implemented in current tree search software.

Program Branch-support method References

RAxML-NG Standard Felsenstein’s bootstrap (Kozlov et al. 2019)
RAxML-NG Transfer bootstrap expectation (Lemoine et al. 2018, Kozlov et al. 2019)
IQTREE Ultrafast bootstrap (Minh et al. 2013, Hoang et al. 2018)
IQTREE aLRT test (Anisimova and Gascuel 2006)
IQTREE aBayes test (Anisimova et al. 2011)
FastTree SH-like test (Price et al. 2010)
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suboptimal trees and hence these features were extracted only 
when bootstrap scores were computed using RAxML-NG. 
All features were computed using dedicated Python scripts.

2.9 Machine-learning models
The classification models were built using LightGBM, a 
decision-tree classifier with gradient boosting (Ke et al. 
2017), as implemented in the Python package LightGBM. 
Prior to model fitting, we performed a recursive feature elimi
nation procedure on the train data based on a 5-fold cross- 
validation using the Python function feature_selection. 
RFECV in the scikit-learn library (Pedregosa et al. 2011). In 
this approach, features are recursively eliminated by search
ing for the feature with the least importance (as defined be
low). The feature is eliminated if removing it increases the 
performance in cross-validation. The process ends when there 
is no benefit in removing the least important features. Using 
the same cross-validation strategy, we optimized the follow
ing hyperparameters of the LightGBM model: number of 
leaves in each tree (25, 50, 100, 200), tree depth (3, 6, 12, in
finite), learning rate (0.1, 0.01, 0.001), number of tree esti
mators (100, 300), and subsample (0.6, 0.8, 1). In the cross- 
validation procedure, we verified that all partitions associ
ated with the same tree were assigned to the same fold, i.e. 
the partitions of a single tree were either used for training or 
testing but not both. To evaluate the importance of each fea
ture, we estimated the average information gain, i.e. the aver
age decrease in entropy when using that feature across the 
node splits of the decision trees. Aside from LightGBM, two 
learning algorithms were evaluated: (i) Random-forest, using 
the implementation of sklearn.ensemble.RandomForest 
Classifier in the scikit-learn library (Pedregosa et al. 2011). 
The following hyperparameters of the random-forest model 
were optimized: max depth (3,5,10) and minimal sample split 
(2,5,10). (ii) Neural network, using the implementation of 
sklearn.neural_network.MLPClassifier in the scikit-learn li
brary (Pedregosa et al. 2011). For the neural network we 
used two layers, with varying number of neurons in each 
layer. The numbers of neurons in each layer was considered 
as a hyperparameter and was chosen using cross-validation 
from three possible options: ((10,3),(30,5),(50,10)). Two 
options for the learning rate (alpha) were considered: 0.0001 
or 0.05. For calibrating the probabilities obtained from the 
classification model, we used 5-fold cross-validation based 
on isotonic regression, using the implementation of calibra
tion. CalibratedClassifierCV in the scikit-learn library 
(Pedregosa et al. 2011).

2.10 Performance evaluation
AUC, MCC, FPR, FNR, and F1 score were used as evalua
tion metrics to assess accuracy across each dataset (DS1.a, 
DS1.b, DS2.a, DS2.b, DS2.c) using the implementations in 
the scikit-learn library (Pedregosa et al. 2011). The AUC 
score was also assessed individually for each MSA in the test 
set (DS1.b), and subsequently, a Wilcoxon signed-rank test 
was employed to compare our model’s performance with 
other branch support scores. This test was implemented using 
scipy.stats.wilcoxon from the SciPy library (Virtanen et al. 
2020). In addition, we evaluated how well branch support 
values reflect probabilities. The probabilistic interpretation of 
the branch support values was depicted using calibration 
plots and quantified using the expected calibration error 
(ECE) based on 30 equally spaced bins (Guo et al. 2017).

2.11 Code availability
The code was implemented in Python version 3.8 and is available 
through GitHub (https://github.com/noaeker/bootstrap_repo).

2.12 Running time analysis
We conducted a performance analysis, comparing the execu
tion times of different branch support approaches on a Linux 
cluster system running CentOS. The cluster comprises 69 
compute nodes, each equipped with a varying number of 
CPUs ranging from 12 to 256, along with memory configura
tions ranging from 54 to 754 GB. The evaluation was carried 
out using a single CPU for consistency.

2.13 Empirical data analysis
We applied our machine-learning model to empirical datasets 
from a database of MSAs curated by Prof. Rob Lanfear, which is 
available at https://github.com/roblanf/BenchmarkAlignments. 
From this database, we selected the first 20 DNA MSAs, each 
containing a maximum of 1000 sequences and 10 000 columns. 
The corresponding publications are listed in Supplementary 
Table S3. In addition, we downloaded the “animal dataset” 
from Yahalomi et al. (2020). These data include 78 protein- 
coding genes from 119 animal species and 10 outgroup species. 
From this dataset, we selected the first 20 MSAs. For each MSA, 
we conducted standard tree searches, including bootstrap analy
sis, using both RAxML-NG and IQTREE. We then compared 
the machine-learning-based support for each branch within the 
maximum likelihood tree to Felsenstein’s bootstrap and Transfer 
Bootstrap support in RAxML-NG, as well as to aLRT and 
aBayes support in IQTREE.

3 Results
3.1 Model performance on test data
We formulated the problem of estimating branch support val
ues as a machine-learning classification method. The DS1.a 
data were used to train the machine-learning algorithm (in
cluding cross-validation). The features-based machine-learn
ing model demonstrated high performance on these training 
data, regardless of the software that was used for tree search 
(a different machine-learning model was trained for each 
software). The AUC scores of the various models were 0.974 
for the machine-learning models that were trained on trees in
ferred using IQTREE and RAxML-NG, and 0.972 for trees 
inferred using FastTree. When the trained model was applied 
to test data DS1.b, similar results were obtained: IQTREE 
(0.968), RAxML-NG (0.968), and FastTree (0.963). The 
small difference in performance between the train and test 
data (<0.009 AUC scores for all programs) indicates little to 
no overfitting of the model. Moreover, the very small differ
ences in AUC among the three programs suggest that the im
pact of the tree search algorithm on the inferred branch-score 
values is minimal. Similar results are obtained when consider
ing other evaluation metrics such as MCC, FPR FNR, and F1 
score (Supplementary Table S1).

Next, we compared the performance of the machine- 
learning approach to that obtained by six currently used 
branch-support approaches, as provided by the above three 
tree inference software (Table 1). In all comparisons, the de
veloped model was found to be more accurate (Fig. 1). For 
example, when tree searches were performed using IQTREE 
(Fig. 1, top panel), the machine-learning approach yielded an 
AUC score of 0.968 compared with ultrafast bootstrap 
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method, which yielded an AUC score of 0.928. IQTREE also 
implements two additional branch-support scores, aLRT and 
aBayes, both of which obtained higher AUC scores than the 
ultrafast bootstrap, but still lower compared to the machine- 
learning approach (AUC scores of 0.943 and 0.942 for the 
aLRT test and aBayes test, respectively). The machine- 
learning-based branch support also demonstrated superior 
performance compared to the bootstrap support computed 
by RAxML-NG, which obtained AUC scores of 0.946 and 
0.907 using either the Felsenstein’s bootstrap and the 
Transfer Bootstrap Expectation implementations, respec
tively (Fig. 1, middle panel). This analysis further revealed 
that, among the various scores examined, the SH test 
employed by FastTree exhibited the lowest performance, 
obtaining an AUC score of 0.876 (Fig. 1, bottom panel). 
Finally, we evaluated the AUC score for each MSA in the test 
set (DS1.b) separately, comparing the performance of our 
model to the other branch support approaches (see Materials 
and methods). Our model achieved significantly higher AUC 
scores compared to other branch support approaches 
(P<10−97, Wilcoxon signed-rank test). These results demon
strate that the developed model exhibits superior capability 
in distinguishing between branches that exist in the true tree 
and those that do not.

Our machine-learning algorithm does not use scores 
obtained from any of the above three programs as features. 
We next examined whether further improvement can be 
obtained by incorporating any of the support values provided 
by these programs as features within the machine-learning 
model. However, such inclusion did not result in enhanced 
performance (i.e. with these features included, the same AUC 
scores were obtained).

3.2 Probabilistic interpretation of branch 
support values
In our machine-learning model, branch-support values reflect 
classification probabilities, i.e. a branch support value of 70% 
suggests that the probability that the bipartition is found in the 
true tree is 70%. We next quantified how accurate these 

inferred probabilities are. Specifically, using simulations, we 
can estimate which fraction of bipartitions that were inferred to 
have a branch-support between, for example, 15% and 20% 
are found in the true tree. In a calibrated methodology, this 
fraction should also be between 15% and 20%. Figure 2 dis
plays the calibration curves for all branch support methods. We 
quantified the calibration accuracy using the ECE and com
pared the machine-learning-based methodology to all alterna
tive methods. For IQTREE, the machine-learning method 
demonstrated nearly perfect calibration (ECE¼0.002), i.e. al
most perfect overlap with the y¼x line. In contrast, the ultra
fast bootstrap approach provided values much higher than the 
true probabilities (ECE¼0.043), i.e. it is overconfident across 
the entire range of support values. The aLRT obtained an ECE 
value almost identical to the ultrafast bootstrap (ECE¼0.04), 
however, it was found to be underconfident for support values 
below 0.5 and overconfident for support values above 0.5. The 
aBayes approach obtained an ECE 0.033, and was thus also in
ferior to that obtained by our machine-learning model. In addi
tion, it substantially deviated from expectation for support 
values below 0.6 (Fig. 2, top panel). The RAxML-NG standard 
bootstrap values were slightly underconfident for support val
ues above 0.5 (ECE¼0.017) (Fig. 2, middle panel). RAxML- 
NG Transfer Bootstrap Expectation obtained an ECE score of 
0.059. Finally, FastTree branch support values substantially de
viated from the expected probabilities (ECE¼0.055) (Fig. 2, 
bottom panel). These results indicate that when conducting tree 
searches with all programs, the machine-learning method dem
onstrated high calibration, thus providing accurate probabilistic 
interpretation of support values.

3.3 Effect of model misspecification on model 
performance
To assess the impact of model misspecification on the accu
racy of branch-support estimates, we evaluated performance 
on additional validation data (see Materials and methods). In 
the first scenario (DS2.a), MSAs were generated without 
model misspecification, employing the same procedure as in 
the train and test datasets, to serve as a control dataset. In the 

Figure 1. ROC curves on various test data. Each panel displays the ROC 
curve obtained with the branch score predictions generated using the 
trained machine-learning procedure compared to existing scores obtained 
with the respective tree search software. The top, middle, and bottom 
panels represent the scores obtained with trees reconstructed using 
IQTREE, RAxML-NG, and FastTree, respectively, on the test data. The 
dotted diagonal line is the y¼ x line. The remaining curves represent the 
performance of our machine-learning model along with support values 
provided by the other programs.

Figure 2. Calibration plot on the test. Each panel displays the calibration 
curve obtained with the branch score predictions generated using the 
trained machine-learning procedure compared to existing scores obtained 
with the respective tree search software. The top, middle, and bottom 
panels represent the scores obtained with trees reconstructed using 
IQTREE, RAxML-NG, and FastTree, respectively, on the test data. The 
dotted diagonal line is the x¼ y line. The remaining curves showcase 
the performance of our machine-learning model compared to 
other programs.
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second scenario (DS2.b), data were simulated using the JC 
model, while tree-searches were carried out assuming the 
GTRþFþGþI model. In the third scenario (dataset DS2.c), 
MSA data were simulated assuming the GTRþFþGþI 
model, while tree-search was performed assuming the JC 
model. We calculated AUC scores and generated calibration 
plots for DS2.b and DS2.c, comparing the results to those 
obtained for the control dataset DS2.a for each program. For 
the trained machine-learning model, under both scenarios of 
model misspecification, the discrimination ability of the 
model did not decrease (maximal decrease in AUC when 
compared to the control dataset is 0.001). Furthermore, our 
model consistently outperformed the alternative support val
ues provided by each program (Supplementary Table S1). 
Regarding calibration, the control dataset (DS2.a) exhibited 
almost perfect calibration (ECE < 0.007 across all three pro
grams; see Supplementary Fig. S1a), as expected. The dataset 
DS2.b exhibited slightly worse calibration (ECE < 0.01) 
(Supplementary Fig. S1b) while DS2.c resulted in poorer cali
bration (ECE < 0.023), particularly in IQTREE and 
RAxML-NG, where the model predictions showed an up
ward bias for support values >0.4 (Supplementary Fig. S1c). 
In all cases, our model was better calibrated than the other 
branch support scores (Supplementary Table S1).

3.4 Running time analysis
We compared the running times of the various branch sup
port approaches (see Materials and methods). The computa
tion time of RAxML-NG standard bootstrap exhibited a 
median running time of 138 min on a single CPU. On the 
same data, our machine-learning model had a median run
ning time of 6.5 min. The most time-consuming feature in 
our computation is the log-likelihood evaluation of NNI 
neighbors. Excluding this feature had almost no effect on per
formance (e.g. for RAxML-NG, AUC score of 0.966 com
pared to 0.968 with all features), but the median running 
time was reduced to 7.3 s. For other programs, the branch 
support values are computed as part of the maximum- 
likelihood tree search, and hence we could not compare their 
running times to ours.

3.5 Feature analysis
Next, we analyzed which features contributed most to classi
fication accuracy. Following a recursive feature elimination 
procedure (see Materials and methods), 32, 39, and 31 were 
selected out of 33, 39, and 33 features for the models trained 
for trees inferred using IQTREE, RAxML-NG, and FastTree, 
respectively. The features chosen by the IQTREE model are 
detailed in Table 2 (the importance values for all features are 
given in Supplementary Table S2). For all models (a model 
for each software), the two most important features were the 
minimal and maximal log-likelihood differences between the 
current tree and NNI trees, respectively. The next most im
portant feature, consistently identified by all models, relies on 
the proportion of parsimony trees, obtained using RAxML- 
NG, which contain the branch of interest or its neighbors. 
We next tested the hypothesis that accurate predictions could 
be obtained by relying on a single top-scoring feature. To this 
end, we applied the classification algorithm with each feature 
separately. The most informative feature, when used alone, is 
the minimal log-likelihood difference between the final tree 
and the NNI neighbors. This feature achieves AUC scores of 
0.943 in both IQTREE and RAxML-NG and 0.935 in 

FastTree. Although these AUC scores are high, they are lower 
than the AUC obtained when all features are combined 
(0.968, 0.968, 0.963 for the same test data in IQTREE, 
RAxML-NG, and FastTree, respectively). These results 
clearly demonstrate the need to rely on a combination of fea
tures to obtain accurate predictions.

3.6 Factors affecting model performance
We investigated various factors which might affect the per
formance of our machine-learning model. The model accu
racy was not affected by the number of sequences (Fig 2.A), 

Table 2. Analysis of feature importance: Gini importance for the IQTREE 
model and corresponding AUC values using each individual feature.

Feature name Gini  
importance

AUC

Minimum log-likelihood difference between 
an NNI neighbor near the bipartition and 
current tree

861 182 0.943

Maximum log-likelihood difference between 
an NNI neighbor near the split and cur
rent tree

90 324 0.943

Minimum neighbor bipartition presence ratio 
across parsimony trees

35 207 0.734

Fraction of RAxML-NG parsimony trees in 
which the bipartition exists

26 831 0.915

Branch length at the partition divided by total 
tree divergence

21 668 0.902

Variance of branch lengths across the tree 20 365 0.593
Branch length at the partition 15 664 0.893
Mean branch length among the neighbor

ing branches
10 983 0.73

Mean neighbor bipartition presence ratio 
across parsimony trees

10 676 0.734

Minimal branch length among the neighbor
ing branches

6455 0.704

Total divergence in the smaller subtree defined 
by the bipartition

5482 0.582

Number of unique positions in the MSA 5291 0.644
Fraction of leaves in the smaller subtree de

fined by the bipartition
4632 0.521

Branch length divided by mean branch length 
among the neighboring branches

4462 0.904

Total divergence in the smaller subtree defined 
by the bipartition divided by total 
tree divergence

4283 0.515

Mean transfer distance of the bipartition 
across parsimony trees

3348 0.902

Tree MAD score 3224 0.632
MSA difficulty 3203 0.708
Number of positions in the MSA 2922 0.638
The division of the minimum branch length by 

the maximum branch length among the 
neighboring branches

2888 0.722

Skewness of tree branch lengths 2822 0.546
Number of leaves in the smaller subtree de

fined by the bipartition
2636 0.538

75th percentile of tree branch lengths 2448 0.656
Total tree divergence 2185 0.58
25th percentile of tree branch lengths 2030 0.692
Maximal branch length among the neighbor

ing branches
1927 0.719

Variance of branch length among the neigh
boring branches

1420 0.692

Kurtosis of tree branch lengths 1344 0.532
Fraction of constant sites among the MSA sites 1155 0.56
Median of tree branch lengths 1147 0.667
Minimum of mean transfer distance from 

neighboring bipartitions to parsimony trees
1065 0.717

Number of sequences in the MSA 1008 0.536
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suggesting that our model is applicable across a broad spec
trum of MSAs. 

As expected, the accuracy of our machine-learning model 
slightly increased as a function of the number of MSA posi
tions (Fig. 3B). However, it demonstrated minimal variation 
with respect to the MSA difficulty score (Fig. 3C). We also 
tested the dependence between accuracy and the number of 
taxa in the smaller side of the bipartition. Here, a value of 2, 
for example, indicates a branch leading to a bifurcation to 
two species, and higher values correspond to deeper biparti
tions in the tree. The accuracy was almost the same for deep 
versus shallow bipartitions (Fig. 3D). Finally, We evaluated 
whether improved performance may be obtained by increas
ing the size of the training data. To this end, we examined the 
logarithmic loss as a function of the number of MSAs used 
for training. Our findings indicated that accuracy reaches a 
plateau when the training dataset comprises 400 or more 
MSAs. In other words, with the current set of features, addi
tional training data from the same source is not anticipated 
to yield a significant improvement in performance (Fig. 3E). 
In addition to the gradient boosting ensemble method 
(GBM), we tested the performance of the random forest 
model and a neural network model. Both alternative models 
exhibited a slight decrease in performance, with a minimum 
decrease of 0.002 in AUC across all software and models.

3.7 Applying the model on empirical MSAs
Substantial differences among branch support values were 
observed when analyzing 20 protein and 20 DNA empirical 
datasets with the various branch-support inference methodol
ogies (see Materials and methods and Supplementary 
Fig. S2). The branch support is, on average, higher for our 
machine-learning approach compared to Felsenstein’s boot
strap and similar to that of the transfer bootstrap expectation 
method: the average branch support values obtained by our 
machine-learning model, Felsenstein’s bootstrap, and transfer 
bootstrap expectation were 0.85 (0.65), 0.74 (0.39), and 

0.88 (0.64), for the DNA (Protein) MSAs, respectively 
(Supplementary Fig. S2). However, the machine-learning- 
based bootstrap score correlated more strongly with 
Felsenstein’s bootstrap than with the transfer bootstrap ex
pectation: Pearson’s correlation coefficients (r) to 
Felsenstein’s bootstrap, and transfer bootstrap expectation 
were 0.73 (0.85), 0.6 (0.61), for the DNA (protein) MSAs, re
spectively. In comparison to parametric tests in maximum- 
likelihood trees obtained by IQTREE, our machine-learning 
approach yielded lower average support than both aLRT and 
aBayes support: the average support values of our machine- 
learning model, aLRT, and aBayes were 0.87 (0.76), 0.89 
(0.84), and 0.89 (0.86), for the DNA (Protein) empirical 
MSAs, respectively. Both parametric tests exhibited a similar 
correlation with our machine-learning-based score: Pearson’s 
correlation coefficients to aLRT, and aBayes were 0.87 
(0.79), 0.88 (0.83), for DNA (protein) MSAs, respectively.

We next focused on the gene rpl16b from Yahalomi et al. 
(2020), which includes 701 amino-acid positions. We recon
structed the maximum-likelihood tree using IQTREE with the 
WAGþG model and computed three branch support values: 
our machine-learning approach, and the two most accurate 
other methods based on simulation: aBayes, and the aLRT 
(the last two tests are implemented in IQTREE). The correla
tion between the machine-learning scores and these two scores 
is shown in Fig. 4 (Pearson R2 of 0.84 and 0.74 between the 
machine-learning score and aBayes and aLRT, respectively). 
We searched for the nodes with the highest discrepancy be
tween our approach and each of the two other approaches. 
The largest differences (for both methods) was in the lineage 
within stony corals leading to the following species: Agaricia, 
Galaxea, Porites, Montastraea, and Favia. For this branch, 
the scores for the machine-learning, aBayes, and aLRT were 
0.225, 0.763, and 0.816 (see dots labeled as N1 in Fig. 4). 
Thus, this subclade is not supported by our methodology, 
while it is supported by the two others. Although we cannot 
determine for certain if this clade is indeed incorrect, we note 

A B C

D E

Figure 3. Influence of various factors on prediction accuracy in FastTree, IQTREE, and RAxML-NG models: (A) AUC as a function of the number of 
sequences; (B) AUC as a function of the number of MSA positions; (C) AUC as a function of MSA difficulty score; (D) AUC as a function of number of 
sequences in the smaller part of the bipartition (E) logarithmic loss as a function of the number of MSAs used for training. In figures A–D, the x-axis 
denotes the median value derived from dividing the numerical column into 30 quantile-based bins
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that it disagrees with the tree reconstructed by the entire set of 
78 protein-coding genes given in Yahalomi et al. (2020). 
Another large discrepancy concerns the sponge monophyly. 
Sponges were paraphyletic in the maximum-likelihood tree of 
this protein, because hexactinellid sponges were grouped to
gether with ctenophores, placozoans, and cnidarians (rather 
than with the other sponges). The support for this grouping 
was above 0.5 for aBayes and aLRT (0.587 and 0.729, respec
tively. See dots labeled as N2 in Fig. 4). In contrast, the sup
port for the machine-learning methodology was 0.32. Of 
note, most current research, and the tree based on the entire 
set of genes support sponge monophyly (Pick et al. 2010, 
Yahalomi et al. 2020). Our method often provides lower sup
port compared to aBayes and aLRT (average support values 
over all nodes of 0.87, 0.9, 0.92 for the machine-learning ap
proach, aBayes, and aLRT, respectively). However, in a few 
cases, our approach provided higher support compared to the 
two other ones, e.g. for the grouping of two box-jelly genera, 
Carybdea and Tripedalia, the three support values were 
0.39,0.33,0.13 for the machine-learning approach, aBayes, 
and aLRT, respectively (see dots labeled as N3 in Fig. 4). Of 
note, this node is supported when information from all 78 
proteins are considered (Yahalomi et al. 2020).

4 Discussion
Recently, machine-learning algorithms were successfully applied 
in phylogenetic research, contributing to both runtime efficiency 
and enhanced inference accuracy. Noteworthy applications in
clude their utilization in model selection tasks (Abadi et al. 
2020, Burgstaller-Muehlbacher et al. 2023), inferring phyloge
netic trees (Suvorov et al. 2020), ranking candidate trees during 
a tree-search (Azouri et al. 2021), identification of key genomic 
loci for elucidating a phylogenetic hypothesis (Kumar and 
Sharma 2021), sampling of MSA positions to reduce tree-search 
running time (Ecker et al. 2022), and estimating the difficulty of 

the MSA (Haag et al. 2022). In this study, we have demon
strated the effectiveness of machine-learning algorithms for 
branch support estimation, a task traditionally relying on stan
dard statistical tests. We developed a machine-learning classifi
cation model to estimate branch support for phylogenies 
reconstructed using a variety of maximum-likelihood search 
algorithms. The model was trained using thousands of MSAs 
which were simulated based on realistic phylogenetic trees, as
suming various DNA models. We demonstrated that our meth
odology provides precise and fast branch support estimates for 
maximum-likelihood trees obtained using state-of-the-art tree- 
search software. Furthermore, the developed machine-learning 
approach outperformed common branch support methodolo
gies in terms of its probabilistic interpretation. We have also 
shown that our classifier remains accurate under model misspe
cification scenarios. Finally, the empirical analysis suggests that 
substantial differences may be obtained by employing different 
branch-support methodologies, and together with the simula
tion results, suggest that this machine-learning methodology 
provides reliable estimate of branch support and should be in
corporated in standard phylogenetic software.

The features incorporated into this model encompass log- 
likelihood evaluation, including branch-length optimization, 
for the three NNI neighbors of each bipartition. It is worth 
noting that these computations or their approximations are 
typically executed during a tree-search, incurring no addi
tional computational cost. Nevertheless, even when these fea
tures are removed, the model still produced favorable results 
(maximum difference in AUC compared to the original model 
across the three programs is 0.005; see Supplementary 
Table S1).

In the development of our machine-learning models, we 
employed hand-crafted features specifically designed for esti
mating branch support. While these features exhibit strong 
predictive power, further improvement can be potentially 
achieved by adopting a more comprehensive numerical repre
sentation of the maximum-likelihood tree and MSA. The 
MSA can be represented numerically using an unsupervised 
learning model, such as the one employed by Facebook’s pro
tein language model (Rao et al. 2021), while the nodes within 
the maximum-likelihood tree can be embedded in high- 
dimensional space using graph-based embeddings techniques 
(Cai et al. 2018, Matsumoto et al. 2021). Such an approach 
holds the potential to capture complex and relevant charac
teristics more effectively.

In all analyses performed here, it was assumed that the 
MSA is correct. However, the MSA is inferred, and alignment 
errors were shown to impact many downstream analyses, in
cluding tree topology search and bootstrap estimates (e.g. 
Wong et al. 2008). Ideally, uncertainty in the MSA should be 
accounted for within the estimate of branch support. This 
can be achieved within Bayesian approaches, which jointly 
infer the posterior distributions of alignments and trees 
(Redelings 2021). However, how to integrate alignment un
certainty within a frequentist inference framework is more 
challenging. It is possible to repeat the tree search and the 
branch-support inference for a set of alternative alignments 
and assign each branch the average support over these alter
native alignments (Chatzou et al. 2018, Chang et al. 2021). A 
set of alternative alignments can be generated by running dif
ferent alignments programs, by considering co-optimal align
ment solutions (Landan and Graur 2007), or by integrating 

Figure 4. Comparison of machine-learning-based support values to aLRT 
and aBayes support values for the rpl16b gene using IQTREE: The x-axis 
represents the machine-learning score and the y-axis represents the 
scores of the other methods. Dots labeled as “N1” correspond to the 
lineage within stony corals leading to the following species: Agaricia, 
Galaxea, Porites, Montastraea, and Favia. Dots labeled as “N2” indicate 
support for sponge paraphyly. Dots labeled as “N3” represent the 
grouping of two box-jelly genera, Carybdea and Tripedalia
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uncertainty in gap scoring, guide tree, and co-optimal solu
tions together (Sela et al. 2015).

Our analysis further tested the sensitivity of the developed 
branch-support estimates to model misspecification. The type 
of misspecification we evaluated focused on the transition 
rates between nucleotide substitutions. In many cases, the 
continuous-time Markov models that are currently included 
in tree inference software may be oversimplified. For exam
ple, all models assume that within each site, the evolutionary 
rate is constant. However, when divergent sequences are ana
lyzed, it is often the case that a site is conserved in one part of 
the tree and variable in the rest of tree or vice versa (Pupko 
and Galtier 2002, Wang et al. 2007). Similarly, it is assumed 
that the models are stationary and reversible, which may not 
be the case (e.g. Barba-Montoya et al. 2020). For example, 
when bacterial sequences are analyzed, assuming the same 
GC content along the tree was shown to lead to tree recon
struction artifacts (Galtier and Gouy 1998). The sensitivity of 
branch-support metrics to these and other model misspecifi
cations deserves further research.

The standard Felsenstein’s bootstrap as well as the other 
branch support estimates studied in this work, all assume that 
sequence sites evolve independently of one another. This is 
clearly not the case for most biological sequences, e.g. conserved 
columns within an MSA tend to cluster together, pointing to 
some functionally important 3D regions (Guharoy and 
Chakrabarti 2010). Several previous efforts aimed to explicitly 
model sequence data, aiming to alleviate the assumption of site 
independence by incorporating probabilistic Markov processes 
(Von Haeseler and Sch€oniger 1998, Lunter and Hein 2004, 
Larson et al. 2020, Chang et al. 2021). However, these models 
are seldomly used in tree-search algorithms. In theory, methods 
such as the block bootstrap can be used to account for this non
independence (Kunsch 1989). Of note, not accounting for such 
nonindependence is likely to highly inflate branch-support 
errors (Holmes 2003). The machine-learning approach can be 
adapted to account for dependence of the evolutionary process 
among sites. This necessitates simulating a large number of 
datasets along a known tree, assuming site dependence. 
Unfortunately, current software for simulating sequences along 
a tree does not enable simulations with site dependence.

Supplementary data
Supplementary data are available at Bioinformatics online.
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