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Abstract

The rapid spread of SARS-CoV-2 and its threat to health systems
worldwide have led governments to take acute actions to enforce
social distancing. Previous studies used complex epidemiological
models to quantify the effect of lockdown policies on infection
rates. However, these rely on prior assumptions or on official regu-
lations. Here, we use country-specific reports of daily mobility
from people cellular usage to model social distancing. Our data-
driven model enabled the extraction of lockdown characteristics
which were crossed with observed mortality rates to show that: (i)
the time at which social distancing was initiated is highly corre-
lated with the number of deaths, r2 = 0.64, while the lockdown
strictness or its duration is not as informative; (ii) a delay of
7.49 days in initiating social distancing would double the number
of deaths; and (iii) the immediate response has a prolonged effect
on COVID-19 death toll.
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Introduction

In 2020, the coronavirus pandemic has rapidly spread around the

globe, threatening health and economical systems. At first, many

governments attempted to minimize exposure to the virus by limit-

ing cross-border arrivals. However, the rapid person-to-person

transmission rate of the virus (Chan et al, 2020; Li et al, 2020)

required that more severe measures be taken to plummet infection

frequencies. Governments that used lockdown to enforce social

distancing varied in their policy, timing, and duration, in particular

relative to the mortality rate in their country. For example, Italy

enforced a severe, nationwide, lockdown on March 10, when over

35,000 confirmed cases and almost 3,000 deaths had already been

recorded. In other countries, lockdown policies were embraced at

earlier stages in attempt to prevent severe outbreaks. Israel, for

instance, reached the strict lockdown on March 19 with a relatively

low number of 648 confirmed cases and no deaths to that day. In

contrast, several countries, such as Sweden and Japan, advocated

social distancing but did not enforce a lockdown as a means of coro-

navirus spread prevention.

How can social distancing be quantified? One could measure

governmental regulations such as the permitted walking distance

from the residence, limitations on mass gatherings, school closures,

and whether people were allowed to attend their workplaces. For

example, Hu et al (preprint: 2020) suggested a score that takes into

account various governmental interventions in the United States.

This score was used to predict future infections depending on the

intervention level. While this model may be useful when govern-

mental decisions are made, it does not reflect whether social distanc-

ing has been implemented de facto (preprint: Kohanovski et al,

2020). Soures et al (preprint: 2020) used data collected from naviga-

tion applications on mobile cellphones together with past infection

rates to predict future infection rates. These predictions were based

on a neural-network model, in which the connection between mobil-

ity data and infection rates is hard to interpret and thus, practically,

cannot be converted into tangible measures for the arms race against

the disease. It is currently unknown which aspects of the lockdown

(e.g., duration, strictness, timing from onset of death cases) affect

mortality rates. Understanding the linkage between the lockdown

dynamics and COVID-19 death incidents is highly important for

balancing between health, welfare, and economy.

Location data collected from mobile phone calls have previously

been linked with the identification of pandemic outbreaks, e.g., the

2005 cholera outbreak in Senegal (Finger et al, 2016). With the

spread usage of smartphones nowadays, location and mobility data

are routinely collected by numerous service providers. Mobility data

from such datasets were shown to be associated with COVID-19

hotspots of disease transmission and spread (Badr et al, 2020;

Benzell et al, 2020; Bonaccorsi et al, 2020; Kraemer et al, 2020;

Linka et al, 2020; Pepe et al, 2020; preprint: Soures et al, 2020).
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Here, we develop parametric models that quantify trends related to

mobility and mortality and fit them to all OECD countries. Using these

models, we demonstrate that the correlation between the timing in

which the social distancing was initiated and the COVID-19-related

deaths is r2 = 0.64 across the OECD countries excluding Japan (that

was previously reported as an exception with respect to the spread of

the disease, e.g., by Iwasaki & Grubaugh, 2020). In contrast, the

severity of the lockdown and its duration are not as informative for

explaining mortality rates. Our analysis thus suggests that a moderate

lockdown, rather than a very strict one as was imposed by most coun-

tries, should be sufficient to curb COVID-19-related mortality, as long

as action is taken in the appropriate time frame.

Results

Following the COVID-19 outbreak, Apple Inc. has started publishing

daily reports regarding people mobility, collected from usage of

maps on mobile cellphones (Data ref: Apple, 2020). We used these

mobility data, denoted as M(t), to quantify the actual commence-

ment of the lockdown as a function of time in different OECD coun-

tries. We collected daily death incidents across time and overlaid

them on the mobility data (see Fig 1A for the United Kingdom as a

representative OECD country and Appendix Fig S1 for all OECD

countries). We observed that the trend of daily deaths stabilized and

subsequently decreased several days after a sharp mobility drop,

typically observed in March, corresponding to the time of applying

governmental interventions. During the time period between

January and May, most countries enforced social distancing as a

strategy to handle the initial outbreak. Following this period, with

the accumulation of additional knowledge regarding means of

prevention and treatment (Sanders et al, 2020; Xu et al, 2020) and

as many countries started to relax the restrictions and ease the lock-

down, the mobility trends across countries have diverged. For

example, the mobility trend in Israel returned to the baseline and

did not dramatically fluctuate after May, while in Sweden it rose

beyond the baseline and declined back toward August (see

Appendix Fig S1 for the trends of the OECD countries between

January and August).

Mobility analysis

To model the social distancing dynamics during the initial phase of

the pandemic, we focused on the time period between January 13

and May 10 (termed the “lockdown period” hereafter). Inspection of

the mobility trends during this time period revealed four phases: (i)

a stable phase of high mobility (with fluctuations on weekends); (ii)

a sharp drop (suggesting social distancing has actually started); (iii)

a period of low mobility; and (iv) a gradual incline toward a normal

routine (Fig 1). Phases (i)-(iii) resemble a (mirrored) logistic func-

tion and phase (iv) is approximately linear. We modeled this overall

trend by assembling a logistic function and a linear one as a func-

tion of time (t, given in days):

bMðtÞ ¼
L

1þe�kðt�t0 Þ þ b t� t1

aðt � t1Þ þ bMðt1Þ t[ t1

(

The six free parameters of this model are illustrated in Fig 1B.

Fitting the mobility model to the 37 OECD countries resulted

in an average r2 of 0.9 between the observed data and the fitted

functions (all P values < 10�32, Appendix Table S1). The inferred

model parameters enabled the comparison of several informative

features for the different countries (see Materials and Methods).

As examples, we present the fitted models for five representative

OECD countries: Germany, Israel, Italy, Spain, and Sweden

(Fig 2; for the inferred features and fitted models of all countries

see Appendix Table S2 and Appendix Fig S2). Our results demon-

strate that while the lockdown strictness varied considerably, all

countries reached some form of a lockdown by the middle of

March 2020, with Spain presenting the most intense drop (88%).

The social distancing start time in Italy occurred earlier, on

February 25 compared with March 6–9 for the abovementioned

four other countries. Nevertheless, the mobility in Italy declined

in a relatively gradual manner with respect to other examined

countries, as the drop duration lasted 20 days. The extent of

mobility reduction in Germany (59%) was relatively low

compared to other countries in which a lockdown was issued,

and a gradual return to normal routine was initiated right after

the lowest mobility level was reached. Even though a lockdown

was not regulated in Sweden, the data and model demonstrate

that social distancing indeed happened, as a drop of 29% was

observed followed by a moderate return back to routine (lock-

down release rate of 0.57).

COVID-19 mortality

We examined the effect of the extracted mobility features on the

dynamics of the mortality levels during the lockdown period. We

focused on the lockdown period to examine the effect of the

lockdown as the main measure, without the effect of other

obscuring means of prevention that were learned and adopted

after the lockdown was eased. Notably, toward the end of the

lockdown period, different countries were at different phases of

the daily mortality trends. For example, Greece and Australia

reached only few daily new death cases, while in Germany and

Italy the decline was more gradual and in Mexico and Columbia

the trends were still elevating (Appendix Fig S1). To compute the

expected mortality rate across time, we fitted a logistic function,

denoted as bDðtÞ, to the accumulated number of COVID-19 deaths

of each country across time, D(t):

bDðtÞ ¼ Ld

1þ e�kdðt�t0
d
Þ

as in Tátrai and Várallyay (preprint: 2020). The parameters Ld,

kd, and t0d are similar to those defined for the mobility model

and represent the total expected mortality at the end of the

pandemic, the mortality increase rate, and the time the cumula-

tive mortality has reached its midpoint, respectively. This enabled

to compute the COVID-19 Mortality Probability, namely, the

expected mortality normalized by the population size of each

country. The fitting of bDðtÞ to D(t) across countries resulted in

an average r2 of 0. 99 (max P value = 1e-96; Appendix Table S3;

see Fig 3 for examples of Israel and Japan and Appendix Fig S2

for all countries).
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Association between mobility and mortality data

We computed the response time of each country, s, defined as the

difference between the social distancing start time and the day in

which ten first deaths were recorded. Fig 3 demonstrates the

computation of s for Israel and Japan (s = �19.83 and 18.16 days,

respectively; see Appendix Fig S2 and Appendix Table S4 for all

countries). While a negative s was inferred for most countries, a

positive s was inferred for five countries (France, Italy, Japan,

Spain, and the United States), indicating that social distancing

started after ten COVID-19 deaths were documented (Fig 4,

Appendix Fig S2). We observed a significant correlation between s
and the log COVID-19 Mortality Probability (r2 = 0.38, P value = 1e-

4). Previous reports have discussed the abnormally low mortality

rate in Japan (Iwasaki & Grubaugh, 2020); thus, we computed the

correlation excluding Japan and obtained a substantial increase in

correlation (r2 = 0.64, P value = 1e-8). Neither the lockdown strict-

ness nor the lockdown duration was significantly correlated with log

COVID-19 Mortality Probability (Table EV1).

The high correlation between s and the log COVID-19 Mortality

Probability yielded a crucial implication, as it allowed inferring the

time required for this probability to double. We fitted a linear

regression to the data presented in Fig 4 (excluding Japan) and used

the slope of the fitted regression line to compute the estimated time

for doubling the COVID-19 Mortality Probability. Accordingly, our

results indicate that a 7.49 days delay in lockdown commencement

doubled the expected number of deaths (95% CI [6.02, 10.03]). This

result, which emerged from a data-driven model, is in accordance

with the results of an epidemiological-model based study (preprint:

Pei et al, 2020), which concluded that 54% of the deaths in the

United States could have been prevented if non-pharmaceutical

interventions had been implemented a week earlier.

We focused our analysis on 37 OECD countries, to concentrate

on a representative group of relatively reliable reports. Nevertheless,

our results sustain when including additional non-OECD countries

or when concentrating on subregions for which sufficient data exist:

the r2 between s and the log COVID-19 Mortality Probability for 58

countries was 0.37 (P value = 4e-7; Fig EV1). A significant correla-

tion was also observed when analyzing states within the United

States (r2 = 0.36; P value = 8e-6; Fig EV2). We next examined

whether our conclusions hold when the infection rate, rather than

the mortality rate, is examined. To this end, we fitted bDðtÞ to the

accumulated number of COVID-19 confirmed cases across time and

computed the log COVID-19 Infection Probability, similar to the way

the log COVID-19 mortality Probability was computed. A significant

correlation of r2 = 0.47 was also observed between s and the log

COVID-19 Infection Probability in OECD countries (P value = 4e-6;

Fig EV3, Table EV2). Notably, the infection rate is highly dependent

on the COVID-19 test policy and thus varies across countries.

Prolonged impact of the initial response on the
COVID-19-related mortality

Evidently, the presented analysis corresponds to the lockdown taken

as an initial response by most countries in the first several months

of the pandemic. Next, we examined whether the effect of the initial

response sustained over a prolonged time period. To this end, we

extracted the reported mortality rates on August 31, 2020, and

normalized them by the population size (termed, Aug-20 COVID-19

Mortality Probability). A significant correlation between s, as

A B

Figure 1. Modeling mobility data.

A Daily mobility data, M(t), (orange line, left y-axis) overlaid with daily deaths (blue line, right y-axis) for the United Kingdom during the lockdown period (January 13 to
May 10). M(t) is given as percentages relative to that recorded on January 13, which serves as the baseline. For the data of all OECD countries until August 31, see
Appendix Fig S1.

B An illustration of the mobility model and its free parameters: L—mobility difference between routine and lockdown; k—drop steepness; t0—drop midpoint; b—
mobility level during lockdown; t1—release day; a—recovery rate. t0 represents the Social distancing start time, and t″ represents the Minimal mobility time point,
corresponding to the times before and after the mobility drop, respectively.
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A B C

D E F

Figure 2. The fit of the mobility model for five representative OECD countries.

A–F Colored lines in panels (A-E) represent the mobility model bMðtÞ fitted to the mobility dataM(t) (gray lines). The optimized parameters are indicated. Panel (F) presents
the overlay of the five fitted models. The two-letter codes and the five colors correspond to the countries represented in panels (A-E) (countries abbreviations are
denoted in the titles of the panels). The x-axes represent days from January 13 to May 10, 2020. The y-axes represent the percentage change in mobility. For the
parameter values and the inferred features of all 37 countries, see Appendix Tables S1 and S2.

A B

Figure 3. Synchronizing between the mortality model and the mobility model.

A, B The dark orange plots represent the mobility model, bMðtÞ, fitted to the mobility data,M(t) (light orange; left y-axis) of (A) Israel and (B) Japan. The dashed vertical orange
line represents the social distancing start time, predicted by the mobility model. The dark blue plots represent the mortality model, bDðtÞ, fitted to the accumulated death
data, D(t) (light blue; right y-axis). The dashed vertical blue lines represent the day ten deaths were documented. s represents the time difference between the orange
and the blue vertical lines, defined as the response time (s is negative for Israel and positive for Japan). The graphs for all OECD countries are given in Appendix Fig S2.
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computed from fitting bMðtÞ to the mobility data during the lock-

down period, and the log Aug-20 COVID-19 Mortality Probability,

was maintained (r2 = 0.62, P value = 1e-8 and r2 = 0.34, P

value = 2e-4 when excluding and including Japan, respectively;

Fig EV4). Still, neither the lockdown strictness nor the lockdown

duration was significantly correlated with the log Aug-20 COVID-19

Mortality Probability (Table EV3). The significant correlation

sustained when the log Aug-20 COVID-19 Mortality Probability was

examined across the 58 countries for which data are available,

across the United States countries, and when the log Aug-20 COVID-

19 Infection Probability was examined (Appendix Figs S3–S5). Alto-

gether, these analyses imply that the initial response was critical to

curb total COVID-19-related mortality and had a long-term impact.

Discussion

In this study, we modeled the mobility dynamics across time during

the COVID-19 pandemic. Using this model, we computed explana-

tory features that characterize a lockdown, and in turn, these

features provided a quantitative measure for comparing the

lockdown dynamics and outcome across countries. We found high

correlation between the response time of a country and its mortality

rate. This finding suggests that countries that took early measures to

limit population mixing had better control on the viral-related

mortality. While these conclusions were derived for the lockdown

period, i.e., in the midst of the pandemic when the mortality rates

could roughly be predicted, accumulation of more recent data

demonstrates that the initial lockdown response time has a

prolonged impact on mortality rates. In contrast, neither the lock-

down duration nor the lockdown strictness was significantly corre-

lated with the mortality rates (Tables EV1 and EV3). These results

imply that a tight lockdown has been unnecessary and that the

immediate response was of utmost importance.

Mobility data collected from location identification of various

smartphone applications have been previously analyzed in relation

with the COVID-19 pandemic, e.g., to better understand the impor-

tance of travel restrictions on the infection rate or to construct plat-

forms for capturing movements between provinces for decision

making (Badr et al, 2020; Benzell et al, 2020; Bonaccorsi et al,

2020; Kraemer et al, 2020; Linka et al, 2020; Pepe et al, 2020;

preprint: Soures et al, 2020). All of these studies proved that

Figure 4. A semi-logarithmic scatter plot of the COVID-19 Mortality Probability and s.

The x-axis represents s, the difference between the social distancing start time and the day in which the ten first deaths were recorded for the respective country (intuitively,
the response time). The y-axis represents the COVID-19Mortality Probability in a logarithmic scale. Dot sizes are proportional to population sizes. The dashed line corresponds
to the fitted regression, excluding Japan. For raw data, see Appendix Table S4.
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collecting mobility data is of high importance for controlling the

trajectories of the pandemic. However, they focused on limited

geographical areas and none has modeled the data through time in

order to extract meaningful features of the lockdown. Official govern-

mental regulations are possible resources for extracting features

regarding the lockdown. Such features were examined for their asso-

ciation with infection rates in previous studies (Flaxman et al, 2020;

Gatto et al, 2020; preprint: Hu et al, 2020; Li et al, 2020). However,

the time governmental regulations were declared was often signifi-

cantly different from the date social distancing initiated de facto

(preprint: Kohanovski et al, 2020). For example, Italy announced

regional lockdowns in three phases. Initially, a lockdown was

applied in Lombardy and Veneto regions on February 20. This lock-

down was expanded to all of Northern Italy on March 8, and finally

to a nationwide lockdown on March 11. The mobility data show that

even though the initial lockdown was declared on Lombardy, mobil-

ity volumes across Italy kept elevating and started to decrease only a

week later. In contrast, when the lockdowns on Northern Italy and

later, on the entire country, were declared, a large drop in mobility

usage had already taken place (Appendix Fig S6).

Notably, the analysis conducted in this study corresponds to the

initial period of the COVID-19 pandemic, when a small portion of

the community was immune to the disease. The mortality model

suggested here, bDðtÞ (similar to preprint: Tátrai & Várallyay, 2020),

fits the dynamics observed during this period. With the accumulat-

ing information regarding means of prevention and treatment, as

well as with the growing proportion of immunity within the popula-

tion, the trends have changed within and across countries (Linka

et al, 2020). Therefore, we do not expect that the mortality model

would fit more recent and future mortality data. However, by

extracting the reported death tolls approximately 4 months after the

lockdown period (August 31, 2020), we validated that our conclu-

sions still hold (Fig EV4). That is, our analyses suggest that the

immediate lockdown response time to the pandemic outbreak is

highly correlated to the death tolls in the long run.

Most of the examined OECD countries complied well with the

regression analysis in this study. Small deviations could be

explained by modest variations between countries, such as the

conditions for defining a patient as a SARS-CoV-2 carrier, or by dif-

ferences in mobile usage across areas. Notably, different geographi-

cal areas also differ in numerous other attributes that may affect the

coronavirus spread and induced mortality rates, e.g., humidity,

wind speed, ethnicity, viral genotypic variation, and cultural habits

(Coccia, 2020; Jüni et al, 2020). One eminent example emerging

from our analysis is Japan, where a relatively low mortality rate

occurred even though mobility reduction took place relatively late.

The low mortality rate in Japan has previously been discussed

(Iwasaki & Grubaugh, 2020), and it should be beneficial to better

understand the different trajectory of the pandemic in Japan, with

respect to the Japanese governmental regulations and customs as a

possible alternative to a strict lockdown. Combining these features

with the proposed mobility model may increase its overall accuracy.

The results of our analysis show that a delay of 7.49 days in initi-

ating social distancing would lead to doubling the total expected

number of deaths. This finding resembles previous results regarding

the pandemic doubling time, which is described as the time that

passes until the number of confirmed cases at a given time point is

doubled (Kraemer et al, 2020; Li et al, 2020; Wu et al, 2020). The

following theoretical scenario may explain the similarity between

the two results: if a lockdown is initiated and assuming that it almost

completely abolishes new infections, the number of infections

remains unchanged and so is the expected mortality. If a lockdown

is not initiated, we expect that the number of infections would be

doubled after a time period that is equal to the doubling time.

Assuming a fixed percentage of death cases, we also expect a

doubling of the total mortality. Therefore, under these two assump-

tions, initiating a lockdown as early as a period equal to the doubling

time would result in half as many death incidents. Other studies esti-

mated the doubling time to be lower than 4 days (Lurie et al, 2020;

Muniz-Rodriguez et al, 2020; Silverman et al, 2020). Notably, all of

the aforementioned studies were conducted on infection or mortality

data collected during different time phases between December 2019

and the beginning of March 2020, and it is possible that the effective

doubling time diverged across countries and through time.

The results of our analysis show that social distancing is a major

factor in controlling COVID-19 spread. However, it also shows that

a strict lockdown policy is not required. Therefore, to avoid major

infection outbreaks, we suggest undertaking a moderate form of a

lockdown that can be tolerated by the society for longer time peri-

ods, with minimal socioeconomic damage.

Materials and Methods

Mobility data

Mobility data, M(t), with one data point per day, t, were down-

loaded from Apple repository on August 31, 2020 (Data ref: Apple,

2020). The Apple dataset reports the daily volume of directions

requested from Apple maps on mobile cellphones for driving, walk-

ing, or using transit (public transportation) in a specified region.

The amount of requests per day is reported as the percentage with

respect to a benchmark (100%) set on January 13, 2020. For extract-

ing features that characterize the lockdown, we focused our analysis

on the lockdown period (January 13 to May 10, corresponding to

119 data points). Due to the high similarity between “walking” and

“driving” data during the lockdown period (average correlation

across countries r2 = 0.91, SD = 0.07, max P value = 10�129) and

since the “transit” data are incomplete, all analyses were applied

using the “driving” data only.

To fit bMðtÞ to the mobility data M(t) during the lockdown period

and to infer the values of the parameters for every country, we used

the Levenberg–Marquardt optimization algorithm from the SciPy

module (Levenberg, 1944; Marquardt, 1963; Virtanen et al, 2020).

According to the parameters inferred from bMðtÞ, we computed seven

features to characterize the mobility trend in a country, as follows:

(i) t0, Social distancing start time; and (ii) t″, Minimal mobility time

point, corresponding to the times before and after the mobility drop.

These points are defined as time 95% and 5% of the drop, parame-

terized by L, and t0 is the middle time point between them (see

Fig 1A). Thus, bMðt0Þ ¼ 0:95Lþ b and bMðt00Þ ¼ 0:05Lþ b Then,

bMðt0Þ ¼ L

1þ e�kðt�t0Þ þ b ¼ 0:95Lþ b

�kðt0 � t0Þ ¼ ln
0:05

0:95
¼ � ln 19
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t0 ¼ t0 þ ln 19

k

Similarly, t00 ¼ t0 þ ln 19
k (note that k is negative); (iii) Drop duration,

the time difference t00�t0 ¼ 2 ln 19
k ; (iv) Lockdown release day t1; (v)

Lockdown strictness L

LþbM ðt1Þ
� 100, such that bMðt1Þ is the function

value at the release day; (vi) Lockdown duration t1–t″; (vii) Lock-

down release rate a (the slope of the linear function).

Mortality data

The daily cumulative numbers of COVID-19-related mortalities, D(t),

were downloaded from the COVID-19 Data Repository by the Center

for Systems Science and Engineering (CSSE) at Johns Hopkins

University (Dong et al, 2020). The data were available for the period

of January 22 to August 31, 2020 (a total of 223 data points). The

cumulative number of deaths in Australia, Canada, and the United

States were aggregated across the regions reported in the dataset

within each of these countries. To compute the expected mortality,

we fitted a logistic function bDðtÞ ¼ Ld

1þe
�kd ðt�t0

d
Þ to D(t) limited to the

lockdown period (until May 10, corresponding to 110 data points),

as in Tátrai and Várallyay (preprint: 2020), using the Levenberg–

Marquardt optimization algorithm from the SciPy module (Leven-

berg, 1944; Marquardt, 1963; Virtanen et al, 2020). The parameters

Ld, kd, and t0d are similar to those defined for the mobility model and

represent the total expected mortality at the end of the pandemic (as

a prospective relative to the lockdown period), mortality increase

rate, and the time the cumulative mortality has reached its midpoint,

respectively. To infer the COVID-19 Mortality Probability, the

expected mortality (Ld) was normalized by the population size for

each country. Data of population size were obtained from the World

Population Review website (Data ref: World Population Review,

2020). Of note, our goal in this work was not to predict mortality

rates, but rather, to find correlates with large changes in mortality

patterns across countries. Since we correlate with the logarithm of

the mortality rates, we expect that small deviations in mortality esti-

mates will not affect our conclusions.

For a similar analysis of the infections probability (Fig EV3,

Table EV2), the reported daily confirmed cases were downloaded

from the COVID-19 Data Repository by the Center for Systems

Science and Engineering (CSSE) at Johns Hopkins University (Dong

et al, 2020) and were fitted to bDðtÞ in a similar procedure.

For the analysis of the prolonged impact of the initial response

on the COVID-19-related mortality, the raw mortality and infection

rates reported on August 31, 2020, were normalized by the popula-

tion size for each country.

Association between mortality and response time

We define a response time, s, as the difference between two time

points: the social distancing start time (as inferred from bMðtÞ) and

the day in which ten first COVID-19-related deaths were recorded

(according to D(t), see Fig 3). The ten deaths threshold was set to

avoid incidental fluctuations that do not reflect the mortality trend of

a certain country (see Fig EV5 for the results using different thresh-

olds). We chose an absolute threshold rather than a relative thresh-

old (i.e., number of death incidents normalized to population size)

because the very initial dynamics of the disease are not expected to

be strongly coupled with the population size. Furthermore, setting a

relative threshold of one death per 1 million (or more) citizens is

problematic for countries such as Iceland because its population size

is smaller than 106. However, setting a threshold of one death per

105 citizens is problematic for countries with relatively low number

of deaths because such countries approached the starting threshold

relatively late (i.e., the mortality rate in Australia was 3 ×10�5 death

cases per population size on August 31, 2020).

We fitted a linear regression model to these data (Fig 4; exclud-

ing Japan), i.e., between s and the log COVID-19 Mortality Probabil-

ity (denoted as f(s)). This fitting resulted in the inferred model:

log10f(s) = 0.04s–3.52 (slope 95% CI [0.03, 0.05]). Let s0 be an arbi-

trary response time point and let s″ be the time with twice the

number of deaths, i.e., f(s″) = 2f(s0). Therefore,

fðs00Þ
fðs0Þ ¼ 100:04t

00�3:52

100:04s
0�3:52

¼ 100:04ðs
00�s0 Þ ¼ 2

s00 � s0 ¼ log102

0:04
¼ 7:49

Resulting in a doubling time of 7.49 days with 95% CI [6.02, 10.03].

Data availability

The code developed in this study is available at: https://github.

com/shiranab/COVID-19-Mobility-analysis.

Expanded View for this article is available online.

The paper explained

Problem
In order to curb the spread of the COVID-19 pandemic, governments
around the world have enforced mobility restrictions on their citizens.
These mobility restrictions included, for example, closure of non-
essential businesses and prevention of public gatherings and led to
serious socioeconomic consequences. We wished to understand the
impact of mobility restriction on mortality rate, by comparing mobility
and mortality data across countries around the world.

Results
We analyzed mobility volume obtained from cellular usage of Apple
users from many countries around the world to quantify country-
specific lockdown characteristics, such as, social distancing start time,
lockdown timing, lockdown strictness, lockdown duration, and lock-
down release rate. We crossed the different characteristics with the
observed mortality rate of each country. Our analysis suggests that
the time at which social distancing was initiated had a critical and
long-term effect: a delay of 7.49 days in lockdown commencement is
associated with a doubling of the expected number of deaths. This is
in contrast to other parameters such as the lockdown strictness that
had negligible impact on mortality.

Impact
Countries that enforced a very strict lockdown could have obtained
similar mortality figures with less stringent mobility restrictions as
long as social distancing is initiated as early as possible after the first
incidents are recorded. As a direct consequence, the socioeconomic
damage of a strict lockdown could have been less severe.
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