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Evaluation of the Ability of AlphaFold to Predict the
Three-Dimensional Structures of Antibodies and Epitopes

Ksenia Polonsky,*" Tal Pupko,” and Natalia T. Freund*

Being able to accurately predict the three-dimensional structure of an Ab can facilitate Ab characterization and epitope
prediction, with important diagnostic and clinical implications. In this study, we evaluated the ability of AlphaFold to predict the
structures of 222 recently published, high-resolution Fab H and L chain structures of Abs from different species directed against
different Ags. We show that although the overall Ab prediction quality is in line with the results of CASP14, regions such as the
complementarity-determining regions (CDRs) of the H chain, which are prone to higher variation, are predicted less accurately.
Moreover, we discovered that AlphaFold mispredicts the bending angles between the variable and constant domains. To evaluate
the ability of AlphaFold to model Ab—Ag interactions based only on sequence, we used AlphaFold-Multimer in combination with
ZDOCK to predict the structures of 26 known Ab—Ag complexes. ZDOCK, which was applied on bound components of both the
Ab and the Ag, succeeded in assembling 11 complexes, whereas AlphaFold succeeded in predicting only 2 of 26 models, with
significant deviations in the docking contacts predicted in the rest of the molecules. Within the 11 complexes that were successfully
predicted by ZDOCK, 9 involved short-peptide Ags (18-mer or less), whereas only 2 were complexes of Ab with a full-length
protein. Docking of modeled unbound Ab and Ag was unsuccessful. In summary, our study provides important information about

the abilities and limitations of using AlphaFold to predict Ab—Ag interactions and suggests areas for possible improvement. 7he

Journal of Immunology, 2023, 211: 1578—-1588.

ntibodies are the basis of all approved vaccines and are
major correlates of protection in all vertebrates (1-4).
Physiologically, Abs are produced by B cells following
immunization or infection (5). Importantly, these B cells have
the ability to improve and affinity mature their presented Abs
while also differentiating into Ab-secreting plasma cells and a
specific subset of memory B cells. Subsequently, memory B
cells and the Abs they produce are largely responsible for prevent-
ing reinfection and reducing the severity of the disease during
secondary encounters (6). Their exquisite specificity and affinity
make Abs an appealing class of drugs that are widely used in the
clinic for the treatment of cancer (7); autoimmune disorders (8);
and, more recently, infectious diseases (5). Over the last two deca-
des, innovative engineering and single-cell and high-throughput
cloning techniques have significantly advanced the ability to gener-
ate new Abs against various specific targets. Technical advances
and optimized expression protocols now enable rapid generation of
a large number of Abs, so that sometimes the Abs can be tested
for their therapeutic activity in animal models within 1-2 wk of col-
lection of the original specimen (9). Such Abs also can be used for
diagnosis and as guides for vaccine design (10, 11, 12, 13).
Despite a deserved sense of achievement and accomplishment,
one significant bottleneck remains within “the Ab pipeline” of every

preclinical and clinical Ab, namely deciphering the mechanism
of action. This usually involves investigation of the Ab structure
and identification of the Ab binding site (i.e., the precise epitope
on the target) (12). Precise and detailed information regarding
the epitope is crucial for understanding the Ab’s functions and
for predicting possible escape mechanisms (14—16). If the three-
dimensional (3D) structure of the Ab—Ag complex is not avail-
able, there are a variety of computational tools that can be used
to dock the 3D structure of the Ab with the 3D structure of Ag.
Such docking algorithms have been used with various degrees
of success (17, 18) but generally require separately solved crys-
tal structures of the Ab and the Ag. Unfortunately, although the
Ag structure is usually known and resolved, the atomic coordinates
of the Abs generated against it are often lacking, and their solution
requires weeks and sometimes months. Thus, despite the advances
in Ab isolation and sequencing and the new computational and
structural epitope-mapping methods, delineating the structure of
both the Ab and its epitope is still a major challenge (12, 19-21).
Being able to model the structure of a new Ab based solely on
the primary amino acid sequence will provide a better under-
standing of Ab function and Ab—Ag interactions and will
greatly contribute to the use of Abs in research and clinical
applications (22-24).
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Predicting protein structure based solely on the coding of primary
amino acid sequences is often referred to as “the protein folding
problem.” This refers to the challenge of addressing protein com-
plexity and the distinct quaternary structure with a significant degree
of flexibility in some areas and rigidity in others (16, 25). Critical
Assessment of Protein Structure Prediction (CASP) is a biennial
community experiment designed to determine the state of the art
in modeling protein structure (26). Participants are provided with
the amino acid sequences of target proteins and build models of
the corresponding 3D structures. DeepMind's AlphaFold artificial
intelligence system (27) has demonstrated remarkable results in
CASP14 (26), achieving a median global distance test (GDT) score
of 0.92, where the GDT score values range from 0 to a perfect score
of 1.0. This was a significant leap compared with the previous year,
when the score was 0.59 (28-30). However, although the analysis
included 84 experimental models and 152 different protein prediction
targets related to these models, it did not specifically focus on Ab
evaluation and included only 2 prediction targets related to a single
Ab model (Protein Data Bank [PDB] identifier 6VN1) (31). There-
fore, although AlphaFold is an outstanding tool for predicting protein
folding, its accuracy in modeling Ab structures remains unknown.

Abs share common conserved areas whose structure is easy to
predict by homology. In contrast, predicting the structure of the Ab
variable regions is substantially more challenging because their
generation via a genetic recombination between randomly selected
genome-encoded V, D, and J regions introduces a high degree of
diversity. In addition, the sequence and subsequently the structural
diversity are further increased by the insertion of n-p nucleotides
and later random mutations into the coding sequence during the
affinity maturation that follows Ag exposure (13, 14, 32, 33). This
variability greatly reduces the availability of closely related exam-
ples from which structure prediction algorithms can learn, and thus
these regions are predicted with lower accuracy, leading to a poor
overall prediction accuracy for Ab structures (34, 35).

This study was designed to evaluate the prediction accuracy of
AlphaFold as related to Abs. Specifically, we asked the following
questions: (1) What is the average accuracy of AlphaFold in pre-
dicting atomic structures from primary amino acid Ab sequences?
(2) Which Ab chains are predicted with better or worse accuracy?
(3) What structural elements within the Ab chain are accurately
inferred, and which regions are prone to mistakes? (4) What types
of mistakes can be expected when AlphaFold is used to predict the
3D structures of Abs? (5) How well can AlphaFold predict specific
epitopes on the surface of the corresponding targets, and how does
the level of accuracy compare with that of ZDOCK, which is an
alternative prediction algorithm based on docking (36)?

Materials and Methods
Data

AlphaFold prediction quality was evaluated on Abs with crystal structures
available in the PDB (37). A nonredundant set of Ab structures was
extracted from the SAbDab Abs database (38), with a maximum sequence
similarity of 80% and a resolution cutoff of 3 A. Only structures that were
released after the AlphaFold training cutoff date of April 30, 2018, were con-
sidered. Importantly, we focused on the Fab regions of the Abs because
these regions confer most of the specificity of an Ab to the corresponding
Ag. H and L chains were analyzed separately, and the dataset included
different species (Table I). In total, we analyzed 222 Fab chains, 95 full
Fab structures, and 26 Ab—Ag complexes. Full data used in the analysis
can be found at https://github.com/XseniaP/AF_evaluation/blob/master/
Supplementary_Tables.xIsx.

AlphaFold

The full version of AlphaFold version 2.2.0 (https:/github.com/google-
deepmind/alphafold) without “templates” (no homologous structure search)
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was used for structure predictions (39). AlphaFold also uses the BFD data-
base, which is currently one of the largest publicly available sets of protein
sequences (26, 40, 41), with the original version of this database including
more than 2.5 billion protein sequences clustered in families. DeepMind has
already added many of the molecules predicted by the complete AlphaFold
system to the AlphaFold Protein Structure Database (42), but not all struc-
tures of interest are present in the database as a whole, and we therefore
decided to run AlphaFold version 2.2.0 locally to predict all possible
structures.

Source code and program

We developed a Python script (the Script) (https://github.com/XseniaP/
AF_evaluation) to perform the calculations and combine all accuracy eval-
uation steps into a single pipeline (Fig. 1). The script is used to call the
externally developed open-source products for alignment, superimposition,
metrics calculation, and visualization and then parses the results and moves
the relevant information to the next step. In addition, the script provides
on-demand calculations of the key metrics per domain and color coding,
which are not covered by the externally developed packages.

Identifying structural subdomains

The variable fragment of the Fab domain of the Ab is formed by the H and
L chains and is responsible for the specificity of the Ab for its Ag. As the
first step and to identify problem areas, the quality of tertiary structure pre-
dictions for 222 Fab structures was analyzed, with each chain considered
separately. Next, we assessed the quality of the prediction for the structural
domains of the Fab (i.e., variable versus constant domains). Last, we assessed
the structural subdomains within each domain (i.e., the three hypervariable
loops), known as CDRs of the H and L chains (CDRH1, CDRH2, CDRH3,
CDRL1, CDRL2, and CDRL3), which form the specific Ag recognition site
on the surface of the Ab (43), as well as the less variable framework regions
(FRs).

Kabat (44) and Chothia (45, 46) are two variable domain numbering
schemes that are often used to define the location of the variable fragment
regions in the sequence. Two common programs for processing immune rep-
ertoire sequencing data are IMGT (47) and NCBI IgBLAST (48), where the
latter has an offline version, and Python library wrappers exist for data proc-
essing. In this study, we used the IMGT reference directory (49, 50) for Igs
as a basis for generating a germline database for each species. The databases
were also used as a prerequisite for the PyIR wrapper (51) to incorporate the
IgBLAST-based mechanism into our Python script and identify the chain
type as well as the CDR1/2/3, FR1/2/3 regions of the variable domain. If the
location of the end of the CDR3 region was missing in the PyIR output, the
result was verified and completed using known CDR3 motifs (43, 52-54)
for each of the corresponding chain types, as presented in Supplemental
Table III (the table can be found at https:/github.com/XseniaP/AF_
evaluation/blob/master/Supplementary_Tables.xIsx in full data file). For
example, the C terminal of an H chain frequently juxtaposes a Trp-Gly-
XXX-Gly motif, and the TGGGG motif often appears as an end site of the
CDR3 domain in the H chain. The motifs for each of the chain types were
only used to verify and complement the CDR3 region in the corresponding
chains when this information was missing in the output of PyIR.

Superimposing the molecules

The predicted and experimentally determined 3D structures (the native struc-
ture) were aligned by TM-align (55), which employs the coordinates of the
backbone carbon o (C,) of a given protein structure for superimposition and
distance calculations. TM-align was run in two different modes. First, metrics
were calculated using sequence-independent alignment; that is, the superimpo-
sition was based on structural similarity. Such an analysis should produce the
closest superimposition with the lowest distance between two molecules but
may not align the same domains of the native and predicted molecules and
thereby prevents the analysis of the prediction quality by domain or identi-
fication of the exact location at which the prediction accuracy deteriorates.
We therefore repeated the calculations with sequence-dependent alignment,
where the residue index correspondence between two structures is included
as a constraint. MM-align (56), developed for sequence-independent align-
ment of complex protein structures, was used to compare predicted and
native multimer structures, such as an entire Fab fragment and Ab-Ag
structures. We also used the ChimeraX MatchMaker (57) tool, which is part
of University of California, San Francisco Chimera (58). This algorithm allows
us to superimpose complex protein structures by first creating a pairwise
sequence alignment between the selected chains and then fitting the aligned
residue pairs and calculating the distance between them.
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Accuracy evaluation

The prediction accuracy was calculated from parameters selected from the
official metrics used by CASP and Ab modeling assessment (39), where d;
is defined as the distance between the i”* pair of aligned residues in the met-
rics described below.

1. Root mean square deviation (RMSD) values of the subset of C,
atoms that correspond to the residues from the target crystal struc-
ture after sequence-independent structural superimposition of the
two atoms. The TM-align sequence-independent mode was applied;
that is, the superimposition was generated on the basis of minimum
distance without any constraints on the sequence alignment. RMSD
values were obtained as part of the standard TM-align output based
on the following formula:

Laii 2
i219;

RMSD =
Lali

where L; represents the number of aligned residues.
MM-align was used to calculate the RMSD values based on the differ-
ences between native and predicted complex structures.

2. RMS_CA: RMSD for the entire target structure was calculated on C,
atoms based on sequence-dependent structural superimposition, which
assumes residue index correspondence between the molecules. The
TM-align sequence-dependent model was applied, and the metrics
were calculated by our script based on the following formula:

n 2
RMS_CA = 4 /i
n

where 7 represents the total number of residues in the molecule.

ChimeraX MatchMaker was used to calculate RMS_CA values based on
the differences between native and predicted complex structures while creat-
ing a pairwise sequence alignment.

3. GDT quantifies protein dissimilarity. Notably, GDT is less sensitive to
outlier regions that might result from the poor prediction of a specific
region (e.g., a CDR loop), whereas the rest of the model is reasonably
accurate (59). The two GDT measures are the GDT total score (GDTrs)
and the GDT high accuracy score (GDTy,). These measures were calcu-
lated on two structurally superimposed molecules in both sequence-
dependent and sequence-independent mode. The GDT g was calculated
according to the following formula:

GDTpy + GDTpy + GDTps + GDTpg
4

GDTTS =

GDTya was calculated according to the following formula:

GDTpys + GDTp, + GDTp, + GDT,
GDTyy = PO.5 P14 P2 P4

where GDTp, denotes the percentage of residues with a distance equal to or
less than n A. We have implemented these computations with our Python
program. The formulas are those used by CASP to evaluate prediction accu-
racy (25, 59). The models submitted to the CASP competition are ranked on
the basis of GDTrg score, which is used as the major assessment criterion.
GDTrs provides an estimate of the percentage of residues predicted under
specific cutoff distances, and GD Ty, provides an estimate of the percentage
of residues predicted with high accuracy.

4. TM-score: The template modeling (TM) score is a metric for assessing
the topologic similarity between two protein structures. We used the
TM-score, which is provided as a standard output of the TM-align, and
is defined as (55):

1 Lai 1
TM — score = Max|— Y.

Ly i= 12
Ni=1 1+ ( d; )
do
such that Ly is the length of the native protein that other structures are
aligned to; L,; is the number of aligned residues; dy = 1.24+vLy — 15—1.8
is a scale to normalize the match difference and to rule out protein size
dependence. This is based on an estimation of the average structure distance
between aligned residues of the random related structures of the length L.
TM-score value ranges from 0 to 1, which indicates a perfect match
between two structures. Scores below 0.2 indicate randomly chosen unrelated
proteins.
AlphaFold-Multimer (60, 61) was used to predict structures of H and L
chains bound together. Using this analysis, we could better evaluate the pre-
diction accuracy of AlphaFold, with the following metrics:

5. Elbow angle is a measure of the orientation between the variable and
the constant domains in the Fab region. The elbow angle has been
shown to increase Fab flexibility and enhance the ability of the Ab to
recognize different Ags (62). Ag binding causes an apparent shift of
the angle, which reflects the conformational changes that occur (63).
The elbow angle also plays an essential role in Ab assembly (24, 64).
Hence, the elbow angle is critical for Ab structure functionality and an
essential parameter in modeling and Ab engineering. The Fab elbow
angle was computed using RBOW (62). The difference in elbow angle
between the predicted and native structures was used to quantify the
accuracy.

6.  VH-VL orientation in the Fab region of Abs was measured by the
ABangle computational tool using five angles (HL, HC1, LC1, HC2,
and LC2) and a distance (dc) (65).

7. DockQ score is a quality measure for protein—protein docking models
derived by combining F,,,, LRMS, and iRMS to a single score in the
range [0, 1]. DockQ values can be interpreted as follows: 0.00 =
DockQ < 0.23 corresponds to “incorrect,” 0.23 = DockQ < 0.49 to
“acceptable quality,” 0.49 = DockQ < 0.80 to “medium quality,” and
DockQ = 0.80 to a “high quality” docking model (66).

Analyzing VDJ mutations

We obtained the germline information for each of the Ab chains from the
PyIR wrapper (51) output and counted the number of amino acid substitu-
tions in the VDJ region compared with the germline. This number was used
to define four levels: low (under 5 aa substitutions per chain), medium
(under 10), high (under 20), and extensive (20 or more).

Visualizing and color coding results

A PyMol version 2.5.2 (67) molecular visualization system script was written
to color code the chains. ChimeraX (58) was used to visualize superimposed
multimer structures.

Docking

The Ab—Ag complex structure can be predicted by AlphaFold-Multimer. It
can also be predicted by molecular docking, which takes known or predicted
3D structures of an Ab and its corresponding Ag as input and returns a single
3D structure of the Ab—Ag complex. Docking was performed using the
ZDOCK 3.0.2 web server (36).

Results

Overall prediction accuracy

All evaluation steps were developed into single script (see Materials
and Methods) and combined into a single pipeline (Fig. 1). Alpha-
Fold predictions of the published structures of 222 Ab chains (sum-
merized in Table I) generated scores that were generally similar to
the official CASP14 results for protein prediction (27-29, 68): The
mean and median RMSD scores were 2.38 A and 2.13 A, respec-
tively with 43.69% of the chains scoring lower than 2A and 70.27%
of the sample scoring lower than 3 A (Table II). The average GDTyg
and GDTyy, values for all the predictions in our set were 0.72 and
0.50, respectively, where a GDTrs of 0.72 (out of 1.0) reflects a
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file of the structure predicted by AlphaFold version 2.2.0, which corresponds to the input sequence. IMGT reference directory data are predownloaded, and a
germline database is created accordingly. We then use TM-align and MM-align to superimpose the native and predicted structures, which provides overall
RMSD and TM score measures. We also run PyIR wrapper of IgBLAST to detect regions in the sequence corresponding to the CDRs/FRs of the antibody.
Thereafter, additional metrics per region are calculated to identify the regions with the lowest prediction quality. Elbow angle is calculated using RBOW soft-
ware, and VH-VL orientation is obtained using the ABangle computational tool. Docking model quality was evaluated by using DockQ software. We also
produce PyMol scripts to color code the molecule residues based on their prediction quality reflected by RMSD, and we used ChimeraX to compare the pre-

dicted and native multimer structures.

good approximation to the native 3D structures. The GDTy, score,
which penalizes larger deviations from the native structure, suggests
that, on average, 50% of the positions within a Fab can be predicted
with very high accuracy. The average TM score for all individual H
and L chains in our analysis was 0.83, which represents not only the
same fold but also actually a very close match between the predicted
and native structures.

Prediction accuracy for difference chain types and for different
species

The mean RMSD values were higher in the H chains than in the L
chain: 2.68A compared with 2.09 A, respectively (two-tailed ¢ test
p value 1.98 X 107>; Table III). The highest observed values exclud-
ing outliers according to the interquartile range method were 4.96 A
for H chains versus 4.81 A for L chains, whereas the lowest values
excluding outliers according to the interquartile range method
were 1.05 A for H chains versus 0.72 A for L chains (Fig. 2A).
N L chains had a higher average RMSD value (two-tailed p
value 2.12 x 107) than k L chains (2.74 versus 1.79 A respec-
tively; Table III, Fig. 2B). Similar results of 0.72 and 0.77 for A

Table I. Distribution of the 222 analyzed Fab chains
Chains Distribution
Species Human = 140, others = 82 (including Macaca mulatta = 8,
mouse = 61, rabbit = 11, rat = 2)
Chain type L chain = 112 (k = 77, N = 35), H chain = 110
Year published 2020-2023
Resolution 13-3A

High-resolution Ig Fab fragment chains were chosen for the analysis to ensure
that the distance between the predicted model and the reference molecule is not
affected by resolution. All the structures analyzed were published after AlphaFold
version 2.2.0 training cutoff date of April 30, 2018.

and k L chains, respectively, were obtained when the GDTrg
score was used to quantify prediction accuracy (Supplemental
Fig. 1). Comparing Fab chains from different species revealed a
slight, albeit statistically significant, increase in RMSD in
Macaca mulatta, with a mean RMSD value of 3.43A compared
with other species for which the mean RMSD was in the range
1.61-2.52 A (ANOVA one-way test p value 4.13 x 107%;
Supplemental Fig. 2). The lower predictability of M. mulatta
Fabs may stem from the underrepresentation of M. mulatta struc-
tures in the training set of the AlphaFold version 2.2.0 model as
well as the low representation in our set.

The number of somatic hypermutations within the VDJ region has
little effect on the AlphaFold prediction accuracy

As the next step, we tested the hypothesis that prediction accuracy is
affected by the number of VDJ mutations. To this end, we grouped
the analyzed Ab chains by the number of VDJ amino acid substitu-
tions from the germline into low (<5), medium (between 5 and 9),
high (between 10 and 19), and extensive (20 or more). The resultant
mean RMSD values for each group were 2.00, 2.47, 2.42, and 2.56 A,
respectively. Although the differences among the groups are statis-
tically insignificant ( p > 0.05 by ANOVA), the value for the low
group is significantly lower than that for all the others (p < 0.05

Table II.  The 222 predicted chains’ distribution by RMSD value
against corresponding original molecules

RMSD Value Number of Chains/Predictions % of Total
<2 A 97 43.69
<3 A 156 70.27
<4 A 205 92.34
Total 222 100
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Table III. Predicted chains’ distribution by RMSD value against corresponding native molecules according to chain type and L chain class

H Chains L Chains L k Chains L X Chains
RMSD Number of Predictions % of Total ~Number of Predictions % of Total Number of Predictions % of Total ~Number of Predictions % of Total
<2 A 36 32.73 61 54.46 52 67.53 9 25.71
<3 65 59.09 91 81.25 68 88.31 23 65.71
<4 A 96 82.27 109 97.32 77 100 32 91.43
Total 110 100 112 100 77 100 35 100
Mean value 2.68 2.09 1.79 2.74

by one-tailed 7 test), even though the difference is represented by a degrees) demonstrated high prediction quality, with a mean RMS_
small value (below 0.54). CA of 1.45 A (Fig. 4C). The analysis of VH-VL orientation angles
did not detect significant differences between the native and pre-
dicted structures. In addition, 10 selected variable domains (Fv
The chains with a lower prediction quality and higher RMSD were regions) were all predicted with a very high accuracy and average
examined more closely. As a case study, we selected the H chain RMSD of 0.47 A and 1.13 A between pruned atom pairs and
fragment from the human anti-HIV-1 neutralizing Ab BG24 Fab  4cross all pairs, respectively (Supplemental Table I). This analysis
(PDB identifier 7UCE) (69). Discrete AlphaFold predictions of the H reconfirmed our conclusions about high prediction accuracy of
chain constant and variable domains were highly accurate: RMS_CA  vH-VL orientation angles. Overall, the results demonstrate that the
of 0.48 A and 0.42 A for individually predicted constant and variable difficulty in predicting the angle between the variable and constant

domains, respectively (Fig. 3A, 3B). However, a consideration of the domains in the Fab region is a general issue with AlphaFold.
entire H chain resulted in an RMS_CA value of 4.93 A, indicating a

mediocre prediction (Fig. 3C). Superimposing the individual domain
predictions onto the prediction of the H chain (Fig. 3D) suggests that Our analysis of the accuracy of predicting the various domains
the lack of fit is not caused by individual domain predictions, but within an Ab indicate that CDR3 in the H chain and CDRI and
rather reflects a difficulty in predicting the angle between the variable CDR3 in the L chain are predicted with lower accuracy: H chain
and constant domains within the chain. This caused large deviations mean RMSD values for CDR1/2/3 and FR1/2/3 were 2.50A, 2.24A,
in one of the domains, leading to the high RMS_CA value. 3.60A, 1.99A, 1.81A, and 1.74A, respectively (Fig. 5A), whereas
L and H chains exist as a heteromeric complex, and their correct the L chain mean RMSD values for CDR1/2/3 and FR1/2/3
assembly and interaction are critical for molecular function. It is were 2.40A, 1.58A, 2.43A, 1.94A, 1.72A, and 1.71A, respectively
therefore important to predict the entire Fab accurately. AlphaFold- (Fig. 5B). When considering the secondary structures within the Fabs,
Multimer predictions for 95 entire Fabs produced RMS_CA scores  helices were more difficult to predict than sheets in Ab H chains: the
ranging from 0.67 A to 4.65 A, with a median value of 2.14 A. Of  mean RMSD values for H chain helices and sheets were 3.04 A and
these Fabs, 48.42% had scores less than or equal to 2 A (Table IV). 2.18 A, respectively, with a two-tailed ¢ test p value of 2.3 x 1076
The prediction accuracy was not strongly correlated with the elbow (Fig. 5C). The corresponding mean RMSD values in the L chain
angle itself (Fig. 4A). However, there was a significant correlation  were 1.87 A and 1.76 A, respectively, with no statistically significant
of R? = 0.78 between the total RMS_CA of the Fabs and the abso- difference (Fig. 5D). These results were reconfirmed when the analy-
lute value of the elbow angle deviations between the predicted and sis was repeated by comparing sequence-dependent structural super-
native structures (Fig. 4B). This suggests that the errors in angle  position: the RMS_CA value for CDR3 in H chains was 4.2A with
estimation are responsible for the poor prediction of the Fab struc- other regions ranging between 1.53 and 2.35 A (Fig. 5E), and the
ture. Furthermore, our analyses indicate that AlphaFold tends to RMS_CA values for CDR1and CDR3 in L chains were 2.80 A and
overestimate the elbow angle, with average values of 161.0 and 2.79 A, respectively, with other regions ranging between 1.80 A and
172.6 degrees, respectively, for the native and predicted Fabs 2.12 A (Fig. 5F).
(two-tailed ¢ test p value 0.0035). Moreover, the range of predicted
elbow angles was more restricted, with a SDs of 30.83 and 22.32
degrees for the elbow angles of native and predicted structures,
respectively. Fabs for which the predicted elbow angle deviated As the next step, we wished to map the Ab binding site by predicting
insignificantly from the native elbow angle (difference under 20 26 different Ab—Ag complexes. In 11 of 26 complexes, the Ag was

Difficulty in predicting the correct angles within the Ab

The accuracy of predicting different structural elements within Fabs

Docking outperforms AlphaFold-Multimer in predicting accurate
Ab-Ag complexes

FIGURE 2. Prediction quality evalua- A B

tion by chain type and L chain class.

Boxplot of RMSD (A) data presenting 6.00 6.00

the distance between superimposed native 4.96 481 481

and predicted molecules for (A) L in sl —- >0 T
orange, (n = 112) and H in blue (n = ‘ 3.75

110) chains and (B) k in purple (n = 77) < e . —[ ‘ < e 335
and \ in magenta (n = ?5) chains. The g - ’ - | i g 60 —

bottom and the top whiskers represent & 2,60 x o = 53 272
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A RMS_CA =0.48A

FIGURE 3. Structural analysis of the Fab
fragment from the anti-HIV-1 neutralizing Ab
BG24 H chain (PDB identifier 7UCE) superim-
posed on the AlphaFold prediction according to
the sequence-dependent alignment. Cartoon dia-
grams of the H chain of the native 3D structure
(in yellow) superimposed onto the same domain
individually predicted by AlphaFold version
2.2.0 (in blue). (A) Constant domain. (B) Vari-
able domain. (C) The complete H chain (variable
and constant domains) presented as a cartoon
diagram. (D) Cartoon diagrams of the variable
and constant domains predicted separately (in
light gray) but superimposed over the complete
predicted H chain 3D structure (in blue).

a peptide 11-18 residues long. We tested four alternative options:
(1) We assumed that the structures of both the Ab and the Ag are
known and used the ZDOCK docking program to predict the Ab—Ag
complex from the individual bound-extracted components; (2) we
predicted the structure of the Ab alone using AlphaFold-Multimer
first, and then we predicted the docking, using ZDOCK, with the
atomic coordinates of the native structure of the Ag; (3) we predicted
the structure of the Ag and the Ab using AlphaFold and AlphaFold-
Multimer, respectively, and then docked them using ZDOCK; and
(4) we skipped the docking altogether and asked AlphaFold-Multi-
mer to predict the entire Ab—Ag complex from the protein sequences
of the L chain, the H chain, and the Ag. We define docking predic-
tion as medium quality if the DockQ score is in the range [0.49, 0.8]
and as high quality if the DockQ score is equal to or greater than
0.80. The results indicated that when the native structures of all com-
ponents were used as input for ZDOCK (alternative 1), 11 of the 26
complexes were docked with medium or high quality (DockQ score
=0.49). Interestingly, in 9 of these 11 complexes, the Ag was a short
peptide, whereas only 2 complexes that were predicted with medium
or high quality were those of an Ab bound to a full-length protein.
Notably, docking was based on the atomic coordinates of the individual
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Ab and Ag that were extracted from the Ab—Ag bound structure. This
would not be the “regular” scenario, because, in most of the cases,
one would predict an Ab—Ag complex by docking the atomic coor-
dinates of unbound Ab and Ag. In contrast, 2 of the 26 complexes
predicted solely from the protein sequences by AlphaFold-Multimer
(alternative 4) were of medium to high quality, with a DockQ score
=0.49 (Supplemental Table II). Significantly, none of the com-
plexes was predicted with high accuracy when the predicted struc-
tures of both the Ab and the Ag (alternative 3) or the predicted
structure of Ab and the native Ag structure (alternative 2) were
used as input for ZDOCK. Overall, as could be expected, using the
atomic coordinates of the individual Ab and Ag that were extracted
from the Ab—Ag bound structures as input provided a more accu-
rate docking prediction than docking with predicted structures or
than predicting the entire complex using AlphaFold-Multimer.
Most of the successfully docked complexes involved short-peptide
Ags rather than full-length proteins. Of note, although both com-
plexes that AlphaFold predicted with medium to high quality also
scored high for individually predicted Ag or Ab, this does not
always guarantee an accurate prediction of the complex by Alpha-
Fold-Multimer (Fig. 6).

Table IV. Elbow angle and RMS_CA (A) between 20 native and predicted sequence-dependently superimposed structures of predicted and

corresponding native Fab molecules (H and L chain combined)

Native Elbow Angle

Predicted Elbow Angle

Absolute Difference

between Native and RMS_CA (A) between

PDB Identifier L Chain Class (degrees) (degrees) Predicted Fab (degrees) Native and Predicted Fab
6WAS A 226.6 2153 11.3 2.8
7C88 K 137.2 144.8 7.6 1.19
TL77 K 136.6 162.1 25.5 3.05
TLYV K 135.8 185.6 49.8 4.09
TMF7 A 187.3 201.3 14.0 2.05
T™MU4 A 232.0 195.6 36.4 3.62
TN3F A 194.2 195.0 0.8 1.78
TN4J A 226.4 209.0 17.4 2.54
70X1 A 135.5 207.2 71.7 3.38
7Q6C K 150.2 141.9 8.3 1.38
704Y K 135.0 174.2 39.2 4.04
7UOE A 207.0 190.0 17.0 2.74
7UCE A 198.0 189.0 9.0 1.61
720Y A 2229 190.2 32.7 3.66
8CZ5 K 173.1 175.0 1.9 0.94
8D6Z K 147.1 144.1 3.0 0.96
8D47 K 169.0 170.0 1.0 1.19
8DCC A 133.6 201.9 68.3 3.57
8DFG K 175.1 174.5 0.6 1.56
8DTX K 169.0 174.4 54 1.07

20z Atenuer ¢ uo Jesn INIOIIN B 1DS 3417 40 AUVHEIT AINN AIAY T3L Ad 4pd'05100€2!/S5¥991/82G1/0L/1 L Z/spd-ajoiue/ounwwif/Bio 1ee sjeunol//:dpy woly papeojumoq



1584 EVALUATION OF AlphaFold FOR MODELING ANTIBODIES AND EPITOPES

A 240 Bw C
g 50 465
3 y=0.051x +1.2322 ] 45
20 @ R?=0.7829 210
74 E e 40 B RMS_CA of the structures with elbow angle
o s v e o X 386 deviation <20 degrees from native
= 200 . . H b .
b ¢ . i ‘g; 4 ) 35 3.70
5 el e, At = Jo. &Y e 2 3.36 .
2 . oL ¢ . 4 b £ ge . o o =30 I RMS_CA of the structures with elbow angle
o 180 . " o o ' *e 3 ' deviation >20 degrees from native
- . ®e" I
2 ~ Tt g %, w25 233 8
160 Cee 7. ki ‘us Z
3 R Y T a -.‘i 20 2.26
c
] - @ 2 . '_'
£ g o £ 15| 162
§ B 5 - ~= 137
: z Iy 10
% . 1.05
120 o] . 05
y g‘ : 067
100 / A
100 150 200 250 20 40 60 80 100
Predicted elbow angle (degrees) Elbow angle difference between
predicted and native Fab structures
(degrees)

FIGURE 4. Evaluation of the elbow angle deviation correlation with prediction quality. Elbow angle deviations in correlation with prediction quality for » = 95 Fab
structures. (A) Scatterplot of elbow angle (degrees) data in native versus predicted Fab structures. (B) Absolute elbow angle difference in degrees between predicted and
native Fabs in correlation with prediction quality (RMS_CA). (C) Boxplot of RMS_CA (A) data displaying the distance between superimposed native and predicted
molecules for the Fab structures for two groups of Fabs, with elbow angle difference between native and predicted of <20 degrees and =20 degrees. The bottom and
the top whiskers represent the minimum and the maximum value in the dataset excluding any outliers, the bottom and the top of the box are the 25th (Q1) and 75th
(Q3) percentiles, the line inside the box is the 50th percentile (Q2) or the median value in the dataset, the x inside the box is a mean value of the dataset.

Prediction speed and technical requirements alternative approaches. One approach was to use ColabFold (70),

One of the challenges faced while working with AlphaFold ver- @ Web server that permits AlphaFold to run faster online (e.g., it took

sion 2.2.0 was a technical graphics processing unit require- ~ US up to 10 min to run th? pre.diction based on a 216-residue
ment. Given that the graphics processing unit requirements are sequence, as opposed to 30 min using the full version of® AlphaFold
met, it could take up to 30 min to predict a 216-residue-long version 2.2.0). In addition to ColabFold online, we also tested

molecule. To overcome these shortcomings, we tested several ABodyBuilder2 (ImmuneBuilder) (71), which is another fast

A B
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Table V. Twenty chains’ prediction quality comparison between ESMFold and AlphaFold: RMSD (A) between superimposed predicted and native

molecule

PDB Identifier and Chain ESMFold Prediction Time, s

ESMFold RMSD, A

ESMFold TM Score AlphaFold, RMSD, A AlphaFold TM Score

7DOH_H 5 1.87
7DOH_L 10 3.14
7L77_H 6 3.75
7L77_L 8 0.91
7031_H 10 3.17
7031_L 10 4.58
70X3_A 7 2.33
70X3_B 15 0.83
7RM3_A 9 241
7RM3_B 12 1.29
8CZ5_H 12 3.49
8CZ5_L 6 2.73
8D47_H 7 1.88
8D47_L 6 1.57
8DFH_H 7 4.77
8DFH_L 6 2.33
8DTX_H 6 1.52
8DTX_L 6 2.49
8C3V_H 21 224
8C3V_L 5 0.89

0.90 3.83 0.71
0.77 0.87 0.98
0.73 2.68 0.82
0.98 2.01 0.89
0.80 1.55 0.95
0.63 1.90 0.90
0.86 2.34 0.86
0.98 3.08 0.78
0.86 1.50 0.94
0.95 1.85 0.91
0.72 4.04 0.68
0.81 1.31 0.95
0.88 3.01 0.83
0.93 1.27 0.95
0.61 2.02 0.58
0.52 1.55 0.93
0.94 3.28 0.75
0.84 1.20 0.97
0.89 1.54 0.94
0.97 2.88 0.79

deep learning model for Ab Fv region prediction. ABodyBuilder2
required ~30 s to predict a single Ab Fv region, and the prediction
accuracy for 10 tested molecules was similar to that of ColabFold
online for the pruned atom pairs and somewhat better across all
atom pairs (Supplemental Table I). In October 2022, Meta Al
released an alternative, faster, and more accessible solution as part
of its sequence-to-structure predictor ESMFold and the ESM Meta-
genomic Atlas database. This claimed to be 60-fold faster than
state-of-the-art predictions while maintaining resolution and accu-
racy (72). The Atlas serves as an open database of 617 million pre-
dicted protein structures and allows a rapid prediction to be
obtained from a sequence. When we applied this option to 222 Ab
chains with a mean amino acid sequence length of 221 residues,
the running time was even faster, with an average of 9.3 s required
to predict a single structure (Table V). Moreover, more than 85%
of the tested Ab sequences were predicted in under 13 s (Table
VI). When we evaluated the prediction quality of these test mole-
cules compared with AlphaFold predictions, the mean value of
RMSD was 2.53 A for ESMFold and 2.38 A for AlphaFold. These
differences in accuracy are not statistically significant (Fig. 7). For
both algorithms, most of the predictions fall into the RMSD range
of 1-2 A, whereas the AlphaFold results had a higher number of
predictions in the range under 2 A (Fig. 7B). Overall, we can con-
clude that the prediction quality of ESMFold is very similar to that
of AlphaFold and that the shorter time required by ESMFold pro-
vides an accessibility advantage.

Discussion
Understanding the Ab structure and subsequently the Ab—Ag inter-
actions provides a basis for the rational design of vaccines and

Table VI. ESMFold 222 Ab chains prediction time distribution

Prediction Time (s) Number of Predictions % of Total
5-7 95 42.8
8-10 50 22.5
11-13 44 19.8
14-16 30 13.5
17+ 3 1.4
Total 222 100

drugs. The gold standard for structure determination remains X-ray
crystallography, which provides high-resolution atomic coordinates
of the protein backbone and side chains, as well as the atomic inter-
actions between the different protein groups. However, this method
requires a very high degree of expertise, tends to be expensive in
terms of time and money, and is not always applicable. For these
reasons, a variety of methods have been developed to predict the Ab
structure from the coding sequence alone.

Computational methods for protein structure prediction from the
amino acid sequence have been available since CASP1 was launched
in 1994. Earlier computational methods were mostly homology based,
but, although they made it possible to predict the 3D structures of
simple small proteins such as PDB identifier 2JZ5:A, with a known
template with a very high sequence similarity, they were not success-
ful in predicting the structures of larger and more conformationally
challenging molecules such as Abs (73, 74). In addition, although
more advanced protein prediction methods demonstrated a consid-
erable degree of improvement, they were still inaccurate when ana-
lyzing large protein molecules and were therefore generally not
applicable for deciphering complex molecular interactions and even
less applicable for drug or vaccine design (75—77). The advent of arti-
ficial intelligence and development of new machine learning methods
provided a significant leap in the ability to predict protein structures.
In 2020, AlphaFold demonstrated an improved ability to predict pro-
tein structures with a median GDT7g score of 0.92. Although the anal-
ysis included many complex and structurally challenging molecules,
the prediction of Ab structures and interactions has not been thor-
oughly evaluated. Although a number of AlphaFold protein predic-
tions have been reported over the past few years (78—80), these did
not address the specific issues of Abs. In addition, most of these stud-
ies lacked local quality assessment of the predictions and did not try
to estimate the reliability of the different subdomains of the predicted
Ab or identify the areas that were the most difficult to predict.

Here, we evaluated the ability of AlphaFold to predict Ab 3D
structures from a coding linear sequence by employing an algorithmic
pipeline that compares the 3D structure of the predicted Ab chain
molecule with the native X-ray crystallography structure. Importantly,
the system scores the structural subdomains as well as the whole mol-
ecule. This methodology enabled a rapid comparison of 222 predicted
structures with the corresponding published PDB atomic structures.
The results allowed us to identify the problematic areas in the
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TM-score = 0.79
DockQ = 0.061

53 ‘ 76 , 53 1

Native contacts E :
Predicted contacts Native contacts

Predicted contacts

62 53 48 79

Native contacts Predicted contacts

FIGURE 6. Ab—Ag multimer complex prediction and docking comparison example (PDB identifier 7N3D). (A) Native (yellow) Ag 3D structure superimposed
on the AlphaFold prediction (blue). (B) Native (yellow) Ab Fab 3D structure superimposed on the AlphaFold-Multimer prediction (blue). (C) Ab—Ag complex
native (yellow) 3D structure superimposed on the AlphaFold-Multimer prediction (blue). (D) Ag native structure docked by ZDOCK with Ab Fab structure pre-
dicted by AlphaFold (violet) superimposed on the native complex (yellow). (E) Ag and Ab Fab structures predicted by AlphaFold docked by ZDOCK (violet) super-
imposed on the native complex (yellow). (F) Ag native structure docked by ZDOCK with the Ab Fab native structure (violet) superimposed on the native complex
(yellow). Venn diagrams in (D—F) show the number of docking contacts in native and predicted structures and their overlap, which represents the contacts predicted

accurately.

predicted molecules, which can then be further analyzed and used
to refine the models. We also predicted the 222 Ab chains by
ESMFold released by Meta Al and compared the performance
with the AlphaFold results.

Our study clearly demonstrates that low prediction quality often
stems from an erroneous prediction of the elbow angle, with no
major issue in VH-VL orientation prediction. Interestingly, there is
some evidence in the literature that Ab elbow angles are influenced
by the L chain class and that Fabs with \ chains have a wider range
of angles (62). Moreover, various structural studies have reported
that elbow angles are often altered by conformational changes that

FIGURE 7. Distribution of 222 pre- A
dictions by ESMFold and AlphaFold 100
arranged by prediction quality, RMSD %
(A). (A) Column chart of the prediction dis- 80
tribution by RMSD range (A) for ESM- 22
Fold in blue and for AlphaFold in orange.
(B) Boxplot of RMSD (A) data for 222 dif-
ferent predictions by ESMFold and Alpha- g 40
Fold. The bottom and the top whiskers [
represent the minimum and the maximum =
value in the dataset excluding any outliers,

the bottom and the top of the box are the

25th (Q1) and 75th (Q3) percentiles, the line 0-1 12 23
inside the box is the S0th percentile (Q2) or
the median value in the dataset, the x inside

. M ESMFold
the box is a mean value of the dataset.

(n=222)

o & 8
RMSD (A)
= N W o»
2 8 8 ¥

RMSD range (A)

M AlphaFold
(n=222)

occur upon binding and give rise to significant differences between
the elbow angles of the bound versus unbound Fabs (62, 81, 82).
Notably, the nature of the Ag can affect the elbow bending angles
within a given Fab, such as the elbow angle of anti-HIV-1 V3 Fab
2219 changes from 210.4 degrees upon binding to UG1033 peptide
(PDB identifier 2B1A) to 229.4 degrees upon binding to MN pep-
tide (PDB identifier 2B0S). Clearly, reliable prediction of the elbow
angle in bound and unbound Abs is a challenge that computational
tools still have to address.

Docking by both ZDOCK and AlphaFold-Multimer predicted the
structure of Ab—Ag complexes relatively poorly, with ZDOCK

B
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5.08 496
34 438
2,53 238
2.40 X 213
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succeeding in a higher number of complexes. We note several limita-
tions in our comparison. First, the input for the two alternatives is dif-
ferent, where the input for the viable docking option is the native
structures of both the Ag and the Ab, whereas the AlphaFold predic-
tion is based solely on the amino acid sequences. Second, only 26
complexes were used for the comparison. It is important to note that
all the complexes analyzed were released after the AlphaFold training
cutoff date to avoid bias. Nevertheless, our study of 26 different com-
plexes offers a sneak peek at the current level of prediction accuracy
expected of Ab—Ag complex structures.

The main conclusion of our study is that despite significant
advancement in the ability to predict protein structures, the current
methods are not very accurate at modeling the 3D structure of Abs.
This is predominantly due to low accuracy in prediction of the vari-
able domains of the H chains, difficulty in predicting the CDRs (in
both H and L chains), and inability to model the elbow angle between
the constant and variable domains correctly. Any methodology for
predicting Ab structures should specifically address these hurdles.
Future improvements in methodology should also improve computa-
tionally based epitope mapping algorithms.
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