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ABSTRACT

Conservation is a strong predictor for the
pathogenicity of single-nucleotide variants (SNVs).
However, some positions that present complex con-
servation patterns across vertebrates stray from
this paradigm. Here, we analyzed the association
between complex conservation patterns and the
pathogenicity of SNVs in the 115 disease-genes that
had sufficient variant data. We show that conserva-
tion is not a one-rule-fits-all solution since its accu-
racy highly depends on the analyzed set of species
and genes. For example, pairwise comparisons be-
tween the human and 99 vertebrate species showed
that species differ in their ability to predict the clinical
outcomes of variants among different genes using
conservation. Furthermore, certain genes were less
amenable for conservation-based variant prediction,
while others demonstrated species that optimize
prediction. These insights led to developing Evo-
Diagnostics, which uses the conservation against
each species as a feature within a random-forest
machine-learning classification algorithm. EvoDiag-
nostics outperformed traditional conservation algo-
rithms, deep-learning based methods and most en-
semble tools in every prediction-task, highlighting
the strength of optimizing conservation analysis per-
species and per-gene. Overall, we suggest a new and
a more biologically relevant approach for analyzing

conservation, which improves prediction of variant
pathogenicity.

INTRODUCTION

The revolution of high-throughput sequencing and next-
generation sequencing (NGS) generated massive human
and vertebrate genomic data. This, in turn, promoted
countless discoveries that improved healthcare personaliza-
tion (1). For example, it enabled detection of alleles asso-
ciated with genetic diseases, thus promoting accurate diag-
nostics and personalized medicine (2).

However, NGS frequently recognizes human variants
with undetermined effects on health, denoted as variants of
uncertain significance (VUSs) (3). Since the clinical impli-
cations of VUSs determine the risk for genetic diseases and
influence patient management (4), it is essential to predict
the deleteriousness of these VUSs. For example, pathogenic
mutations in the genes BRCA1 and BRCA2 are associated
with 45–65% risk of breast cancer and 11–39% risk of ovar-
ian cancer (5). Patients at high risk for hereditary breast and
ovarian cancer (HBOC) are treated with preventive surg-
eries, chemotherapy or radiological follow ups (6–8). Hence,
estimating the pathogenicity of VUSs in BRCA genes helps
prevent unnecessary invasive treatments and emotional dis-
tress (9). The importance of correctly characterizing the ef-
fects of VUSs extends to many genes in addition to BRCA1
and BRCA2, for example genes involved in Lynch syn-
drome (10).

Numerous algorithms have been developed to address the
challenge of predicting the clinical implications of VUSs
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(11,12). These algorithms estimate the significance of vari-
ants either by the degree of conservation (13–15), func-
tion prediction (16–20), genomic annotations (21,22), or
by an ensemble of these approaches (23–26). Among them,
conservation-based algorithms were estimated to be the
best individual prediction approach in most variant predic-
tion models (23,27).

Evolutionary conservation of specific loci within a se-
quence is the result of purifying selection on functionally
and structurally important sites. Other sites evolve neutrally
or nearly neutral, and mutations in these sites have negligi-
ble effects on fitness. Therefore, the functional importance
of genomic regions can be inferred from their conserva-
tion across species. As such, the increase in genomic data
has the potential to improve conservation-based prediction
tools (28).

It is nontrivial to translate conservation into accurate
clinical prediction of variants. In general, a human VUS
that is found in the wild-type sequence of chimpanzees is
likely not to be of clinical importance. However, if one
finds the human VUS in the wild-type sequence of a more
distant species, such as zebrafish, the likelihood that this
VUS has clinical importance increases. Thus, comparing
human VUSs to different species and the inference of clin-
ical outcomes from such pairwise comparisons may highly
depend on the level of evolutionary divergence between the
compared sequences. The level of divergence, in turn, de-
pends on the time of divergence among the species and
on species-to-species differences in nucleotide substitution
rates (29,30). Ideally, a comparison of the human VUSs
to multiple organisms should be analyzed simultaneously.
However, finding the best way to integrate conservation in-
formation across the tree of life is a challenging task. For
example, several methodologies have integrated the entire
conservation profile to a single conservation score using the
same algorithm across all genes (13–15). Such a one-rule-
fits-all approach may be problematic given that genes differ
in their conservation degree across the evolution, and thus
the association between conservation of variants and their
pathogenicity may vary among genes. Moreover, the evo-
lutionary rate of a gene may itself vary in different parts
of the phylogenetic tree. In addition, even within a specific
gene, certain sites may have an accelerated or decelerated
evolutionary rate in several clades. One model that accounts
for lineage-specific evolutionary rates is the covarion model
(29,30). PhyloP, a conservation-based prediction method,
partially integrates the covarion model by allowing a sin-
gle lineage to have a different evolutionary rate than the
rest of the phylogenetic tree (15). Even when a conservation
score is defined, one should still determine how to transform
this score to predictions regarding the clinical outcomes of
VUSs, e.g. by defining cutoffs for considering positions as
conserved.

Phylogenetic profiling is another common method used
to study complex evolutionary information at the levels
of genes and proteins (31–35). Phylogenetic profiles, which
represent the presence or absence of entire genes (or pro-
teins) among a set of species, can be used to identify genes
(or proteins) with analogous functions based on the simi-
larity of their profiles. The rationale of this concept is that
genes that share a function, as well as genes that are es-

sential for survival under similar environmental conditions,
have been co-evolving (i.e. coordinately changed, or lost and
retained) across the tree of life. These profiles are utilized
for drug repositioning (36,37) and for predicting protein–
protein interactions (38–40), protein complexes (38), genes
that participate in common-pathways (32–34,41,42), func-
tional sites (31) and novel disease genes (32,33,41). In re-
cent studies (41,43,44), we showed that in some cases, co-
evolution of genes is better captured when focusing on
clade-wise phylogenetic profiles. Equivalently, several stud-
ies found that the co-evolution of single RNA and DNA
positions can be used to predict the function and structure
of RNAs and RNA-protein complexes (45–47), and to pre-
dict gene annotations, CpG islands, repeat families etc. (48).
Another study developed M-CAP (25), a method that pre-
dicts the pathogenicity of rare missense variants by integrat-
ing 16 preexisting prediction scores and annotations with
the patterns of amino acid conservation across 100 species.
These studies suggest that phylogenetic profiling at the nu-
cleotide level (i.e. studying the patterns of conservation of
single nucleotides across species) may reveal associations
between co-evolving nucleotides and the clinical implica-
tions of single-nucleotide variants (SNVs). These associa-
tions may increase the information extracted from conser-
vation data, improve classification of VUSs and highlight
the importance of studying the co-evolution of single nu-
cleotides.

Here, we studied the distribution of signals present in
cross-species evolution at the nucleotide level in order to
increase the information extracted from conservation data
for the sake of predicting variants’ outcomes. Our aims
were to explore the variation in the ability to predict SNVs
pathogenicity in multiple genes using conservation among
individual vertebrates, and then to apply our findings for
optimizing variant prediction per-gene and per-species. We
first focused on studying signals present in genes related
to HBOC, which constitute the largest annotated SNVs
dataset in ClinVar (49), and then widened our analysis to
115 genes related to various human diseases. To analyze the
evolution of nucleotides among these genes, to search for
locally co-evolved positions, and to study how species di-
verge in their utility to predict pathogenic and benign vari-
ants among genes, we used the multiple sequence align-
ment of 100 vertebrates (50,51). To utilize our insights, we
developed EvoDiagnostics, a machine-learning based vari-
ant prediction model that studies gene-specific conservation
patterns of nucleotides (i.e. their nucleotide-level phyloge-
netic profiles) and optimizes the weights of each species ac-
cordingly. We found that EvoDiagnostics outperforms con-
servation methods in predicting the clinical significance of
SNVs. EvoDiagnostics can be used as a stand-alone predic-
tion tool or as a supplement for prediction tools that rely
on conservation.

MATERIALS AND METHODS

Downloading and filtering ClinVar data

We downloaded two versions of ClinVar dataset on two
different dates: 19 December 2017 and 13 May 2019,
(https://www.ncbi.nlm.nih.gov/clinvar/docs/ftp primer/
#variant summary) (52) (see Data availability). For both
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versions, we kept only pathogenic and benign SNVs of
assembly version GRCh37 (i.e. we filtered out the likely
benign and likely pathogenic variants). We then focused
on genes that had at least 50 pathogenic or benign SNVs
reported in the 2017 version. This resulted in a total of
13 336 and 17 033 SNVs in the 2017 and 2019 versions,
which belonged to a total of 115 genes. We then filtered
the SNVs data as follows: we removed SNVs positioned
outside of the coordinates of the genes as specified in
Ensembl (downloaded using biomaRt (53)). We removed
four additional samples that appeared in both ClinVar
2017 and 2019 datasets, two of which were deletion variants
falsely assigned as SNVs and two of which were assigned
with ‘na’ instead of a reported human variant. This resulted
in a total of 13 250 and 16 944 SNVs in 115 genes, curated
by the 2017 and 2019 ClinVar databases, respectively.
Every gene in the 2017 and 2019 database had over 50
SNVs, apart from GRIN2A, which had 41 and 47 SNVs,
respectively. A total of 1343 SNVs were removed from the
2019 update as compared to the 2017 version, while a total
of 5037 SNVs were added. We refer to the added SNVs as
the third ClinVar dataset, of 2017–2019 (Supplementary
Table S1).

Mapping ClinVar’s SNVs to the Multiz alignment of 100 ver-
tebrates

To initially map BRCA1, BRCA2 and PALB2 SNVs re-
ported in ClinVar, we converted the SNVs into BED
format using rtracklayer (54), GenomicRanges (55) and
Iranges (55) R packages. We then uploaded the files to the
GALAXY tool, Extract MAF blocks (56), to map the vari-
ants to the 100-way Multiz alignment database (51), which
was available through the Locally Cashed Alignment MAF
source option. We chose not to split blocks by species.

To map SNVs in the entire pool of 115 genes re-
ported in ClinVar, we used the UCSC hgTables webtool
(50,51,57) (see Data availability). We selected the follow-
ing options––clade: Mammals; genome: Human; assembly:
Feb. 2009 (GRCh37/hg19); group: Comparative Genomics;
track: Conservation; table: Multiz Align (multiz100way);
region: Defined regions (where we inserted the coordinates
of all SNVs); output format: MAF––multiple alignment
format.

We ensured that the species were ordered by their evolu-
tionary distance from human, according to the phylogenetic
tree that was used to prepare the 100-way Multiz alignment
database (see Data availability, below, for link).

Mapping ClinVar’s SNVs to the Multiz alignment of 46 ver-
tebrates

To map SNVs in the entire pool of 115 genes reported in
ClinVar, we used the UCSC hgTables webtool (50,51,57).
We selected the following options––clade: Mammals;
genome: Human; assembly: Feb. 2009 (GRCh37/hg19);
group: Comparative Genomics; track: Cons 46-Way; table:
Multiz Align (multiz46way); region: Defined regions (where
we inserted the coordinates of all SNVs); output format:
MAF–– multiple alignment format.

Converting the mapped alignments into conservation patterns
data

We binarized the species alignment: in a pairwise compar-
ison of the human sequence and another species, a species
could either present a residue that is identical to the human
wild-type, a residue that is identical to the human variant,
or a residue that differs from both. We replaced the residue
of a species with 0 if the analyzed species shared the same
nucleotide with the human variant, and with 1 otherwise.
In cases where the compared species had a gap or a dele-
tion instead of a single nucleotide, we replaced the residue
of the species with 0. In cases where the compared species
had an insertion, we ignored all inserted nucleotides apart
from the first one, and replaced it with 0 or 1, according
to the aforementioned conditions (Supplementary Figure
S1A). Our binarization approach ensured that within a sin-
gle position, the three possible SNVs might result with a dif-
ferent conservation pattern among species (Supplementary
Figure S2). We refer in the text to residues replaced with 1 as
conserved, and residues replaced with 0 as non-conserved.

Plotting functions

We used ComplexHeatmap package in R to construct the
heatmaps (58). We used the ggplot2 package (59) to con-
struct all scatter plots, box plots, bar plots and density plots.
We used the pROC package (60) for plotting ROC curves
and calculating AUCs. We used the corrplot package (61)
to plot the Pearson correlation between the accuracy pro-
files of pairs of genes. We used the ape package (62) to read
the 100-way Multiz alignment phylogenetic tree and plot the
chronogram of selected species.

Calculating species predictive properties across genes

Using the conservation patterns of SNVs reported in Clin-
Var until 2017, we considered conserved and non-conserved
nucleotides in each species as indicators for pathogenicity
and benignity of SNVs in each of the genes, respectively.
We calculated the positive predictive value (PPV), negative
predictive value (NPV) and accuracy in predicting SNVs by
each of the 99 vertebrates, according to the described con-
fusion matrix (Supplementary Table S2).

To find the species that were the best and worst predic-
tors for the clinical implications of SNVs in the 115 genes,
we calculated the mean accuracy scored by each species in
predicting the clinical implications of SNVs in these genes.
We compared these values to 1e6 mean accuracy values that
were calculated using random bootstraps. We conducted
two-sided P-value tests, and calculated the corresponding
q-values using the Benjamini–Hochberg correction (63).

Training EvoDiagnostics models and estimating their perfor-
mance by cross-validation

We trained three separate random-forest algorithms on the
conservation patterns of either BRCA1, BRCA2 or the 115-
genes (ClinVar 2017 version), using the caret package (64).
Changing the value of the ntree parameter barely affected
the estimated accuracy of the BRCA1, BRCA2 and the 115-
genes models (Supplementary Figure S3) while substan-
tially affecting their training time. Hence, in each model we
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set ntree to 500, and chose the best mtry value (out of 11
values) through 10-repeated 5-fold hyperparameter tuning.
We then performed 100 repeats of 5-fold cross-validation
for the BRCA1, the BRCA2 and the 115-genes EvoDiag-
nostics models, using caret’s trainControl function. Each
repeat of cross-validation randomly divided the conserva-
tion patterns of variants into five folds, and the variants of
each fold were predicted by a random forest model trained
on the variants of the remaining four folds. Thus, each re-
peat estimated the prediction scores of EvoDiagnostics for
every variant in the training sets. We then calculated the
mean EvoDiagnostics score for each of the variants across
the 100 repeats, computed a ROC curve and compared
it to the prediction of three conservation-based methods
(Figure 1A,C,E). We performed paired t-test comparisons
between BRCA1- and 115-genes EvoDiagnostics and the
three conservation methods by comparing the AUCs scored
when predicting the SNVs in each of the cross-validation
folds separately (five folds over 100 repeats, i.e. a total of
500 folds). We also produced a ROC curve for each repeat
of the cross-validation of BRCA1-EvoDiagnostics model
and compared them with the ROC curve of the repeat that
scored the median AUC (Supplementary Figure S4).

Estimating EvoDiagnostics performance by predicting un-
seen test sets

We assembled test sets for the three EvoDiagnostics models
using SNVs that were reported by ClinVar between Decem-
ber 2017 and May 2019. For each EvoDiagnostics model,
the test set included prospectively reported variants in the
genes that the model was trained on. The performance of
BRCA1-EvoDiagnostics was also evaluated by predicting
three additional test sets: SNVs in PALB2 that were re-
ported until December 2017 (#1) and until May 2019 (#2),
and SNVs in BRCA2 that were reported between 2017 and
2019 (#3). Since all SNVs in PALB2 that were reported be-
tween 2017 and 2019 were pathogenic, we were unable to
compute the ROC and AUC of these SNVs.

Downloading prediction scores of conservation-based meth-
ods

We downloaded the prediction scores of the conservation-
based tools: GERP++ (13), PhastCons (100 ways, 46
ways––vertebrates, 46 ways––primates, 46 ways––placental)
(14) and phyloP (100 ways, 46 ways––vertebrates, 46
ways––primates, 46 ways––placental) (15), for every SNV
predicted by EvoDiagnostics, from the UCSC hgTables
webtool (50,57).

Training a random forest model on nine conservation scores

Using the caret package, we trained a random forest al-
gorithm using the nine aforementioned conservation meth-
ods as features. We first performed an hyperparameter tun-
ing analysis in which we evaluated five ntree values and
eight mtry values (there are only eight possible mtry values
when training on nine features). Once again, we saw that
the ntree value had minimal effect on the estimated AUC

of the model and thus set it to 500. We then trained the fi-
nal model and used it to predict the prospectively reported
SNVs in the 115 genes.

Comparing EvoDiagnostics with ensemble and deep learning-
based methods

We downloaded the prediction scores of CADD and
REVEL from HgTables webtool (50,57) (by 29 December
2021), of M-CAP from the link: http://bejerano.stanford.
edu/mcap/ (by 15 December 2021), of EVE from the
link: https://evemodel.org/download/bulk (by 29 Decem-
ber 2021), of Eigen from the link: http://www.funlda.com/
toolkit (by 5 January 2022), and of PrimateAI from the
link: https://basespace.illumina.com/projects/51955905 (by
19 December 2021). To note, M-CAP only predicts rare mis-
sense variants with allele frequency <1%, and thus its de-
velopers instructed to assume that missense variants that
have no M-CAP prediction score are likely benign (see
http://bejerano.stanford.edu/mcap/). Hence, to increase the
number of the test set variants predicted by M-CAP from
1010 to 1325, we set the prediction score of missense vari-
ants lacking M-CAP score as 0. This is the M-CAP version
used in our paper. The AUCs in predicting the test set vari-
ants using the published and the imputed M-CAP versions
were 0.939 (1010 SNVs in total) and 0.905 (1325 SNVs in
total), respectively.

AUCs in predicting SNVs using EvoDiagnostics models with
changing train sizes

We predicted the pathogenicity of newly reported SNVs
in BRCA1 and BRCA2 using 1000 separate BRCA1- and
BRCA2-EvoDiagnostics models, respectively. Each of the
1000 BRCA1 and BRCA2 models was trained on SNVs
in BRCA1 or BRCA2 that were randomly sampled (with
replacement) from the entire pool of SNVs reported by
ClinVar until 2017. To maintain balanced train sets, the
sampling process was coerced to maintain percentages of
pathogenic SNVs similar to the ones found in the full
BRCA1 and BRCA2 train sets (i.e. 53.0% and 52.9%,
respectively). The minimal and maximal percentages of
pathogenic SNVs in all the sampled train sets were 52.3%
and 54.0% in BRCA1, and 52.0% and 53.8% in BRCA2.
The models were trained on different train set sizes, rang-
ing from 50 to 1066 (in BRCA1) or to 1207 (in BRCA2).

RESULTS

SNVs may associate with various diseases, especially when
located in conserved positions (13–15). However, inferring
the clinical relevance of SNVs from conservation is some-
times complicated. For example, in BRCA1 gene (Figure
2), some positions are extremely conserved in mammals
and birds (blue arrow), other are only conserved in chim-
panzee (purple arrow), and some are conserved in birds and
fish while being poorly conserved in mammals (red arrow)
(65). Overall, nucleotides in BRCA1 gene show various pat-
terns of conservation across species (i.e. various nucleotide-
level phylogenetic profiles) that cannot be explained solely
by the evolutionary distance of the species from human.

D
ow

nloaded from
 https://academ

ic.oup.com
/nargab/article/4/2/lqac025/6564617 by tel aviv university user on 02 June 2022

http://bejerano.stanford.edu/mcap/
https://evemodel.org/download/bulk
http://www.funlda.com/toolkit
https://basespace.illumina.com/projects/51955905
http://bejerano.stanford.edu/mcap/


NAR Genomics and Bioinformatics, 2022, Vol. 4, No. 2 5

Figure 1. Comparing EvoDiagnostics predictions with conservation methods. ROC curves and AUCs of EvoDiagnostics models (BRCA1-EvoDiagnostics;
BRCA2- EvoDiagnostics; 115-genes EvoDiagnostics) were compared to the predictions of the conservation methods: GERP++, phyloP and PhastCons. (A)
The estimated prediction performances of BRCA1-EvoDiagnostics model, calculated by 100 repeats of 5-fold cross-validation of 1066 SNVs in BRCA1 that
were reported by December 2017. (B) Temporal validation of the BRCA1-EvoDiagnostics model, calculated by predicting 100 SNVs in BRCA1 reported
between 2017 and 2019. (C) The estimated prediction performances of BRCA2-EvoDiagnostics model, calculated by 100 repeats of 5-fold cross-validation
of 1207 SNVs in BRCA2 that were reported by December 2017. (D) Temporal validation of the BRCA2-EvoDiagnostics model, calculated by predicting
184 SNVs in BRCA2 reported between 2017 and 2019. (E) The estimated prediction performances of 115-genes EvoDiagnostics model, calculated by
100 repeats of 5-fold cross-validation of 13 250 SNVs in the 115 genes that were reported by December 2017. (F) Temporal validation of the 115-genes
EvoDiagnostics model, calculated by predicting 5037 SNVs in the 115 genes reported between 2017 and 2019; AUC, area under the curve; ROC, receiver
operating characteristic; SNV, single-nucleotide variants.
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Figure 2. Conservation patterns of nucleotides (nucleotide-level phylogenetic profiles) in BRCA1. (A) The phylogenetic tree of selected species from the
Multiz Alignment of 100 Vertebrates (50,51). Next to each species are the nucleotides located in 6 coordinates in BRCA1 that presented different conser-
vation patterns across species. Conserved nucleotides are marked in green. Gaps are represented by hyphens. The nucleotides in red represent examples
of possible SNVs in these positions. The specific coordinates are specified in Supplementary Data S4. (B) A capture from UCSC genome browser (65) of
the conservation of BRCA1 in the coordinates chr17:41,225,000–41,277,500 (GRCh37 assembly) across selected species of the Multiz Alignment of 100
Vertebrates. Conserved positions are marked in green. A graphical representation of the conservation of each position across these 100 vertebrates (by
phyloP) (15) is presented below. The colored arrows point on the conservation patterns presented in (A).

In the following sections, we studied the conservation pat-
terns across species at the nucleotide level (i.e. the phylo-
genetic profiles of single nucleotides), and the species-to-
species variation in their capability to predict clinical out-
comes of SNVs using pairwise conservation comparisons.
We then developed machine-learning classifiers that pre-
dicted which SNVs were of clinical importance, based on
all pairwise comparisons, i.e. a comparative-genomics ap-
proach.

Living fossil fish are the best predictors for pathogenic-
ity, while mammals are the best predictors for benignity in
BRCA1

Since we suspected that species differ in their utility to
predict pathogenicity or benignity of variants (66), we
examined how well the clinical implications of SNVs in
BRCA1 could be predicted by the conservation among in-
dividual organisms. We chose to analyze BRCA1 since the
BRCA genes had, by far, the largest number of benign
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and pathogenic SNVs reported on ClinVar (version of De-
cember 2017) (52) (Supplementary Table S1). We analyzed
a total of 1066 pathogenic and benign SNVs in BRCA1.
For each variant, we downloaded the multiple sequence
alignment of 100 vertebrates and determined whether these
positions were conserved in each of the species (see Ma-
terials and Methods). We first relied on a naı̈ve classi-
fier that predicts an SNV as pathogenic if the position
is conserved and non-pathogenic if otherwise. We defined
positive predictions as SNVs that were pathogenic, and
thus true positive predictions are pathogenic SNVs that
were predicted correctly. We then calculated three perfor-
mance measurements for each species: (i) Positive predic-
tive value (PPV)––whether the conservation of a nucleotide
was a good predictor for pathogenicity, (ii) Negative pre-
dictive value (NPV)–– whether the non-conservation of
a nucleotide was a good predictor for benignity and (iii)
Accuracy––The fraction of cases in which the conservation
status matched the phenotype (see Methods).

Our analysis revealed that primates such as chimpanzee
and orangutan are the best predictors for benignity of vari-
ants in BRCA1 (highest NPVs) (Figure 3A). In other words,
human variants located in positions that are not conserved
among primates are most likely benign. However, compar-
isons with primate sequences are not highly informative re-
garding the pathogenicity of variants when the position is
conserved among primates. In contrast, a comparison with
birds is useful for predicting pathogenic variants but less
so for predicting benign ones. The turtles and the alliga-
tor resembled birds in their ability to predict pathogenic-
ity but were more successful than birds in predicting benig-
nity. Interestingly, while some fish were incapable of pre-
dicting pathogenicity of BRCA1 SNVs, other fish, such
as the coelacanth and the spotted gar fish––both consid-
ered as living fossils (67,68)––were the best predictors for
pathogenicity out of all vertebrates. Overall, in BRCA1 the
prediction accuracy of conservation varied among species
in a way that did not always associate with their evolu-
tionary distance from human (Figure 3B). Since genes dif-
fer in their conservation across the tree of life (some genes
are highly conserved across eukaryotes, while others show
a high level of divergence even within mammals), we exam-
ined whether the species that were found to be good pre-
dictors in BRCA1 would also be good predictors in other
genes, that is, whether the ability to predict variants using
conservation is similar across different genes.

Prediction accuracy varies across genes and species

Similar to our analysis of BRCA1, we calculated the PPV
(Supplementary Figure S5A), NPV (Supplementary Figure
S5B) and accuracy (Figure 4) in predicting the pathogenic-
ity of SNVs in disease-associated genes, using pairwise com-
parisons against each of the 99 vertebrate species. To elim-
inate the noise that may result from using limited variant
data, we included in our analysis only the genes that had
at least 50 benign and pathogenic SNVs reported in Clin-
Var. These summed up to a total of 115 genes. In 63%, 83%
and 64% of the genes, the median PPV, NPV and accuracy,
respectively, were >0.7. That is, in most of the genes, the
pathogenicity of SNVs was predicted well by pairwise com-

parisons against most of the species. However, in a small
portion of the genes SNVs were poorly predicted, including
four genes (CACNA1C, DNAH11, MECP2, USH2A) that
their SNVs were predicted with low accuracy by all pair-
wise comparisons (maximum prediction accuracy of 0.698,
0.667, 0.685, 0.650, and a median accuracy of 0.476, 0.425,
0.523 and 0.506, respectively, over all pairwise comparisons,
see Supplementary Data S1).

Analysis of the species showed that their median PPV,
NPV and accuracy in predicting variant pathogenicity
across the genes ranged from 0.72 to 0.89, from 0.55 to
1.00 and from 0.67 to 0.84, respectively, indicating that
species diverged in their prediction properties (Figure 4 and
Supplementary Figure S5, lower panels, Supplementary Ta-
ble S3). Furthermore, each species presented wide ranges
of PPV, NPV and accuracy in predicting the SNVs, mean-
ing that each species yielded accurate predictions in some
genes, but inaccurate predictions in others. For example,
the golden hamster accurately predicted the pathogenicity
of SNVs in APC, VHL, CNPA3 and LDLR genes but in-
accurately predicted the pathogenicity of SNVs in MSH6,
MYH7, KCNQ3 and TNXB genes. Nevertheless, all species
yielded at least 0.9 accuracy in predicting at least seven
genes. Overall, the green sea turtle and the painted turtle
were among the significantly best predictors (mean accu-
racy: 0.802 and 0.801, respectively, P-value: 1.6e-5 and 3e-5,
respectively), while the lamprey and the chimp were among
the worst (mean accuracy: 0.630 and 0.659, respectively, P-
value: >1e-06 and 4.8e-5, respectively) (Supplementary Fig-
ure S6 and Supplementary Data S2).

By ordering species by their mean accuracy in predicting
SNVs’ pathogenicity and coloring them by the percentage
of positions in which their residues were conserved, we pin-
pointed cases in which the predictiveness was not associ-
ated with the evolutionary distance of that species from hu-
man (Supplementary Figure S7). Nonetheless, distant ver-
tebrates tended to have higher mean accuracy.

Clustering the genes by their accuracy, PPV and NPV
profiles, revealed groups of genes that resemble each other
in the capability to use species conservation to predict SNVs
(Figure 4 and Supplementary Figure S5).

To better characterize the similarity and differences be-
tween the ability to predict SNVs in different genes, we cal-
culated the Pearson correlation coefficient between the ac-
curacy profiles of each pair of genes. Some genes such as
DNAH5, FBN2 and TTN, were highly and positively cor-
related in their species accuracy profiles (all pairwise cor-
relation had Pearson R2 above 0.804 and P-value <4.17e-
36). Other genes such as PALB2 and ADGRV1 had signif-
icant negative correlations (Pearson R: -0.813, Pearson R2:
0.711, P-value: 1.59e-24) (Supplementary Figure S8). Clus-
tering analysis grouped the 115 genes into three main clus-
ters (Supplementary Figure S9). The second cluster con-
tained most of the DNA repair genes (i.e. BRCA1, BRCA2,
PALB2, MLH1, ATM, MSH2, TP53, LMNA, APC, NF1),
which are related to LYNCH, Li-Fraumeni, and hereditary
breast and ovarian cancer syndromes. Overall, 8%, 31% and
3% of the genes in the first, second and third cluster, respec-
tively, were DNA repair genes.

These analyses show that the predictive power of conser-
vation differs among species and across genes. Moreover,
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Figure 3. Species properties in predicting SNVs in BRCA1. The PPV ((A) red––above the x-axis (B) third panel), NPV ((A) blue––beneath the x-axis,
(B): second panel) and accuracy ((A) gray––a mirror image from both sides of the x-axis, (B): first panel) in predicting pathogenicity of 1066 variants in
BRCA1 using the conservation inferred over pairwise comparisons of 99 vertebrate species with human. In (A), clades are ordered from left to right by their
estimated evolutionary distance from the human. Both sides of the y-axis range from 0.5 to 1, since values of ∼0.5 indicate no predictive power over random
predictions. In (B), species are ordered by their estimated distance from human according to the phylogenetic tree used in the 100-ways Multiz alignment.
In each panel, the blue line and the gray area represent the loess regression that best fits the scatter plot and its 0.95 confidence interval, respectively. Names
of species that deviated from the common trend were added; NPV, negative predictive value; PPV, positive predictive value; SNV, single-nucleotide variants.

genes clustered into groups with similar profiles of species
accuracy, PPV and NPV, suggesting that for certain genes
some species are better predictors for the clinical outcomes
of SNVs than others. After gaining insights regarding the
prediction abilities of individual species, we aimed to eval-
uate the association between SNVs pathogenicity and the
cross-species conservation patterns at the single-nucleotide
level.

Complex conservation patterns within genes

SNVs in BRCA1 showed a variety of non-random and com-
plex conservation patterns (Figure 2). We studied the asso-
ciation between the pathogenicity of SNVs in BRCA1 and
their conservation patterns, i.e. their nucleotide-level phy-
logenetic profiles (Supplementary Figure S1A,B; see Mate-
rials and Methods). Our aim was to move from inference
based on pairwise comparisons to a combined analysis of
all species together. Analysis of the nucleotide profiles in
BRCA1 showed that several exonic and intronic positions,
not necessarily in contiguity, had similar profiles (Supple-

mentary Figure S1B). Furthermore, SNVs in BRCA1 clus-
tered by their conservation patterns into 11 sub-clusters that
had >10 SNVs each (Figure 5A). We calculated the per-
centage of pathogenic SNVs in each of the 11 sub-clusters.
In five of the sub-clusters, over 78% of the variants were
pathogenic, while in five other sub-clusters <9% of the
SNVs were pathogenic. That is, pathogenic variants resem-
bled each other in their conservation patterns. Furthermore,
in BRCA1 the conservation patterns captured additional in-
formation compared to naı̈ve conservation. For example,
the conservation patterns of the yellow cluster (123 SNVs,
marked with four stars in Figure 5A) resembled the pat-
terns of the red cluster (144 SNVs, marked with one star)
up to the wallaby, but lacked conservation along the turtles,
lizards and some birds. Despite having similar overall con-
servation, the yellow cluster was much less pathogenic than
the red cluster (64.2% and 81.9%, respectively). In addition,
the orange cluster (227 SNVs, marked with two stars) that
was more conserved than the red cluster, showed similar
pathogenicity to the red cluster (85.5% and 81.9%, respec-
tively), while the turquoise cluster (28 SNVs, marked with
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Figure 4. Species accuracies in predicting SNVs in 115 disease-associated genes. The heatmap presents the accuracies of 99 species (x-axis) in predicting
SNVs in each of the 115 diseases-associated genes (y-axis). For each species, the accuracy in predicting variants in each gene was calculated as the fraction
of pathogenic and benign SNVs that were conserved and non-conserved among the species, respectively. Dark and bright colors represent high and low
accuracies, respectively. We colored white (NA) the cases in which a species was entirely conserved or non-conserved across all SNVs in a gene, and in the
cases in which all SNVs of a gene were either benign or pathogenic. The right panel presents the distribution of the accuracies in predicting SNVs in each of
the genes. Red asterisks mark the six genes that had the lowest median accuracy (all had medians below 0.426). The lower panel shows the distribution of
the accuracies scored by each of the species, and the colors represent the percentage of conserved positions in each species across the entire pool of variants.
The genes were clustered by their accuracy profiles across the species. Species were ordered by their estimated evolutionary distance from the human; SNV,
single-nucleotide variants.
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Figure 5. Conservation patterns (nucleotide-level phylogenetic profiles) of SNVs in BRCA along 99 vertebrates. The heatmaps show the conservation
patterns of benign and pathogenic SNVs in BRCA1 (A, 1066 SNVs) and BRCA2 (B, 1207 SNVs) along 99 vertebrates. SNVs data were downloaded from
ClinVar. Conserved and non-conserved alleles in each species were colored black and grey, respectively. The x-axis represents the 99 aligned vertebrates,
ordered from left to right by their increasing evolutionary distance from human. Annotations on the right, from left to right: color annotation for each
cluster (37 clusters in (A) and 59 in (B)). In (A), the 11 clusters that had at least 10 SNVs were numbered; the percentage of pathogenic SNVs in each cluster
(exact percentages were printed for clusters containing >10 SNVs); GERP++ prediction scores (‘RS score’) for each SNV (13), ranging from -10 to + 6.
The blue arrows, stars and braces, and the red asterisk in (A), point to specific clusters and species discussed in the results section. In (A), the portion in
the dendrogram that corresponded with the 11 clusters was colored. The colored rectangles in (A) mark the clusters discussed in the results section.
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three stars) that had similar conservation patterns to the red
cluster, apart from some fish, had the highest pathogenicity
(89.3%).

We then tested whether these results could be gener-
alized to additional genes. Repeating the above analyses
for BRCA2, another DNA repair gene (69), led to simi-
lar results (Figure 5B, Supplementary Figures S10 and 1C):
SNVs in BRCA2 presented a variety of non-random com-
plex conservation patterns, which were associated with the
pathogenicity of these SNVs.

These results indicate that conservation patterns add in-
formation over naı̈ve conservation, and that pathogenic and
benign variants differ in their conservation patterns. This
suggests that these patterns can be used to detect pathogenic
SNVs.

Machine-learning algorithm predicts SNVs pathogenicity
from conservation patterns

We developed the EvoDiagnostics algorithm to classify
SNVs as either pathogenic or benign. EvoDiagnostics is a
machine-learning classifier that utilizes the information in
nucleotide-level phylogenetic profiles both for learning and
for testing. In the learning phase, the algorithm learns the
associations between the conservation patterns of variants
and their pathogenicity. Each feature of the classifier corre-
sponds to a pairwise comparison between a specific verte-
brate species and the human variant. The value of each fea-
ture is 0 if the analyzed species share the same nucleotide
with the human variant, and is 1 otherwise (see Materials
and Methods for more details). EvoDiagnostics is based on
the random forest classification algorithm, which outper-
formed alternative tested classification algorithms such as
SVM with various kernels, KNN, LDA, logistic regression
and naı̈ve Bayes (Supplementary Data S3, Supplementary
Table S4).

We trained EvoDiagnostics on the conservation patterns
of the 1066 pathogenic and benign BRCA1 SNVs (reported
in Clinvar by December 2017, see Materials and Methods).
We estimated EvoDiagnostics prediction properties using
100-repeated 5-fold cross-validation. The prediction values
calculated via cross-validation separated pathogenic vari-
ants from benign, with an AUC of 0.959±0.012 (Figure 1A,
Supplementary Figures S4 and S11A–H). On the same data,
three conservation-based methods: GERP++ (13), phyloP
(15) and PhastCons (14) scored significantly lower AUCs
of 0.879±0.024, 0.883±0.021 and 0.799±0.028, respectively
(all paired t-test P-values < 5e-290). We then tested the ac-
curacy of EvoDiagnostics in predicting an independent test
set of 100 prospectively reported variants in BRCA1 (re-
ported between December 2017 and May 2019). On this
test set, EvoDiagnostics scored an AUC of 0.888, while
GERP++, phyloP and PhastCons scored AUCs of 0.725,
0.743 and 0.640, respectively (Figure 1B).

Similar results were obtained upon training our model
on the 1207 pathogenic and benign BRCA2 SNVs re-
ported in Clinvar, scoring AUCs of 0.961±0.011 in cross-
validation and 0.930 when predicting 184 prospectively re-
ported SNVs, i.e. on an independent test data (Figure 1C,D
and Supplementary Figure S11I–P). This suggested that our
prediction strategy could be relevant for additional genes.

Our next step was to study the relationship between the
amount of data available for each studied gene and the per-
formance of the machine-learning classifier.

EvoDiagnostics accurately predicts variants in genes with
limited data

Optimizing predictions per gene is challenging when SNVs
data are scarce (< ∼300 SNVs). This is highlighted by
the association between the AUC score and the number of
SNVs used for training BRCA1 and BRCA2 EvoDiagnos-
tics models (Supplementary Figure S12). We tested the hy-
pothesis that learning from one gene (with ample data) can
be informative for predicting the pathogenicity of SNVs in
other genes (with limited data). To this end, we tested the
ability of BRCA1-EvoDiagnostics, trained on BRCA1, to
predict prospectively reported SNVs in BRCA2 and PALB2
(see Materials and Methods). We focused on the associa-
tions between BRCA1, BRCA2 and PALB2 since the three
genes co-evolved in animals (41), they all participate in the
HRR-pathway (i.e. share a biological function) (70–72) and
positively correlate in their species-accuracy profiles (Figure
4 and Supplementary Figure S9). BRCA1-EvoDiagnostics
predicted variants in PALB2 (reported until 2017 and re-
ported until 2019) and in BRCA2 (reported between 2017
and 2019) with AUCs of 0.935, 0.929 and 0.874 respec-
tively. GERP++, phyloP, and PhastCons scored AUCs of
0.800, 0.778 and 0.777, respectively, when predicting SNVs
in PALB2 (until 2017), AUCs of 0.842, 0.829 and 0.835, re-
spectively, when predicting SNVs in PALB2 (until 2019),
and AUCs of 0.803, 0.825 and 0.713, respectively, when pre-
dicting SNVs in BRCA2 (Figure 1D; Supplementary Figure
S13 and Supplementary Table S5). As expected, BRCA2-
EvoDiagnostics outperformed BRCA1-EvoDiagnostics in
predicting the unseen BRCA2 SNVs, scoring an AUC of
0.930 (Figure 1D and Supplementary Table S5).

Next, we examined the ability of an EvoDiagnostics
model trained on the 115 genes (denoted 115-genes Evo-
Diagnostics) to predict variants in these genes. 115-genes
EvoDiagnostics scored an AUC of 0.955±0.004 in cross-
validation, while GERP++, phyloP and PhastCons scored
AUCs of 0.881±0.006, 0.913±0.005 and 0.865±0.006, re-
spectively (all paired t-test P-values < 3.29e-246) (Figure
1E). When predicting 5037 prospectively reported SNVs
in the 115 genes, 115-genes EvoDiagnostics scored an
AUC of 0.934, while GERP++, phyloP and PhastCons
scored AUCs of 0.868, 0.901 and 0.838, respectively (Fig-
ure 1F and Supplementary Table S5). When focusing on
BRCA1’s 100 newly reported variants, the 115-genes Evo-
Diagnostics model scored an AUC of 0.917, outperform-
ing the gene-specific BRCA1-EvoDiagnostics model, which
scored an AUC of 0.888 (Figure 1B). However, BRCA1-
EvoDiagnostics was trained on 1066 SNVs while 115-
genes EvoDiagnostics was trained on ∼13× more data
(13 250 SNVs). As expected, this shows that large data
from other genes compensate for the lack of data in a spe-
cific gene. We next compared the performance of BRCA1-
EvoDiagnostics model with a 115-genes EvoDiagnostics
model trained on an equally sized train set (i.e. 1066 SNVs
randomly sampled from the 115 genes’ variants-pool, ex-
cluding SNVs in BRCA1). In this case, the 115-genes Evo-
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Diagnostics (1066 samples) model underperformed in pre-
dicting the newly reported BRCA1 variants, scoring an
AUC of 0.852 (Figure 1B and Supplementary Table S5).
This shows that both the train-set size and the per-gene op-
timization are important for predictions.

It is important to compare the performance of the
115-genes EvoDiagnostics model with gene-specific mod-
els trained on each of the 115 genes, since such compar-
isons may provide a better understanding of the interplay
between train size, per-gene optimization, and prediction
accuracy. However, apart from BRCA1 and BRCA2 genes,
none of the 115 genes had a balanced dataset (i.e. with sim-
ilar pathogenic and benign SNVs counts) with at least 300
reported SNVs in ClinVar 2017 (Supplementary Table S6)
hindering such an analysis.

Using a larger set of species from different clades improves
variant prediction

We next examined the effect the number and divergence of
species has on prediction accuracy. We trained an EvoDiag-
nostics model on the conservation patterns of SNVs in the
115 genes across 46 vertebrates (51) (denoted EvoDiagnos-
tics46). We compared EvoDiagnostics46 with the 115-genes
EvoDiagnostics100 model, GERP++, and four different
versions of phyloP and PhastCons: calculated based on 100
vertebrates, 46 vertebrates, 46 placental species and 46 pri-
mates (14,15) (Supplementary Figure S14A and Supple-
mentary Table S7A). EvoDiagnostics100 and EvoDiagnos-
tics46 scored the highest AUCs of 0.934 and 0.918, respec-
tively. PhastCons and phyloP scored AUCs of 0.838 and
0.901, respectively, while the three kinds of 46-species Phast-
Cons and 46-species phyloP scored AUCs of 0.814 and less,
and 0.891 and less, respectively. Across all methods, us-
ing 100 species from different clades improved the predic-
tion accuracy, suggesting that it increased the information
captured by conservation analysis. Furthermore, analyzing
only primates, as done by a certain version of PhastCons
and phyloP, scored the lowest AUCs (Supplementary Fig-
ure S14A and Supplementary Table S7A). This is congruent
with our finding that primates are of the worst predicting
species (Supplementary Data S2). In addition, we compared
EvoDiagnostics to a random forest model trained on all the
nine mentioned conservation scores as the model’s features,
to which we denoted RF conservation (see Materials and
Methods, Supplementary Figure S14A, Supplementary Ta-
ble S7A). EvoDiagnostics100, EvoDiagnostics46 and con-
servation RF scored AUCs of 0.934, 0.918 and 0.910, re-
spectively.

Comparing EvoDiagnostics with ensemble and deep learning-
based models

To this point, we compared EvoDiagnostics to long-known
and well-established conservation methods that enhanced
prediction accuracy thanks to the strong fidelity of tradi-
tional nucleotide-level conservation analyses (27). Next, we
evaluated more recently developed methods, which were
based on either using cutting-edge deep-learning algo-
rithms on amino acid sequences, or on integrating numer-
ous annotations additional to conservation. This included

two deep learning based models that classify missense SNVs
based on amino acid sequences of over 140K species (EVE
(73)), and of six non-human primate species populations
(PrimateAI (74)), and four different ensemble tools [CADD
(23,75), M-CAP (25), REVEL (24) and Eigen (76)].

We downloaded each tool’s most updated version of pre-
diction scores of the prospectively reported SNVs in the 115
genes (i.e. the test set, see Materials and Methods). Some
tools had not provided predictions for the entire test set
(Supplementary Table S7B). For each method, we calcu-
lated the AUCs in predicting the missense, noncoding, non-
sense and nonsynonymous SNVs in separate and overall
(see Supplementary Table S7B, Figure 6). In predicting the
entire test set, EvoDiagnostics outperformed all methods
besides for CADD, an ensemble-based tool that uses three
conservation-based features (e.g. phyloP, PhastCons and
GERP) and 57 non-conservation based features. In predict-
ing missense SNVs, EvoDiagnostics significantly outper-
formed all conservation-based methods. In predicting non-
coding SNVs, EvoDiagnostics performed as conservation-
based methods, which were significantly more accurate than
all ensemble and deep-learning based methods, besides for
CADD. We also compared the prediction of the test set
SNVs that overlapped across all evaluated methods (Sup-
plementary Figure S14B). Although the overlap spanned
only ∼10% of the test set (537 out of 5,037 SNVs) and in-
cluded only missense variants, EvoDiagnostics was not in-
ferior to the performance of ensemble and deep-learning
tools (EvoDiagnostics100 scored an AUC of 0.906 while M-
CAP, PrimateAI, EVE ASM, EVE BPU, CADD, REVEL,
Eigen.raw, Eigen.phred, Eigen.PC.raw and Eigen.PC.phred
scored AUCs of 0.939, 0.891, 0.897, 0.901, 0.919, 0.936,
0.908, 0.908, 0.895 and 0.895, respectively).

DISCUSSION

It is currently a common practice to treat conservation as
a one-rule-fits-all concept and analyze conservation glob-
ally across genes and species. In this functional genomics
study, we suggested a new approach for analyzing conser-
vation data, and demonstrated its benefits in variant pre-
diction. We optimized conservation analysis per-species and
per-gene and showed that the conservation patterns at the
levels of nucleotides, genes and species, capture new insights
overlooked by traditional conservation.

From the nucleotides’ perspective, we showed that the
complex conservation patterns of nucleotides are more in-
formative than naı̈ve conservation computations that as-
sign a single score for each site. For example, nucleotides
with identical conservation percentages diverged into dif-
ferent groups based on their conservation patterns across
species. These groups demonstrated various associations
with pathogenicity. To our knowledge, we are the first to
use nucleotide-level phylogenetic profiles to directly esti-
mate clinical outcomes of SNVs, and the first to charac-
terize its substantial contribution to prediction accuracy
compared to traditional conservation analysis. Our findings
are supported by a recent work showing that the conserva-
tion of nucleotides can be characterized using 100 different
states that associate with the functional importance of nu-
cleotides (48). Furthermore, M-CAP tool uses 16 genomic
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Figure 6. AUCs of EvoDiagnostics and other methods in predicting different types of SNVs. AUCs in predicting the test set SNVs (i.e. prospectively
reported pathogenic and benign SNVs in the 115 genes) by different prediction methods. These AUCs were calculated using each method’s most updated
version of pre-calculated prediction scores of the test set SNVs (see Materials and Methods). Exact counts of SNVs predicted by each method is described
in Supplementary Table S7. Ensemble and deep learning (DL) based models are marked with black triangles and green text. The remaining methods are
marked with black circles and either blue, red or yellow text. RF conservation (blue) refers to the random forest model trained on the nine mentioned
conservation scores (see Materials and Methods). EvoDisgnostics models (red) and conservation tools (yellow) that were based on 100 species alignments
are marked with darker colored text compared to their equivalent 46 species-based versions. (A) One dimensional representation of the AUCs in predicting
all types of variants in the test set. (B) AUCs in predicting the missense (x-axis) and noncoding (y-axis) test set SNVs. Methods that provided no predictions
of noncoding SNVs are missing from this panel. The vertical and the horizontal dashed lines represent the minimal AUCs scored by all ensemble/DL tools
in predicting missense variants, and by most conservation-based tools in predicting noncoding variants, respectively. (C) One dimensional representation
of the AUCs in predicting the missense SNVs; AUC, area under the curve; DL, deep learning; SNV, single nucleotide variant.

D
ow

nloaded from
 https://academ

ic.oup.com
/nargab/article/4/2/lqac025/6564617 by tel aviv university user on 02 June 2022



14 NAR Genomics and Bioinformatics, 2022, Vol. 4, No. 2

annotations in combination with conservation patterns of
rare amino acid variants across species (represented by three
features per-species) to improve prediction of rare missense
variants (25).

At the genes’ perspective, genes vary in their evolution-
ary history and conservation. Different positions within
each gene show a variety of complex conservation pat-
terns, which capture gene-specific associations with the
pathogenicity of variants. Furthermore, we showed that
genes cluster by their accuracy, NPV and PPV profiles,
demonstrating that some genes resemble in the capability
to have their variants predicted using conservation, while
others differ. For example, BRCA1 and BRCA2 share sim-
ilar conservation patterns and their accuracy profiles are
positively correlated, while their accuracy profiles are neg-
atively correlated with the accuracy profiles of TTN and
FBN2. Thus, tailored conservation analysis that considers
the variation among genes is likely to be beneficial, yet most
current prediction tools evaluate conservation identically
across genes.

At the species perspective, our results clearly demon-
strated that species differ in their ability to predict the
clinical outcomes of variants. These species-to-species dif-
ferences exist not only between distinct clades (e.g. mam-
mals versus birds), but also within clades (e.g. coelacanth
versus lamprey). Furthermore, Malhis et al. (66) showed
that the NPV in predicting variants using species conser-
vation decreases with evolutionary distance from human.
Sundaram et al. (74) demonstrated that amino acid vari-
ants at high allele frequencies in chimpanzee populations
indicate benign consequences in human. Our analysis not
only supported these findings but also showed that the PPV
increased when using evolutionary distant species, while
the accuracy did not necessarily associate with evolution-
ary distances. Comparing between conservation-based pre-
diction tools that analyzed 46 and 100 species, empha-
sized the effect the analyzed set of species has on predic-
tion accuracy. Furthermore, we showed that the ability of
species to predict the clinical outcomes of variants dif-
fered across genes. This means that conservation among
a certain species could be informative in one gene but
non-informative in another (e.g. golden hamster in APC
versus in MSH6). Hence, it is likely beneficial to inte-
grate the nucleotide conservation patterns across species us-
ing species-weights that are optimized for the prediction
task.

To apply our findings and validate them, we developed
EvoDiagnostics, a prediction model that classifies SNVs us-
ing random forest based on conservation patterns. EvoDi-
agnostics was optimized according to the utility of each
species to predict variants in the genes of interest, i.e. the
best combination of features was computed to maximize
performance on the training data.

EvoDiagnostics outperformed conservation tools when
prospectively predicting SNVs in 115 disease-related genes,
especially when predicting missense variants. Furthermore,
we showed that EvoDiagnostics optimized for BRCA1 out-
performed the 115-genes EvoDiagnostics model (that was
trained on an equally sized train set) in predicting SNVs
in BRCA1. EvoDiagnostics also predicted variants in genes
with limited data better than naı̈ve conservation.

We expect to increase the accuracy of EvoDiagnostics
with the accumulation of additional data from genes cur-
rently not included in our analysis. Furthermore, as data
accumulate, we expect to optimize EvoDiagnostics per type
of variants (e.g. missense, noncoding, nonsense and synony-
mous). This would be accomplished by characterizing as-
sociations between conservation patterns, variant type and
variant pathogenicity, while providing insights regarding
the ability of different species to predict different types of
variants across the genes. Expanding the pool of analyzed
species may also improve the performance of our model.
One limitation of EvoDiagnostics is its current inability to
predict the pathogenicity of insertions and deletions muta-
tions. Other important future directions include testing ad-
ditional coding schemes for converting alignments to fea-
tures, and taking amino acid attributes into account. En-
semble prediction tools such as REVEL (24), M-CAP (25),
CADD (23), Eigen (76) and LINSIGHT (77) use conser-
vation within their set of features. Thus, implementing Evo-
Diagnostics as a feature in ensemble-based prediction meth-
ods would potentially increase their prediction accuracies.

Overall, we expect EvoDiagnostics to promote
personalized-based medicine by improving VUSs pre-
dictions and patient management. We believe that a deeper
understanding of the crosstalk between the nucleotide-level
conservation patterns, the genes and the species, could shed
light on the evolutionary processes the genes went through
and promote applications of evolutionary concepts into
medicine and biology.
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