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There is growing evidence for the presence of vix 10-2 substitutions per site along the two lineages. The
able microorganisms in geological salt formations thaate of substitution for 16S ribosomal DNA in prokary-
are millions of years old. It is still not known, howeverptes is remarkably uniform among diverse lineages and
whether these bacteria are dormant organisms that esmages between X 10-8and 5X 108 substitutions per
themselves millions of years old or whether the sadite per year (Ochman and Wilson 1987; Hillis and Dix-
crystals merely provide a habitat in which contemporamn 1991; Munson et al. 1991; Clark et al. 1992; Moran
microorganisms can grow, perhaps interspersed with rek-al. 1993; Aksoy, Pourhosseini, and Chow 1995; Bandi
atively short periods of dormancy (McGenity et alet al. 1995; Clark, Moran, and Baumann 1999; Ochman,
2000). Vreeland, Rosenzweig and Powers (2000) hakévin, and Moran 1999). Applying these rates, we es-
recently reported the isolation and growth of a halotdimate the time of divergence betweBnpermians and
lerant spore-formingBacillus species from a brine in- S. marismortui to be about 13,000—65,000 years. We
clusion within a 250-Myr-old salt crystal from the Permnote, moreover, that the degree of divergence between
ian Salado Formation in New Mexico. This bacteriunB. permians and S, marismortui is smaller than the de-
Bacillus strain 2-9-3, was informally christen&acillus gree of divergence between two strainsSofmarismor-
permians, and a 16S ribosomal RNA gene was sdui (Arahal et al. 1999).
quenced and deposited in GenBank under the nBme The second reason to doubt the antiquityBoper-
permians (accession number AF166093). It has beemians concerns the rate of evolution of its 16S rRNA
claimed thatB. permians was trapped inside the saltgene. We used the relative-rate test (Sarich and Wilson
crystal 250 MYA and survived within the crystal until1973) with the phylogenetic weighting scheme of Rob-
the present, most probably as a spore. Serious douinison et al. (1998) to test the number of substitutions
have been raised concerning the possibility of spore son the B. permians branch against that on th& mar-
vival for 250 Myr (Tomas Lindahl, personal communiismortui branch, withVirgibacillus proomii as the out-
cation), mostly because spores contain no active DNgxoup (fig. 1). There was no significant difference in the
repair enzymes, so the DNA is expected to decay intmmbers of nucleotide substitutions between the two lin-
small fragments due to such factors as the natural ages® = 0.48). Were we to accept the antiquity Bf
dioactive radiation in the soil, and the bacterium is e)permians, we would have to conclude that the number
pected to lose its viability within at most several hunef substitutions accumulated & marismortui during
dred years (Lindahl 1993). In this note, we apply the250 Myr of evolution is equal to that accumulated by
proof-of-the-pudding-is-in-the-eating principle to tesB. permians during the 3—7 days of active replication in
whether the newly reporteB. permians 16S ribosomal the laboratory following its rescue from a 250-Myr evo-
RNA gene sequence is ancient or not. lutionary slumber.

There are several reasons to doubt the antiquity of Assuming, as Vreeland, Rosenzweig, and Power
B. permians. The first concerns the extraordinary simi{2000) did, thaB. permians did not evolve for 250 Myr,
larity of its 16S rRNA gene sequence to thatBaftillus all the differences between the two sequences would
marismortui. Bacillus marismortui was described by Ar- have to be attributed to at least 250 Myr of evolution in
ahal et al. (1999) as a moderately halophilic speci&s marismortui. Consequently, we must conclude that
from the Dead Sea and was later renanSatibacillus the rate of substitution in the 16S rRNA geneSofnar-
marismortui (Arahal et al. 2000). Thé. permians se- ismortui is about 5x 1012 substitutions per site per
quence differs from that o& marismortui by only one year, i.e., a reduction of four orders of magnitude in
transition and one transversion out of the 1,555 a|ign©@mparison with the typical prokaryotic rate. Such a low
and unambiguously determined nucleotides. In compagte of nucleotide substitution has never been encoun-
ison, the 16S rRNA gene froitaphylococcus succinus, tered in nature, least of all in bacteria. Under the as-
which was claimed to be “25-35 million years old” suymption thatS marismortui evolves at a rate that is
(Lambert et al. 1998), differs from its homolog in itstypical of eubacteria, we must conclude that the time of
closest present-day relative (a urinary pathogen Ca”@&ergence betweeB. permians and S marismortui is
Saphylococcus saprophyticus) by 19 substitutions out quite short.
of 1,525 aligned nucleotides. Using Kimura's (1980)  we note, however, that an alternative explanation
two-parameter model, the difference betweenBheer-  to the modernity oB. permians may be raised. Accord-
mians and S. marismortui sequences translates into 1%9 to one such exp|anation, put forward by one of the
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lineages due to the fact that boB permians and S. Notwithstanding the heroic contamination checks
marismortui are ancient. To test this possibility, we conby Vreeland, Rosenzweig, and Powers (2000), which in-
ducted a relative-rate test & permians andS. maris- cluded microscopical examinations, alkali and acid ster-
mortui versusV. proomii, with two strains ofVirgiba- ilizations, and UV radiations, the pudding just tastes too
cillus pantothenticus as outgroup (fig. 1). Again, we fresh to be Permian, an8. permians is most probably
found no significant difference in the number of nucledestined to join the growing list of such purportedly
otide substitutions between the two ingroup lineadges Methuselan specimens as the Miocene magnolia (Go-
= 0.74), and under the assumption of the molecultenberg et al. 1990), the Cretaceous weevil (Cano et al.
clock, we must conclude tha. permians, S mariss 1993), and the would-be dinosaur (Woodward, Weyland,
mortui, andV. proomii are contemporaneous organismsand Bunnell 1994), which turned out to be contempo-
Of course, the claim may be raised thatpantothen- rary artifacts (Austin, Smith, and Thomas 1997; Walden
ticus is also ancient, so we also performed the relativend Robertson 1997; Gutrez and Mam 1998).
rate test orB. permians, S. marismortui, andV. proomii
againstV. pantothenticus, with Bacillus halodenitrifi- ~ Acknowledgments
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