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Model selection may not be a mandatory step for
phylogeny reconstruction
Shiran Abadi 1, Dana Azouri1,2, Tal Pupko2 & Itay Mayrose 1

Determining the most suitable model for phylogeny reconstruction constitutes a fundamental

step in numerous evolutionary studies. Over the years, various criteria for model selection

have been proposed, leading to debate over which criterion is preferable. However, the

necessity of this procedure has not been questioned to date. Here, we demonstrate that

although incongruency regarding the selected model is frequent over empirical and simulated

data, all criteria lead to very similar inferences. When topologies and ancestral sequence

reconstruction are the desired output, choosing one criterion over another is not crucial.

Moreover, skipping model selection and using instead the most parameter-rich model, GTR+I

+G, leads to similar inferences, thus rendering this time-consuming step nonessential, at

least under current strategies of model selection.
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Probabilistic evolutionary models form the basis of sequence
data analyses. Parameter inference, whether performed within
the maximum likelihood (ML) or Bayesian inference para-

digms, relies on explicit definition of the substitution process, which
may vary in spatial manner (across the alignment sites) and in
temporal manner (branches of the phylogeny). Over the last
50 years, a plethora of evolutionary models has been developed, each
relying on a different set of assumptions regarding the dynamics of
nucleotide evolution. Such assumptions, quantified by several
parameters, determine whether the substitution rates between all
pairs of nucleotides are identical or independent, whether the sta-
tionary frequencies of the nucleotides within the analyzed data are
equal or allowed to vary, whether a proportion of the sites are fully
conserved, and whether heterogeneous rates of evolution are
allowed across the alignment sites. Altogether, these produce varied
alternatives that account for different processes of evolution1–8.

Accounting for more parameters grants a model the flexibility
to fit different datasets and capture their complexity. However,
the expected error of each estimate increases with the increase in
the number of parameters, which is problematic mainly when
data are scarce. Selecting the most suitable model for describing
the evolutionary process has been addressed under both the fre-
quentist and Bayesian approaches, by proposing statistical criteria
to compare the fit of competing models. Under the frequentist
approach, the fit of the data to each substitution model, together
with the model parameters, tree topology, and branch lengths is
assessed through iterative optimizations of the likelihood func-
tion. The estimated ML scores are then compared through one of
several possible criteria. For example, the hierarchical and
dynamic likelihood ratio tests (hLRT and dLRT, respectively)
criteria perform a sequence of likelihood ratio tests between pairs
of nested models, until a model that cannot be rejected is reached.
While in hLRT the order in which parameters are added is
defined a priori, in dLRT all models that differ in one parameter
are compared in parallel and the hierarchy proceeds with the
model that maximizes the log-likelihood difference. Thus, dLRT
enables a different order of hypotheses testing for different
datasets9. Other criteria compute the ML for all the candidate
models, but assign different penalties according to the data size or
the number of parameters included in the model. The most
commonly used criteria are the Akaike information criterion
(AIC)10, the corrected AIC (AICc)11, the Bayesian information
criterion (BIC)12, and the decision-theory criterion (DT)13

(summarized in Table 1).
Notably, handling the uncertainty within model testing by the

ML criteria depicted above is accomplished by accounting for the
number of parameters assessed in the computation, but not for
the type of processes they represent. For example, the penalty for

a parameter that distinguishes between transition and transver-
sion would be identical to the penalty imposed for a parameter
that assesses the number of invariant sites. In contrast, under the
Bayesian approach, model selection can be performed using
the marginal likelihood, which is the probability of the data given
the model, while marginalizing the estimates (Table 1). The
magnitude of the Bayes factor (BF), namely, the ratio of the
marginal likelihoods of two models, quantifies the strength of
evidence that one model is more appropriate to describe the data
than the other14. Since the marginal likelihood for phylogenetic
interpretation consists of high dimensionality and the wide range
of values cannot be enumerated, its computation is not always
feasible. Several methods that estimate the Bayes factor or the
marginal likelihood for model selection in phylogenetic analyses
have been proposed, with variable tradeoff between computation
times and accuracy15–20.

Obviously, no evolutionary model can fully capture the genu-
ine complexity of the evolutionary process, such that even the
most adequate one merely provides an approximation of reality21.
Nevertheless, it has been claimed that using an inadequate model
may result in erroneous phylogeny22,23, and thus model selection
is considered an integral part of the phylogenetic reconstruction
procedure. However, the use of different criteria often leads to the
selection of different models. Several studies used simulations to
evaluate the performance of different model selection criteria,
focusing on the ML criteria9,13,24–30. These studies established
that AIC is more permissive, tending toward more complex
models, while BIC and DT exhibit the opposite pattern, tending
to choose simpler models. Nevertheless, as far as accuracy of
choosing the generating model is concerned, there appears no
consensus regarding the preferred criterion. Posada30 and Posada
and Crandall9 initially concluded that methods that rely on
likelihood ratio tests perform better than AIC and BIC. However,
a later study by Posada and Buckley concluded that the use of
hLRT may not be effective for real data and therefore averaging
different models according to the weights given by AIC or BIC is
preferred29. Increasing this ambiguity, an additional study
showed that BIC and DT select the generating model more fre-
quently than AIC and hLRT24, whereas under other simulation
conditions, AIC was shown to be more accurate than BIC26.
Notably, these studies did not thoroughly examine the various
tasks that are downstream to model selection. Hence, it is unclear
whether the use of alternative best-fitted models according to
different criteria would result in different inferences. It was
argued that the inferred topology should be quite robust to the
selected model25–28,31, yet other applications, such as branch
lengths estimation and ancestral sequence reconstruction, may be
more sensitive13,27,28,30,32.

Table 1 Model selection criteria procedures

Criterion Procedure

AIC ML is computed for every candidate model and the model with minimal �2‘þ 2Kf g is selected
AICc Based on AIC but penalizes also for the data size. Namely, the model with minimal fAICþ 2K Kþ1ð Þ

n�K�1 g is selected; advised to be used instead of
AIC when n

K <40
29

BIC ML is computed for every candidate model and the model with minimal �2‘þ K ln nf g is selected
DT Based on BIC but incorporates relative branch-length error as a performance measure
hLRT/dLRT Sequential likelihood ratio tests between pairs of nested models until one cannot be rejected. Topologies are fixed to allow nesting. While

in hLRT the order in which parameters are added is defined a priori, in dLRT all models that differ in one parameter are compared in
parallel and the hierarchy proceeds with the model that maximizes the log-likelihood difference. Thus, dLRT enables a different order of
hypotheses testing for different datasets

BF The ratio between the marginal likelihood of two models. A ratio above 10 implies strong support for the model at the numerator

‘, the maximum log-likelihood of model M is computed as log PðDjM; θÞ; D, M, θ represent the data, the model, and the parameters estimates (i.e., the model parameters, branch lengths, and tree
topology), respectively. K is the number of parameters; n is the data size (usually defined as the number of sites in the alignment33). The marginal likelihood is computed as P DjMð Þ ¼R
P DjM; θð ÞP θjMð Þdθ
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In this study, we first present a literature survey that demon-
strates the lack of consensus regarding which model selection
criterion should be used for phylogenetic studies. A possible
reason for the inconsistency in the conclusions of the above-
mentioned studies is that they were established on few batches of
datasets that were simulated under combinations of delimited
values of number of taxa, alignment length, and sequence
divergence. To avoid potential biases in our in-depth analysis of
the performance of alternative criteria, we assembled an extensive
collection of empirical datasets that ranges over a wide variety of
biological parameters. We show that alternative criteria yield
similar downstream phylogenetic inferences and that simply
using the most complex nucleotide substitution model, GTR+I
+G, leads to similar results, at least for the inference of tree
topology and ancestral sequences.

Results
Current model selection practices. We examined current prac-
tices applied by the community by sampling 300 phylogenetic
studies that used jModelTest33,34 for model selection during
2017–2018 (the data are available in Supplementary Data 1). This
survey revealed that the criterion of choice is quite arbitrary: 41%,
21%, and 5% of the researchers opted to use the model selected by
AIC, BIC, and AICc, respectively, while DT was used in a single
study only. Notably, 36% of the studies did not specify the used
criterion, and 4% declared that the same model was selected by
more than one criterion. Thus, despite the wide-use of model
selection procedures in phylogenetic studies, it seems that either
the criterion used is not regarded as a crucial consideration, or
that a thorough research to guide the community on the merits of
the criteria is still—surprisingly—missing.

Effect of model selection on phylogeny reconstruction tasks.
We sought to understand the relative merits of the various model
selection criteria by comparing their performances on phylogeny
reconstruction. The datasets that were used for this examination
(referred to as simulation set c0) were simulated based on varied
realistic data conditions, derived from three empirical databases:
PlantDB35, Selectome36, and PANDIT37 (7200 datasets alto-
gether), each with one of 24 commonly used substitution models
(see Methods). To assess the effect on the resulting tree, we
reconstructed the corresponding tree using the selected model by
each of the six criteria: AIC, AICc, BIC, DT, dLRT, and BF, and
compared each selected tree (reconstructed with the selected
model of each criterion) to the true tree (that was used to simulate
the sequence data). First, when reconstruction of the true topol-
ogy was examined, the six criteria performed similarly as they all
selected models that correctly recovered the topology of the true
tree in 50–51% of the datasets (Table 2, first column). Second, we
investigated which criterion tended toward models that yielded
topologies with the minimal distances from the true trees by
computing the Robinson-Foulds (RF) distance38. Then, we
ranked the criteria from lowest distance (rank 1) to the largest.
Our results demonstrated that all criteria performed very simi-
larly (p-value > 0.05 for all pairs of criteria; pairwise Wilcoxon
signed rank tests adjusted for ties with the Bonferroni correction
for multiple testing). In fact, the averages of the criteria ranking
across all datasets were highly similar (Table 3, first column).
Furthermore, each pair of criteria agreed on the topologies of
more than 83% of the 7200 datasets (Fig. 1a). These results
suggest that the choice of the model selection criterion has
marginal impact on the resulting tree topology. Third, we ana-
lyzed the accuracy of the inferred branch lengths of the
reconstructed trees by measuring their distances from the true
trees using the branch score (BS) distance39, and ranked them

in a similar manner as for the topological distances. Evidently,
the averages across the rankings of all datasets were similar for
all criteria (Table 4; first column). Still, the ranks of BIC and
DT were statistically significantly lower (i.e., more accurate)
than AIC and BF (p-value < 0.05; pairwise Wilcoxon signed rank
tests).

Notably, it is possible that the average over all datasets
conceals superiority of some criteria in certain ranges of the
data. In addition, ranking the criteria according to their
performances allows comparison across different tree sizes,
but does not reflect the magnitude of the errors. To address
these limitations we binned the datasets according to the tree
size, i.e., the number of tree nodes for the analysis of topological
distances, and the total branch lengths (TBL) for the analysis of
branch-length distances. Then, we compared the actual
distances of the datasets within each bin between the criteria,
rather than their ranks. Still, no apparent differences were
observed between the averages obtained by the various criteria,
both for topology and branch-length estimates across increas-
ing tree sizes (p-value > 0.05 for all pairs of criteria for all bins;
paired t-tests adjusted for ties following the Bonferroni

Table 2 Percentage of accurate topologies

Strategy/
simulation set

c0 c1 c2 c3

AIC 50.51 50.44 50.64 36.50
AICc 50.51 50.47 50.58 36.60
BIC 50.44 50.47 50.69 35.80
DT 50.47 50.44 50.68 35.70
dLRT 50.29 50.26 50.78 35.50
BF 50.62
GTR+I+G 50.82 50.94 51.11 36.40
JC 48.31 48.81 50.33 35.40
True model 50.17

The table presents the percentages of correctly inferred topologies of every simulation set by
each reconstruction strategy. The top six rows represent the accuracy obtained by
reconstruction with the models selected by the various model selection criteria. The next two
rows represent the reconstructions of the GTR+I+G and JC models regardless of model
selection. The true model represents reconstruction with the model used to simulate each
dataset, and therefore is applicable to simulation set c0 only. BF criterion was not run for the
complex simulation sets c1-c3 (see Methods). The percentages of simulation set c3 were
computed over a subset of 1000 datasets that represent coding sequences

Table 3 Mean strategies ranking according to topological
distances

Strategy/simulation
set

c0 c1 c2 c3

AIC 4.96 3.97 3.99 3.86
AICc 4.97 3.97 4.00 3.88
BIC 4.97 3.98 4.00 3.96
DT 4.97 3.98 4.00 3.96
dLRT 4.98 4.01 4.01 4.03
BF 4.98
GTR+I+G 4.97 3.92 3.91 3.91
JC 5.20 4.16 4.10 4.40
True model 4.99

For each dataset, the ranking of the strategies was determined according to the Robinson-Foulds
distance from least (ranked as 1) to most distant. The ranks range from 1 to 9 for set c0 and from
1 to 7 for sets c1–c3. The top six rows represent the accuracy obtained by reconstruction with the
models selected by the various model selection criteria. The next two rows represent the
reconstructions of the GTR+I+G and JC models regardless of model selection. The true model
represents reconstruction with the model used to simulate each dataset, and therefore is
applicable to simulation set c0 only. BF criterion was not run for the complex simulation sets c1–
c3 (see Methods). The ranks of simulation set c3 were computed over a subset of 1000 datasets
that represent coding sequences
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correction for multiple testing; Supplementary Figures 2a and
3a, Supplementary Data 2, 3).

Subsequently, we examined whether the use of different model
selection criteria has an effect on ancestral sequence reconstruc-
tion, as an example of an analysis which is downstream to
phylogeny inference. To this end, each of the selected models
(together with their corresponding selected trees) was used to
infer the root sequence for 1000 datasets (see Methods). Then, we
measured the percentage of incorrectly inferred sites of each
inferred sequence compared to the corresponding true sequence.
The different criteria produced highly similar results. Namely, for
all criteria, in 44% of the datasets the inferred sequence was
identical to the true one, and in 97% of the datasets fewer than 5%
of the sites were erroneous. Even though the sequence
divergences in these simulated datasets reflect those found in
many empirical datasets, we hypothesized that noticeable
differences would become apparent when more divergent
sequences, representing more challenging inference cases, were
simulated. To this end, we resized all trees to several scales and
repeated the analysis. For all criteria, the average percentage of
incorrectly inferred sites increased with the increase in sequence
divergence, however, the dissimilarities between every pair of the
inferred sequences were still negligible (Fig. 2a and Supplemen-
tary Table 1). This suggests that choosing among model selection
criteria has minor effect on the accuracy of ancestral sequence
reconstruction.

Performance of model selection under model misspecifications.
Evidently, the results presented above were derived from data that
were simulated using the same set of models that were available
for inference. Moreover, these evolutionary models are clearly an
oversimplification of realistic sequence dynamics. This is reflected
by the lower percentages of non-similar phylogenies, i.e., of
incongruencies, between pairs of criteria over the simulated
datasets compared to the empirical ones (Fig. 1a, b). For example,
only 8% of the topologies were inferred differently by AIC and
BIC over the simulated datasets compared to 21% over the
empirical datasets. Consequently, such simulations may not be as
challenging as real data analysis and may diminish the differences
among model selection criteria.

To examine the effect of the inevitably simplifying assumptions
of the simulations, we augmented their complexity by generating
data with models that are not as simplistic as those available for
model selection and phylogeny inference. To this end, we
integrated two layers of complexities within two additional
simulation sets. The datasets of the first set, c1, were simulated
using across-site variation of the substitution model; the datasets
of c2 were simulated as those of c1 but also with rate heterogeneity
across sites inferred from the empirical datasets, rather than
sampled from the gamma distribution. The rates that were used
to simulate c1 and c2 were inferred from the empirical datasets. As
before, tree reconstructions of these two complex simulation sets
yielded only few distinct topologies: <10% of the 7200 simulated
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Fig. 1 Pairwise incongruencies on the trees inferred by the evaluated strategies. The number within each cell represents the percentage of discrepancies
between the two strategies at the row and column. The best-fitted model was computed for each criterion, and the trees were reconstructed using ML
optimizations according to this model, as well as for the most complex and simplest models—GTR+I+G and JC. For each pair of strategies (rows and
columns) the percentage of non-identical trees over 7200 datasets is presented (see * and ** below). The upper right triangles represent the percentages
of different topologies and the lower left triangles represent different branch-length estimates. Clearly, two different models lead to different branch-length
estimates, hence the latter reflect the percentages of differently selected models. The panels represent the following datasets: a simulation set c0, b the
empirical set, c simulation set c1, d simulation set c2, and e simulation set c3**. (*) The percentages in the row and column of the BF criterion in panel b were
computed over a subset of 1500 empirical datasets for which BF was computed (marked with an asterisk; see Methods). The analysis over this subset of
1500 datasets for all comparisons is presented in Supplementary Figure 1. (**) The percentages of the simulation set c3 were computed over a subset of
1000 datasets that represent coding sequences (see Methods)
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datasets resulted in different topologies between each pair of
model selection criteria (Fig. 1c, d). In addition, all model
selection criteria were essentially identically accurate in the
topology inference (p-value > 0.05; pairwise Wilcoxon signed
rank tests between all pairs following the Bonferroni correction
for multiple testing; Tables 2, 3; Supplementary Figures 2b and 2c;
Supplementary Data 2). Very small differences were also observed
between the branch-length estimates of the model selection
criteria (Table 4; Supplementary Figure 3b and c; Supplementary
Data 3). We next examined the ancestral sequence reconstruction.
Interestingly, while the distances between the reconstructed
sequences and the true sequences were larger for the most
complex simulation set (c2) compared to the former analysis
(reaching average distances of 0.34 compared to 0.25), the
distances between each pair of criteria remained negligible

(Fig. 2b). Taken together, these analyses suggest that there is no
clear preference of one model selection criterion over another,
both for the phylogenetic inference and for ancestral sequence
reconstruction.

In spite of the enhanced complexity, the simulation sets
presented above were still generated based on the homogeneous
nucleotide substitution models used for inference. In order to
examine whether analyses over data that were generated based on
other evolutionary patterns are in line with the deduction above,
we used a codon model, M840, to simulate an additional set
termed c3. The rates that were used to simulate these datasets
were inferred from a subset of 1000 alignments of coding genes
included in the empirical set. The succeeding analyses over these
generated codon alignments were performed using the nucleotide
substitution models, similar to c0–c2. As before, the percentages of
accurate topologies obtained by all criteria were highly similar
(Table 2, last column; it should be noted that these percentages
were lower than those of simulation sets c0–c2, probably due to
the increased complexity). Likewise, the incongruencies over the
reconstructed topologies were minor, similar to the previous
analyses (Fig. 1e). Since branch lengths represent substitutions
per nucleotide site in the reconstructed trees rather than
substitutions per codon site as in the true tree, the distances
between them were not measured for simulation set c3.

Model selection criteria incongruency. Evidently, the various
model selection criteria appeared to perform similarly in all of the
presented analyses. One possible explanation to support these
findings is that all the criteria tend to select the same substitution
model and thus the reconstructed phylogenies are identical. To
examine this hypothesis, we assessed the extent of discrepancies
among the various model selection criteria over the empirical
datasets. Overall, low agreement was observed among the various
criteria (Fig. 3a, lower triangle). The selections of AIC and BIC
were frequently different (in 62% of the empirical datasets). In
comparison, higher agreement was observed between dLRT with
either AIC or BIC (ca. 40% disagreement with both), while BF
had a very low agreement with all other criteria (60–63% dis-
agreement). As expected, high agreement percentages were

Table 4 Mean strategies ranking according to branch-length
distances

Strategy/simulation set c0 c1 c2
AIC 4.79 3.93 4.04
AICc 4.76 3.93 4.02
BIC 4.68 3.81 3.83
DT 4.67 3.80 3.83
dLRT 4.69 3.86 3.89
BF 4.77
GTR+I+G 5.50 4.22 4.39
JC 6.46 4.45 4.01
True model 4.68

For each dataset, the ranking of the strategies was determined according to the branch-length
distance from least (ranked as 1) to most distant. The ranks range from 1 to 9 for set c0 and from
1 to 7 for sets c1 and c2. The top six rows represent the accuracy obtained by reconstruction with
the models selected by the various model selection criteria. The next two rows represent the
reconstructions of the GTR+I+G and JC models regardless of model selection. The true model
represents reconstruction with the model used to simulate each dataset, and therefore is
applicable to simulation set c0 only. BF criterion was not run for the complex simulation sets c1
and c2. Note that the analysis of branch-length distances was not performed for simulation set c3
since the branch-length estimates are not comparable between the true and reconstructed
trees, i.e., in the latter these represent substitutions per nucleotide site and in the former they
represent substitutions per codon site
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between every pair of root sequences, averaged across 1000 examined datasets: the black curves (which merge due to negligible differences) represent
the comparison between the true root sequence and the inferred one according to the models selected by each of the criteria AIC, BIC, and dLRT, or
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observed between AIC and AICc and even more so between BIC
and DT. All criteria tended to agree more on the inclusion of the
G parameter while the least agreement was on the chosen sub-
stitution matrix (Fig. 3b, e), partly due to the ternary selection
compared to the binary selection posed by the other components
(i.e., whether there is an equal rate parameter for all pairs of
nucleotides, two independent rates for transitions and transver-
sions, or an independent rate for each of the six pairs of
nucleotides). Similar patterns were obtained for datasets that were
simulated based on the sample sizes and estimated diversity rates
of these empirical cases (Fig. 3a, upper triangle). Notably, there
were fewer disagreements between the model selection criteria on
the simulated data compared to the empirical data (Fig. 3a). We
thus conclude that although the criteria may result in distinct
selections, all best-fitted models lead to similar phylogenetic
inferences.

A fixed model instead of model selection. Having established
that alternative criteria for model selection have negligible effect
on phylogenetic tree inference and ancestral sequence recon-
struction, we next examined whether performing a model selec-
tion step prior to these inference procedures is essential. To this
end, we reconstructed the phylogenies for all datasets using a
fixed model. Specifically, we employed GTR+I+G and JC,
representing the most complex and simplest models. We also
compared performance when using the model that was used to
simulate the data (i.e., the true model). While our initial
hypothesis was that a model selection step would prove beneficial,
our results pointed to the contrary. The percentages of correctly
inferred tree topologies for the GTR+I+G model were highly
similar to the model selection criteria across all simulation sets.
Particularly, for simulation sets c0–c2, the percentages were
highest for the GTR+I+G model and even better than under the
true model (Table 2). Corroborating this observation, a similar
trend emerged when the RF distances were examined (Table 3).
Peculiarly, inference with the oversimplified model JC resulted in
a reduction of only ~2% in the number of correctly inferred tree
topologies compared to the other strategies, although analysis of
the RF distances demonstrated that this decreased performance

was statistically significant (Tables 2 and 3; p-value < 0.05 when
comparing JC to all other strategies across all simulation sets;
pairwise Wilcoxon tests following the Bonferroni correction).
This suggests that the most appropriate model is not of major
importance for topology reconstruction, yet, the introduction of
additional parameters may be beneficial. For branch-length
inference, the average rankings of all model selection criteria, as
well as the true model, were better than GTR+I+G across all
examined simulation sets (Table 4; p-value < 0.05 when com-
paring GTR+I+G to all other strategies in simulations sets c0–c2;
pairwise Wilcoxon with the Bonferroni correction), although the
actual branch-length distances were highly similar (Supplemen-
tary Figure 3). The performance of the JC model was inferior to
all other strategies in simulation sets c0–c1 and the corresponding
branch-length distances were markedly larger compared to all
other strategies (Supplementary Figure 3). We also examined the
inferred distances for subsets of the data, binned according to tree
size. In contrast to the negligible differences between the distances
produced by the criteria, the true model, and GTR+I+G, the
reconstruction with JC yielded large distances. This trend was
preserved across increasing tree sizes, both for topological dis-
tances and branch-length distances (Supplementary Figures 2–3;
Supplementary Data 2–3). The results obtained for the ancestral
sequence reconstruction analysis using GTR+G (see Methods)
were similar to those obtained using the established model
selection criteria (Fig. 2 and Supplementary Table 1).

The strategies performance across increasing alignment size.
One can speculate that the superiority of GTR+I+G for topology
inference may not hold when small datasets are analyzed because
of the possible incorporation of more error within each estimated
parameter. To test this hypothesis, we compared the different
strategies in subranges of the data, categorized by the alignment
size. To this end, we binned the various datasets according to the
number of taxa and the alignment length. The RF distances of
GTR+I+G were similar to those of the model selection criteria
across different data sizes (Fig. 4). In conclusion, our results
suggest that at least for the tasks of phylogeny inference and
ancestral sequence reconstruction, there is no clear benefit for
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performing a model selection step, and a fixed parameter-rich
model can be used instead.

Discussion
Model selection is considered as a fundamental step in the process
of phylogeny reconstruction and has penetrated into the broad
phylogenetic community, as implied by the ubiquitous use of the
existing tools for model selection. Yet, as exemplified by our lit-
erature survey, there is much uncertainty surrounding the criterion
of choice. Our initial goal in this study was to perform a rigorous
analysis that could guide the community toward the preferred
criteria in subranges of data characteristics. To this end, we
examined the impact of various model selection criteria on phylo-
genetic inference over thousands of datasets that represent a range
of realistic biological conditions. We evaluated the effect of using
the various criteria on the reconstruction of the phylogenetic trees
and on the inference of ancestral sequences by analyzing simula-
tions of standard models and complex models that mimic empirical
datasets more realistically. To our surprise, the results showed that
all model selection criteria performed equivalently. Moreover, we
found that using the most parameter-rich model, GTR+I+G, for all
datasets instead of conducting a model selection step leads to
phylogenies and ancestral sequences as accurate as those obtained
when model selection is performed, suggesting that the standard
practice of model selection prior to phylogeny inference is unne-
cessary when the currently used strategies are employed.

This study is not the first to investigate the importance of
model selection and the relative effectiveness of the various

criteria9,13,24–30. Yet, previous studies have arrived at conflicting
conclusions regarding the preferred criterion. A possible cause for
this ambiguity could be the relatively restricted conditions that
were used to simulate the data. Namely, several delimited values
of sample size and sequence divergence were defined, and
simulated data were generated according to combinations of
them. Although this approach indeed varies the examined test
cases and allows fair comparisons over different scenarios, it still
does not reflect the complex patterns concealed within empirical
datasets, particularly with the ongoing accumulation of data. To
overcome this limitation, here we used realistic features that were
extracted from thousands of empirical datasets, spanning three
databases that differ in their biological context. The datasets in
PlantDB35 are typically of low divergence, as each contains
homologous sequences within a single plant genus. The datasets
in Selectome36 contain homologous coding sequences across
greater taxonomic groups, and were assembled for the inference
of positive selection. These datasets thus exhibit rather high
divergence but low number of taxa. PANDIT37, on the other
hand, covers common protein domains and thus the alignments
are short but include many homologous protein-coding genes.
Altogether, these form a diverse set of biological datasets that
extends over a wide range of intricate realistic properties. Still,
generating simulated datasets according to the properties of
empirical datasets while relying on homogeneous substitution
models does not reach the complexity of empirical datasets. To
increase the complexity of these datasets, we generated additional
simulation sets, c1 and c2, that integrate heterogeneity of the
substitution models and evolutionary rates across sequence sites.
An additional simulation set, c3, was generated according to a
codon model that illustrates processes which are dissimilar to
those portrayed by the models available for inference. Our ana-
lyses over these assortments did not yield prominent differences
between the criteria. Notably, even though these settings led to
higher incongruencies, they still did not reach the intricacy of
empirical datasets (Fig. 1), indicating that real data consist of
patterns that are substantially more complex than the simple
models commonly used for phylogeny reconstruction.

For some phylogenetic applications, the use of alternative
models may not have much influence on the results, whereas for
others, the selection of a best-fitted model might be beneficial.
Previous studies25–28,31 and the analyses conducted here revealed
little impact of using alternative models on the accuracy of tree
topologies. While our results were demonstrated for phylogenetic
reconstruction and ancestral sequence reconstruction, evidence
for the robustness of inference to the model employed was also
shown for the estimation of relative evolutionary rates across
proteins alignment sites41, and for the inference of the evolu-
tionary relationships when quartets are concerned32. We spec-
ulate that our conclusion should also hold for other tasks such as
finding orthologous sequences, detecting horizontal gene transfer
events, and the detection of conserved regions. For the inference
of branch lengths, our results show that model selection leads to
marginally more accurate estimates compared to a consistent use
of GTR+I+G, and among the model selection criteria, the BIC
and dLRT were most accurate. This finding complies with pre-
vious studies that sustained that using simpler models yields more
accurate branch-length estimates13,28,42. This suggests that for
divergence time estimation, choosing the best fit model using
model selection criteria could contribute and should be further
examined. Notably, none of the models can capture the true
evolutionary processes, nor can they reconstruct precisely the true
phylogeny43–47. Yet, in order to obtain more correct resolutions,
considering additional models that parameterize other plausible
processes could be beneficial. It should be noted that in this work
only a specific set of commonly used nucleotide substitution
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models were studied while the effect of other nucleotide sub-
stitution models as well as choosing among amino acid matrices
and different codon models remains to be studied. Importantly,
in some applications the benefit of using model selection is evi-
dent, e.g., when transition–transversion and GC-content biases
are of interest7 or for the inference of positive selection48. The
main difference between the mentioned inferences, i.e., those that
are robust to model selection versus those that might not be, is
that in the latter the model selection is inherently important for
the inference task, while in the former the substitution model can
be regarded as a nuisance parameter.

While different model selection criteria differ in their chosen
model, they select features of models that the data seem to support
(Fig. 3). It is reasonable that the most parameter-rich model, which
combines all of these components, would lead to similar inferences
in the risk of including more noise. This raises the question whether
any model could suffice. It has been previously shown that using an
oversimplified model when the assumed evolutionary patterns are
known to be violated deteriorates the accuracy of inference, and in
such cases, complex models should be used49–52. Surprisingly, in
our analysis the recovery rate of the true tree topology by JC was
only ~2% lower than the rates obtained with the various model
selection criteria, and this gap decreased for the more complex
simulation sets (Table 2). The marginally inferior performance of JC
is not specifically attributed to small or large trees, but is quite
constant across all tree sizes (Supplementary Figure 2, Supple-
mentary Data 2). These findings suggest that in many cases there
are no major differences among the alternative models, and that any
model can serve just as well. It has been previously shown that
when topological uncertainties exist, reconstruction with the true
model can result in an inaccurate topology while the reconstruction
with a wrong model results in the accurate one52,53. In addition, our
results suggest that the best-fitted models do not consistently yield
topologies that are more accurate than using a fixed model (Tables
2 and 3). Namely, if model misspecification introduces a bias, it is
not directional, and thus slightly reducing or increasing the level of
misspecification does not lead to direct improvement in the accu-
racy of tree topology inference. Hence, choosing one model for
phylogeny reconstruction performs quite similarly to others. Cer-
tainly, more theoretical research is needed to better understand the
effect of alternative models on phylogeny reconstruction.

Admittedly, it is necessary to examine the confidence of using a
certain model as a proof for the utility or irrelevance of model
selection for various phylogenetic applications. A possible proce-
dure could be to compare measures of model adequacy54–61 or
bootstrap support62–64 across different model selection criteria.
Ripplinger et al. have examined the absolute adequacy of the
selected models, and found that they are supported in most cases65.
Yet, these authors also found that even very simple models are not
rejected and showed that the simplest models that were not rejected
produced trees that are not significantly different from those pro-
duced using the best supported models. In spite of this, they
claimed that model selection may become paramount when there
are possible uncertainties in the topologies (i.e., Felsenstein or
inverse-Felsenstein zones49,51,66). However, these conclusions were
drawn from analyses over a small sample of 25 empirical datasets
and 20 simulated datasets generated from only two sets of rate
parameters. In order to obtain comprehensive conclusions, similar
analyses should be conducted over a varied database such as the one
used here. Due to the intensive computational work entailed with
these procedures and the possible lack of power of these methods,
we leave this to future work.

To conclude, our results imply that model selection may be
unnecessary when one is interested in inferring ancestral
sequences or in revealing the cladistic relationships among genes
and organisms.

Methods
Empirical data assembly. For a preliminary assessment of the discrepancies
between the different model selection criteria, we assembled a database encom-
passing 7200 multiple sequence alignments (MSAs), 2400 from each of the fol-
lowing three databases: PlantDB35, Selectome36, and PANDIT37. The datasets in
PlantDB were generated as described in Glick et al.35, such that each MSA contains
sequences belonging to a single plant genus and a potential outgroup. These MSAs
contain between 2 and 912 species and span over 115–9417 aligned sites (Sup-
plementary Figure 5a). The Selectome database36 includes codon alignments of
species within four groups (Euteleostomi, Primates, Glires, and Drosophila), which
extend from 6 to 257 sequences and 72 to 64,734 aligned sites. The PANDIT
database37 includes alignments of protein sequences that extend from 2 to
2453 sequences and 15 to 6895 aligned sites. A subset of 2400 datasets was ran-
domly selected from each database, excluding alignments that contained fewer than
four sequences, fewer than 100 alignment sites, or produced low total divergence
(i.e., when the multiplication of the total branch length by the alignment length is
lower than 10) (Supplementary Figure 5b).

Nucleotide substitution models. The nucleotide substitution models examined in
this study are the default 24 models assessed in jModelTest, i.e., JC1, F812, K2P3,
HKY4, SYM5, and GTR6 combined with the proportion of invariable sites (+I)67,68,
rate heterogeneity across sites (+G)69, or both (+I+G). These models consist of
several sets of parameters: the substitution matrix, the F, I, and G components. The
substitution matrix describes the rates of substitution between every pair of
nucleotides: JC and F81 assume an equal rate for all parameters; K2P and HKY
assume two rates to distinguish between transitions and transversions; SYM and
GTR assume an independent rate for each of the six pairs of substitutions. The F
component describes whether the stationary nucleotide frequencies equal 0.25 (JC,
K2P, and SYM), or are allowed to vary (F81, HKY, and GTR). The I parameter
assesses the proportion of invariable sites, and the G parameter allows more
flexibility by assigning heterogeneous rates across the alignment sites, drawn from a
discrete gamma distribution with mean 1. The shape of the gamma distribution is a
free parameter estimated from the data. For the application of ancestral sequence
reconstruction, the combination of the I parameter was not examined since it is not
implemented in PAML70.

Simulation set c0: common models. To analyze the performance of the six
examined model selection criteria (Table 1), we conducted extensive simulations
that characterized various evolutionary processes. To extend over a wide range of
realistic data conditions, the input parameters were derived from the sampled
empirical datasets. For each dataset, one model (termed hereafter the true model),
was randomly selected out of a set of the 24 nucleotide substitution models. Given a
single MSA, the phylogeny and the parameters required for generation of simulated
data (alignments length, number of sequences, base frequencies, substitution rates,
heterogeneity-across-sites, and proportion of invariant sites) were computed using
PhyML71. Finally, INDELible72 was executed over these parameters with the
respective PhyML tree as the base tree, resulting in ca. 300 simulated alignments
per model. In total, 7200 simulated datasets were generated (termed hereafter
simulation set c0).

Simulation sets c1 and c2: integrate model misspecification. To assess the
performance of the model selection criteria over simulated data that incorporate more
realistic patterns than the basic substitution models available for inference, we gen-
erated additional simulated datasets that integrated additional layers of complexity.
The alignments for these analyses were derived from the 7200 empirical datasets used
for the abovementioned simulations. We note that BF was not examined in these
analyses due to intensive computations this procedure entails, and since it did not
perform better than the ML criteria over simulation set c0.

Simulation set c1: Across-site variation of the substitution model. We generated
7200 simulated MSAs with heterogeneous substitution matrices across sites. To this
end, each empirical dataset was divided to partitions of 50 sites (datasets were
trimmed such that the alignment length is divisible by 50). Alignments were
simulated using INDELible72, such that the model and parameters used for each
partition were derived from the respective partitions of the empirical data. Namely,
jModelTest33,34 was executed for each partition to obtain the best-fitted model and
its inferred free parameters. To obtain the best-fitted model while avoiding a bias
toward a particular criterion, one ML criterion was randomly selected per partition.
A fixed BioNJ tree73 reconstructed with the JC model (as implemented in PhyML)
was used as the true tree for these simulations.

Simulation set c2: Combination of model variation and rate heterogeneity across
alignment sites. To increase the data complexity, we generated 7200 MSAs similar
to c1, with the addition of site-specific rates, drawn from distributions that are more
complex than those assumed by current models (i.e., the I and G components). To
this end, Rate4site74 was executed for each empirical dataset to infer the
evolutionary rate per position in the alignment using a Bayesian inference under
the JC model. We used a fixed BioNJ tree73, reconstructed with the JC model (as
implemented in PhyML) as the true tree for these simulations. In order to combine
distinct rates across alignment sites, we simulated multiple instances for every
dataset as described for c1, but each instance differed by the size of the tree, i.e., the
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branch lengths, which were multiplied by one of the evaluated rates. Finally, the
relevant sites were concatenated corresponding to every partition and rate.

Simulation set c3: a codon substitution model. We generated 1000 simulated
MSAs using a codon substitution model. To this end, we sampled 500 datasets
from each database of coding sequences alignments, i.e., Selectome and PANDIT.
For each dataset, a BioNJ tree73 reconstructed with the JC model (as implemented
in PhyML71) was used as an initial tree. Then CodeML application in the PAML
package70 was executed to optimize the branch lengths and the parameters that
correspond to the M8 codon model40. These parameters were estimated as in Yang
et al.40: the transition–transversion ratio parameter, the codon frequencies
assuming the F3x4 codon frequency model, 11 site classes for the
nonsynonymous–synonymous rate ratio such that 10 are drawn from the beta
distribution and one additional class for positive selection. The optimized tree and
inferred parameters were then used to simulate an alignment in the Evolver
simulator in PAML70. The following model selection, tree reconstruction, and
further analysis for these simulated datasets were performed using the nucleotide
substitution models as was done for simulation sets c0–c2.

Model selection and tree reconstruction. jModelTest33,34 was executed for each
MSA to obtain the selections of AIC, AICc, BIC, and DT, with ML optimization of
all parameters including branch lengths and tree topology. For the computation of
the hierarchical likelihood ratio tests, we employed the dLRT criterion as imple-
mented in jModelTest. Since dLRT assumes nested models along the decision
process, the selections of dLRT were obtained by executing jModelTest with a fixed
BioNJ tree73. To obtain the marginal likelihood estimates for BF calculation, the
stepping-stone19 algorithm implemented in RevBayes75,76 was executed for each
dataset and for each of the 24 models independently. The prior probabilities were
determined according to the recommendations in RevBayes tutorials, as follows:
parameters of the stationary base frequencies for F81, HKY, and GTR were
assigned with equal probabilities; the prior probability for the
transition–transversion ratio (kappa) parameter for K2P and HKY was specified
from the lognormal distribution (mean= 0, std= 1.25); the substitution para-
meters for SYM and GTR were assigned with equal probabilities; the prior prob-
ability for the proportion of invariable sites (+I) was specified from the Beta
distribution (with shape α= β= 0); a diffuse prior for the alpha shape parameter of
the gamma distribution for assessing the among-site-rate-variation (+G) was
specified from the lognormal distribution (mean= 2, std= 0.587405; so that 95%
of the prior density spans exactly one order of magnitude). The stepping-stone
algorithm was executed using 50 categories of power posteriors, 10,000 generation
of burn-in, and 1000 generations of running as was applied by Fan et al.20. Finally,
the best model was selected as the one with maximal marginal likelihood. This was
done for all datasets of c0 and a subset of 1500 empirical datasets (500 from each
database, due to long running times).

The trees were reconstructed for all the relevant models using PhyML71 by ML
optimization of the parameters, branch lengths, and topology (termed the selected
trees). The reconstruction was accomplished according to nine strategies: six with
the models selected by each of the criteria (i.e., AIC, AICc, BIC, DT, dLRT, and
BF), one with the true model (i.e., the model that was used to simulate the data),
and another two by consistently using the GTR+I+G model and the JC model.

Tree comparison. Tree comparison was performed by two metrics: topological
and branch-length distances. Topologies were compared using the RF distance38 as
implemented in TreeCmp77. The branch lengths were compared using the BS
distance39 as implemented in Treedist78. First, for every pair of reconstruction
strategies (see ‘Model selection and tree reconstruction’ section in Methods), we
estimated their congruency by measuring the distances between the reconstructed
trees across all datasets. Second, over simulated data, we quantified the discrepancy
between the tree reconstructed with the selected model and the tree used for
simulation (the selected tree and the true tree, respectively) by measuring the
distances between them.

The RF and BS distances are relative to the size of the corresponding tree. Since
the analyzed datasets consisted of varied data sizes and sequence divergences, the
distances are not comparable across different trees. To enable comparison of the
strategies performances across different trees, the strategies were ranked for each
dataset from low distance (rank 1) to high distance. For simulation set c0, nine
strategies were evaluated including the five ML criteria, BF, reconstruction with the
simplest and most complex models, i.e., JC and GTR+I+G, or with the true model
that was used to simulate the data. For the complex simulations sets c1–c2, BF and
the true model were not evaluated and thus the distances were ranked from 1 to 7.
In case that several strategies obtained equal distances, they were assigned a rank
that is the average of the ranks of those values. Note that the analysis of branch
lengths was not performed for simulation set c3 since the branch-length estimates
are not comparable between the true and reconstructed trees, i.e., in the latter these
represent substitutions per nucleotide site and in the former they represent
substitutions per codon site.

Ancestral sequence reconstruction. In order to assess the impact of using
alternative best-fitted models on the inference of ancestral sequences, we evaluated

the pairwise distances between the simulated and reconstructed sequences at the
root when using the best-fitted model and the reconstructed ML tree according to
each model selection criterion. To root the input tree correctly, an outgroup is
required. Since this information exists only for the PlantDB database, 1000 such
datasets were sampled from the PlantDB database. The root was determined as the
last common ancestor of the ingroup. To examine the effect of sequence divergence
on the inference accuracy, we scaled the analyzed trees to a pre-defined set of total
branch lengths (TBL). The values were defined according to the range of TBL
values present in the 7200 analyzed datasets. Specifically, the following values were
used: 0.08, 0.16, 0.27, 0.53, 1.19, 2.18, 3.5, 5.18, 9.5, which represent the deciles of
the TBL in these datasets. For the task of ancestral sequence reconstruction, we
opted to use an application which enables the inference with as many of the
substitution models examined in our study. The six substitution matrices, i.e., JC,
F81, K2P, HKY, SYM, and GTR are implemented in BaseML application in the
PAML package70, with or without the G parameter (heterogeneous rates across
sites following the gamma distribution). Since the I parameter (proportion of
invariant sites) is not implemented in PAML, only these 12 models were used for
simulation and inference of the ancestral sequence. BaseML was run for each
simulated dataset with the model selected by each criterion and the selected tree.

Code availability. The code for this study was written in python version 3.6.
Computation of likelihood and parameter estimates, model selection, simulations,
and tree comparison were executed using the following application versions:
PhyML 3.071, RevBayes 1.0.675,76, PAML 4.870, jModelTest 2.1.733,34, Rate4site
3.274, INDELible 1.0372, Treedist 1.078, and TreeCmp 1.0-b29177. The code for data
simulation and inference has been deposited in Open Source Framework (OSF)
with the identifier DOI 10.17605/OSF.IO/T3PF279.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The datasets contained within the empirical set and the four simulated sets (c0–c3) have
been deposited in Open Source Framework (OSF) with the identifier DOI 10.17605/OSF.
IO/T3PF279.
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