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Abstract
Motivation: Sequence simulations along phylogenetic trees play an important role in numerous molecular evolution studies such as bench
marking algorithms for ancestral sequence reconstruction, multiple sequence alignment, and phylogeny inference. They are also used in phylo
genetic model-selection tasks, including the inference of selective forces. Recently, Approximate Bayesian Computation (ABC)-based 
approaches have been developed for inferring parameters of complex evolutionary models, which rely on massive generation of simulated data. 
For all these applications, computationally efficient sequence simulators are essential.
Results: In this study, we investigate fast algorithms for simulating sequences along a phylogenetic tree, focusing on accelerating the speed- 
limiting component of the simulation process: handling insertion and deletion (indel) events. We demonstrate that data structures which effi
ciently store indel events along a tree can substantially accelerate the simulation process compared to a naive approach. To illustrate the utility 
of this efficient simulator, we integrated it into an ABC-based algorithm for inferring indel model parameters and applied it to study indel dynam
ics within Chiroptera.
Availability and implementation: The source code for the different simulation algorithms, alongside the data used, is available at: https:// 
github.com/nimrodSerokTAU/evo-sim. The simulator has also been integrated into SpartaABC, a website for the inference of indel parameters, 
accessible at: https://spartaabc.tau.ac.il/.

1 Introduction
The reconstruction of multiple sequence alignments (MSAs) 
and phylogenetic trees is at the heart of molecular evolution 
and genomics research. Many tools exist for both MSA 
(Katoh et al. 2002, Thompson et al. 2002, L€oytynoja 2014) 
and phylogenetic tree inference (Guindon et al. 2009, 
Nguyen et al. 2015, Kozlov et al. 2019), each employing dif
ferent strategies. These tools are extensively used by the scien
tific community, with alignment and tree reconstruction 
methods ranking among the most cited works in scien
tific literature.

To compare these tools and identify areas for improvement, 
benchmark datasets are needed—specifically, cases where the 
true MSAs and trees are known. Unfortunately, the true evolu
tionary history of empirical datasets is almost always unknown. 
Consequently, researchers commonly rely on simulated data, 
for which the true results are available, to compare perfor
mance (Garland et al. 1993, Kuhner and Felsenstein 1994, 
Tateno et al. 1994, Huelsenbeck 1995, Katoh et al. 2002, 
Fletcher and Yang 2010, Jordan and Goldman 2012, Boussau 
et al. 2013, Pervez et al. 2014, Kalaghatgi et al. 2016, Vialle 
et al. 2018, Emms and Kelly 2019).

Simulations are also integral to parametric bootstrap 
approaches. These approaches have been previously used in 
evolutionary studies to detect deviations of data from pro
posed models and to identify unaccounted data characteris
tics that may cause such deviations (Goldman 1993, Thorne 
et al. 1996). For example, Wollenberg and Atchley (2000)
employed parametric bootstrap to investigate how structural 
and functional constraints lead to non-independent evolution 
of sites within a sequence.

Furthermore, simulations play a central role in 
Approximate Bayesian Computation (ABC) methods. ABC is 
an approach for inferring parameters of probabilistic models 
that bypasses the need for explicit likelihood calculations 
(Beaumont et al. 2002, Przeworski 2003, Tallmon et al. 
2008, Csill�ery et al. 2010, Templeton 2010, Kuhlwilm et al. 
2019). This methodology relies on generating numerous sim
ulated datasets based on models with parameters sampled 
from prior distributions. The accuracy of inference strongly 
depends on the number of simulations that can be generated 
(G€otte 2019). We previously developed SpartaABC, an 
ABC-based methodology for inferring insertion and deletion 
(indel) evolutionary dynamics (Karin et al. 2017, Loewenthal 
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et al. 2021, Wygoda et al. 2024). These studies directly moti
vated our current effort to develop efficient sequence simula
tion algorithms.

Machine learning algorithms have recently been introduced 
to the field of phylogenetics (Abadi et al. 2020, 
Leuchtenberger et al. 2020, Suvorov et al. 2020, Zou et al. 
2020, Kumar and Sharma 2021, Dotan et al. 2023, Arasti 
and Mirarab 2024, Mo et al. 2024, Nesterenko et al. 2025). 
These applications typically rely on training models using 
multiple simulated datasets, further emphasizing the critical 
need for efficient sequence simulators.

Various sequence simulators have been previously devel
oped (Cartwright 2005, Fletcher and Yang 2009, Dalquen 
et al. 2012, Bouchard-Côt�e and Jordan 2013, De Maio et al. 
2022, Ly-Trong et al. 2022). These available tools differ in 
the types of data they can simulate (DNA, amino acids, 
codons), the substitution models they implement, and the 
indel length distributions they allow. For indel management, 
these tools typically implement the Gillespie algorithm 
(Gillespie 1977), which is described below. In most cases, 
substitutions and indels are generated simultaneously, while 
the algorithm for generating the true MSA is often not de
scribed (see below).

In this work, we present novel algorithms for simulating 
indels along a phylogenetic tree. We first provide a detailed 
description of how indels are simulated using a naive ap
proach. We then describe two alternative approaches that 
simulate indels using specific data structures for tracking 
indel events. These data structures lead to a substantial de
crease in running times. We also provide a detailed explana
tion of how true MSAs are computed following these 
simulations. Finally, we demonstrate the utility of our 
method by studying indel dynamics within Chiroptera pro
tein MSAs.

2 Materials and methods
To lay the foundations for our new algorithms, we start by 
describing the basic algorithm, known as Gillespie algorithm, 
used to simulate indel evolution along a branch of a phyloge
netic tree (Gillespie 1977). The common model used to simu
late indel evolution assumes that indel rates and sizes are 
independent from the sequence content and that the indel 
rate scales linearly with sequence size. The indel location is 
distributed uniformly throughout the sequence and its size is 
drawn from a single distribution. As indel events change the 
sequence length, indel probability changes accordingly after 
each event. For a sequence of size n, there are nþ 1 potential 
insertion locations, which consist of the n − 1 potential 
“spaces” between every two adjacent positions and both 
edges of the sequence. Let rins be the insertion rate. The 
sequence-wise insertion rate is Rins ¼ nþ1ð Þrins. This 
sequence-wise insertion rate dictates the waiting time distri
bution for an insertion event: it is assumed that the time until 
the next insertion event is exponentially distributed with 
mean 1=Rins. Note that “time” here is measured in units of 
number of substitutions per site, so when simulating along a 
branch, the initial time is 0, and the final time is the length of 
the branch. If an insertion event occurs, the event location is 
drawn uniformly from the available nþ1 locations. The size 
of the inserted sequence is drawn from a pre-specified length 
distribution. Several distributions have been previously 

suggested to model indel sizes, the most common ones being 
the truncated versions of the geometric and Zipfian distribu
tions (Benner et al. 1993, Lunter 2007, Wygoda et al. 2024). 
Content for the inserted positions is drawn from the station
ary distribution of the substitution model, e.g., a JTT model 
(Jones et al. 1992) for protein sequences. Note that after each 
indel event, the insertion rate Rins must be updated to account 
for the new sequence length.

Simulating deletion events is similar to insertion events 
with respect to deletion size and the need to update the 
sequence-wise deletion rate after each indel event. For dele
tion of size k that starts at position i, the deleted positions are 
i, iþ1, … , iþ k − 1. In cases where the deletion size over
flows (iþ k − 1> n), that is, there are not enough positions 
after the start position to accommodate the deletion, the dele
tion size is trimmed to the maximal available size. However, 
special care is needed to ensure that every position has the 
same probability of being deleted (Cartwright 2005). If the 
starting position of a deletion event was drawn uniformly in 
the range of 1 to n, the first position would only be deleted if 
an indel event starts at that position. In contrast, the second 
position in the sequence can be deleted by indel events start
ing at the second position, as well as indel events of length 
larger than one starting at the first position. The third posi
tion can be deleted by events starting at positions 1, 2, and 3. 
Thus, allowing deletion events to start uniformly along the 
sequence generates a bias against deletions at the beginning 
of the sequence.

2.1 Correcting for edge effects when simulating 
deletions along a branch
To account for deletion events that overflow into the se
quence, an adjustment must be introduced. Given that a dele
tion event has occurred, we first draw its length Sdel. An event 
of length SDel can affect the sequence if it starts within the se
quence or up to Sdel � 1 positions before the start of the se
quence. We thus next draw the start location of the deletion 
event uniformly from nþ Sdel � 1ð Þ potential locations. Thus, 
Rdel ¼ rdel nþ Sdel � 1ð Þ½ �. We note that the effective deletion 
size, i.e., the number of deleted positions in the simulated se
quence, is smaller than Sdel if the deletion starts before the ac
tual sequence or ends after the end of the sequence. Yet, with 
this adjustment, assuming a deletion event of size Sdel has oc
curred, every position within the sequence has the same prob
ability of being deleted, which is Sdel=ðnþSdel � 1Þ. Note that 
for single character deletions (Sdel ¼ 1), the probability of 
each position being deleted is exactly 1=n.

The waiting time until the next event (either insertion or 
deletion) follows an exponential distribution with parameter 
λ¼ RinsþRdel, where Rins and Rdel are the sequence-wise 
rates of insertion and deletion events, respectively. Once an 
event occurs, it is classified as an insertion with a probability 
of Rins=λ and as a deletion with a probability of Rdel=λ. 
This process continues iteratively, generating events and 
updating sequence lengths, until the remaining branch length 
is exhausted.

2.2 From simulating along a branch to simulations 
along a tree
To simulate sequence evolution along a whole tree, we start 
by generating the sequence at the root of the tree. Given a se
quence size and a substitution model, we generate the root 

2                                                                                                                                                                                                                                 Wygoda et al. 
D

ow
nloaded from

 https://academ
ic.oup.com

/bioinform
atics/article/42/1/btaf686/8406921 by Tel Aviv U

niversity user on 28 January 2026



sequence and fill the positions using the stationary distribu
tion of the supplied model. Then, given an ancestor sequence, 
we simulate each of its immediate descendant sequences 
along their corresponding branches. We repeat this procedure 
until all extant sequences are generated.

2.3 The complexity of the Gillespie algorithm
The Gillespie algorithm involves updating the sequence after 
each evolutionary event. In this algorithm, the evolving se
quence is represented as an array or a list of characters. In 
such a representation, the cost of updating the sequence fol
lowing an indel is O nð Þ, where n is the current sequence 
length. For example, if the sequence is represented as an ar
ray, each indel requires copying O nð Þ elements. Let k denote 
the number of indel events that have occurred along the 
branch. In the worst case, these are all insertions, and the to
tal sequence length after k insertions of maximal size M 
becomes nþMk. We assume that M is small and fixed, and 
thus the cost of each indel event is O nþkð Þ. As there are k 
such events, the total time complexity of the Gillespie algo
rithm for simulating indels along a specific branch is 
O k nþkð Þð Þ. We note that when evolution is simulated 
along long branches, k can be on the same order of magni
tude as n.

2.4 Separation of substitution and indel simulation
We assume that the rate, size, and location of indels are not 
affected by substitutions and vice versa: the substitution type 
is indel-independent. This allows the separation of the simu
lation procedure into two independent processes. This sepa
ration can be achieved as follows. First, starting from an 
ancestral sequence, only indel events are simulated, without 
any substitutions. Figure 1A illustrates a resulting alignment 
in which all characters are marked with the letter “N”. This 
process determines the alignment length L. We then simulate 
substitutions by first drawing a random root sequence of 

length L and only simulating substitutions along the tree, i.e., 
disallowing indels to occur (Fig. 1B). The final simulated 
MSA is generated by superimposing the indel-only and 
substitution-only MSAs (Fig. 1C).

This simulation scheme has several advantages. First, it 
allows generating MSAs in which the substitutions are simu
lated and the indels are taken from empirical datasets, and 
vice versa, as was done in Trost et al. (2024). Second, it ena
bles the introduction of specific accelerations to each module 
independently. Finally, our ABC-based approach for estimat
ing indel model parameters from empirical MSAs relies on re
peated simulations of the indel process. Substitutions are not 
needed for inferring the indel parameters, and thus, only the 
indel-only simulation model is used (Karin et al. 2017).

2.5 Faster indel simulation on a branch
We introduce a novel bookkeeping method that tracks events 
along the branch, allowing us to update the sequence only 
once after simulating the entire set of events that occurred 
along the branch. This new algorithm improves on the above 
O k nþkð Þð Þ time complexity algorithm. The intuition behind 
our approach is straightforward. Consider an insertion event 
at a specific position. Since we simulate indels and substitu
tions separately, we can defer determining the inserted se
quence until the end of the simulation. We only need to 
record the insertion’s length and starting position relative to 
the original sequence. If additional insertions occur within 
this segment, we simply update the inserted length. Similarly, 
deletions within the inserted segment only require updating 
the segment’s size. For a given branch, we only need to record 
which positions from the original sequence remain and the 
sizes of inserted sequences between them. Special handling is 
required for deletions that span both previously inserted seg
ments and positions from the predecessor sequence.

Figure 1. Separation of indel and substitution simulations and their merger. (A) Simulation of indel events while disregarding the sequence content, 
creating a template for the resulting alignment. (B) The resulting alignment size (in our example, the alignment size is 9) is used to simulate the sequence 
content and substitution events. (C) The indel template and sequence content are combined for the final alignment. Note that the alignments include 
both extant and ancestral sequences. Insertion and deletion events are marked with a small circle and line above the affected character, respectively. 
Substitution events are marked with a tilde symbol above the affected character.
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2.6 Blocks
To allow for effective event tracking when simulating along a 
branch, we introduce the concept of blocks. Consider a se
quence evolving along a branch of length t, where the starting 
sequence is labeled s. As a sequence evolves along this 
branch, it undergoes indel events, which are recorded using 
the block structure. The information is recorded relative to s. 
Because one must take special care of indels that can occur 
before the first sequence position, the actual positions within 
the sequence are numbered starting from one. We add a vir
tual anchor position, marked 0, at the beginning of the se
quence. An insertion before position 1 will be included in the 
block that starts at position 0. We note that “position 0” is 
only used to keep track of events that occur to the left of the 
first position, and is not a real position.

A block is composed of two parts, the original part (OP) 
and the added part (AP). An OP consists of contiguous posi
tions from the predecessor sequence, that were undisturbed 
by insertion and deletion events. The AP comprises positions 
that were added during the evolution simulated along the 
branch in question. Each block is represented by the 3-tuple 
(start, length, insertion), where the start is the position in the 
starting sequence where the OP starts, length is the length of 
the OP, i.e., the OP contains the position range [start, 
startþ length] from the predecessor sequence, and insertion 
is the size of the AP (Fig. S1, available as supplementary data
at Bioinformatics online). We note that while the AP can be 
of size 0, that is, insertion¼0, the OP size is assumed to be 
positive for all blocks.

We first demonstrate how the list of blocks is generated 
and updated during the process of evolution along a branch. 
We start with a sequence labeled s of length 100 characters 
(the corresponding data structure is shown in Table 1A). 
Accordingly, the block structure representing the initial se
quence consists of a single block that starts at position 0, has 
a length of 101 (because of the inclusion of position 0 in the 
counting), and includes no insertions. This block is compactly 
written as (0, 101, 0), where the first index is the start posi
tion of the block relative to s, the second index is the length 
of the block, and the third index is the length of the 
inserted sequence.

Consider a branch with two indel events (Table 1). The 
first event is a deletion of size five, that occurred at position 
80, i.e., positions 80–84 are deleted. The resulting sequence 
has two stretches of characters that match sequences in s. 
This can be compactly represented by splitting the original 
block into two. The first block starts at position 0 and has a 
length of 80 (again because position 0 is counted in the first 
block), and the second block starts at position 85 and has a 
length of 16 (positions 85–100, including both positions 85 
and 100). The updated block list is shown in Table 1B. The 
next event is an insertion event of size 5 that started after po
sition 29 (Table 1C). This event breaks the first block in two. 
The first block is now represented as (0, 30, 5), indicating 
that starting at position 0, the first 30 characters match se
quence s, after which an insertion of five characters has oc
curred. The next block is represented as (30, 50, 0), 
indicating that starting from position 30, the following 50 
characters match sequence s, with no following insertion. Of 
note, all blocks after the event remain unchanged, which di
rectly contributes to the efficiency of the proposed algorithm. 
In our example, only the final block (85, 16, 0) remains 
unchanged. A more formal definition of a block and a de
tailed example are provided in Supplemental Information S1, 
available as supplementary data at Bioinformatics online.

2.7 Identifying the affected blocks
Updating the block list according to a new event necessitates 
identifying and updating all the blocks that are affected by 
the event. For brevity, when discussing the block list hence
forth, we will use Si, Li, and Ii for the start, length, and inser
tion of block i, respectively. Assume that the current block 
list is [(S1, L1, I1), (S2, L2, I2), … , (Sk, Lk, Ik)]. Consider an 
indel event that occurred at position q relative to the current 
sequence. The total size of the first block is T1¼L1þ I1. If 
q>T1, then clearly the first block is not affected, and we can 
examine whether the event affects the second block. 
Similarly, if q>T1þT2, the second block is not affected. By 
iteratively scanning the block list, we can identify the first 
block that is affected. Note that an insertion affects only a 
single block, whereas a deletion event may affect several con
secutive blocks. Once the affected blocks have been identi
fied, the block list must be updated.

To demonstrate this process of identifying the affected 
blocks and updating the block list, consider the starting block 
list [(0, 30, 5), (30, 25, 0)] illustrated in Fig. 2. Consider an 
insertion event of four characters that occurred after position 
15 in the current sequence. Here, q¼15 and T1¼ 35; since 
q<T1, we determine that the first block requires an update. 
The event occurred in the middle of the OP, i.e. it disturbed 
the segment that corresponds to the original sequence s. The 
block list is updated such that the first block becomes (0, 16, 
4) and a new block (16, 14, 5) is added, as illustrated in 
Fig. 2B. Another example (Fig. 2C) starts with the same block 
list as Fig. 2A, but with event (insertion, 32, 4). The event 
again affected the first block. Unlike the previous example, 
this event occurred within the AP rather than the OP. We 
simply update the AP size to accommodate the insertion, 
yielding block (0, 30, 9). Yet another example (Fig. 2D) starts 
with the same block list and event (deletion, 10, 4). This de
leted positions 10–13 from the predecessor sequence. The 
event affected the first block, splitting it into blocks (0, 10, 0) 
and (14, 16, 5). As a final example (Fig. 2E), we update the 

Table 1. Example of the processing of the data structure used for 
bookkeeping indel events along a branch of a phylogenetic tree.a

A. Initial data structure

Start Length Insertion

0 101 0

B. Following deletion of positions 80–84

Start Length Insertion

0 80 0
85 16 0

C. Following insertion of size 5 after position 29

Start Length Insertion

0 30 5
30 50 0
85 16 0

a Each row corresponds to a block. The events presented are processed 
sequentially: A!B!C.
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block list following the event (insertion, 45, 4). Here, q¼45, 
exceeds the total size of the first block T1¼L1þ I1¼35, 
which means that it did not affect it. Moving to the second 
block, we adjust q to represent the event position relative to 
this block: q q − 35¼10. We can now treat the second 
block as if it is the first block and perform the same check 
again: q¼ 10 is less than T2¼ 25. This event thus affects the 
OP of the current block and is treated as in the first example, 
resulting in adjusting the second block to (30, 10, 4) and add
ing a new block (40, 15, 0).

More formally, the algorithm for locating affected blocks 
works as follows: given an event and a block list, we start by 
locating the first block that is affected by the event. To this 
end, we iterate over the block list and for each block j¼ (Sj, 
Lj, Ij), we compare the total block length (Tj¼Ljþ Ij) to q. If 
q>Tj, we move to the next block and update q q − Tj. We 
continue until we find j for which q<Tj. The full details of 
the algorithm for updating the block list are provided in 
Supplemental Information S2, available as supplementary 
data at Bioinformatics online.

2.8 Complexity of the block list structure approach
Let n denote the length of the starting sequence and assume 
that k is the number of indel events that occurred along the 
branch. Let b denote the size of the block list and n0, the max
imal length of the sequence as it evolves along the branch. 
We first note that b ≤ min kþ1;nþ1ð Þ, since each event can
not add more than one block, and the worst-case scenario 
would be a block list with one block for each position in the 
predecessor sequence. Simulation of k events along a branch 
requires processing all k events. Each event has a time com
plexity of O bð Þ, as we need to scan the block list linearly to 
find the location of the event and add or remove a block if 
needed. Therefore, the total time complexity for handling the 
events along a branch is O kbð Þ. In contrast, the naive simula
tion approach has a time complexity of O kn0ð Þ, as each event 

requires an array reallocation for the sequence. When the 
sequences are long compared to the number of events, such 
that b � n, the block list data structure approach should al
low simulating indel events significantly faster than the na
ive approach.

We note that the number of blocks that are kept corre
sponds to the number of characters that remain from the an
cestral sequence. Thus, after many deletion events have 
occurred, many of these ancestral positions would be deleted, 
resulting in fewer blocks. This suggests that at the beginning 
of the simulation, there is a single block. Following deletion 
events, this block is split, causing the number of blocks to ini
tially increase. However, as additional deletion events occur, 
residues that correspond to the ancestral sequence are lost, 
thereby reducing the number of blocks.

2.9 Tree-based bookkeeping
When using a list to store the blocks, a linear search is con
ducted to find the block(s) affected by each event, resulting in 
O bð Þ operations. The AVL tree data structure (Cormen et al. 
2009), which is a type of balanced binary search tree, allows 
more efficient searching, adding, and deleting of blocks, spe
cifically in O log bð Þ

� �
operations. In our implementation, one 

AVL tree is associated with each branch of the tree topology. 
See Supplemental Information S3, available as supplementary 
data at Bioinformatics online, for a detailed description of 
the AVL-based block tree data structure.

2.10 Generating the MSA from a set of 
simulated sequences
Along with the simulation processes described above, it is 
possible to generate the “true” MSA underlying the evolving 
sequences, which depends on the ancestral sequence and the 
complete history of evolutionary events. To achieve this, we 
implement a “super-sequence”, a linked-list data structure 
that integrates the root sequence with all insertions that 

Figure 2. Examples of updating the block list structure following different indel events. Each block is represented as [start, length] with insertion length 
shown in dark boxes. (A) Initial block list with blocks (0, 30, 5) and (30, 25, 0). (B–E) Results of different indel events applied to the initial block list in (A): 
(B) Insertion event (insertion, 15, 4) occurring within the original part (OP) of the first block, splitting it into (0, 16, 4) and (16, 14, 5). (C) Insertion event 
(insertion, 32, 4) occurring within the added part (AP) of the first block, simply increasing the insertion length to 9. (D) Deletion event (deletion, 10, 4) 
removing positions 10–13 from the OP, splitting the first block into (0, 10, 0) and (14, 16, 5). (E) Insertion event (insertion, 45, 4) occurring in the second 
block’s OP, splitting it into (30, 10, 4) and (40, 15, 0).
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occurred throughout the simulation. Figure 3 demonstrates 
how the super-sequence is used to reconstruct the true align
ment by tracking the details of events along each branch. The 
super-sequence serves as a comprehensive template that pre
serves positional information across all sequences by tracking 
the exact locations of insertions. During simulation, each 
node in the phylogenetic tree maintains a current list of refer
ences to specific positions in the super-sequence. This list is 
called a “pointer sequence” because each element in the list 
refers to a position in the super-sequence. To generate the fi
nal MSA, we extract the pointer sequences from the leaf 
nodes and align them according to their references to the 
super-sequence, with each referenced position corresponding 
to a column in the alignment. Importantly, some positions in 
the super-sequence may represent characters that were de
leted in all extant sequences. Therefore, each node in the 
super-sequence contains a “column” flag indicating whether 
that position is referenced by any leaf pointer sequence. This 
prevents the inclusion of gap-only columns in the final align
ment, ensuring that the MSA accurately reflects only the evo
lutionary relationships observable in the leaf sequences. A 
more detailed description, including how the true MSA is 
generated using the block structure, is provided in 
Supplemental Information S4, available as supplementary 
data at Bioinformatics online.

2.11 Complexity of indel-only MSA generation
For each event, the generation of the pointer sequence has a 
time complexity of O n0ð Þ. Given k events along a branch, the 
total time complexity of the naive algorithm is O kn0ð Þ. When 
using the block list structure, there is only a single pointer se
quence that is generated along a given branch (see 
Supplemental information S4, available as supplementary 
data at Bioinformatics online), and thus the total time com
plexity for updating the pointer sequence is O n0ð Þ, while the 
total time complexity of the algorithm is O kbþn0ð Þ. When 
using the tree-based bookkeeping, the complexity is reduced 
to O k � log bð Þþn0

� �
. These factors must be summed over all 

tree branches to obtain the complexity of the entire simula
tion process.

2.12 Comparing different simulation methods
We first compared the runtime of three different methods for 
indel simulation along a phylogenetic tree: (i) Naive, in which 
the simulator applies each event directly on a copy of the par
ent sequence as it occurs along the branch of the phylogenetic 
tree. Intuitively, simulating in this manner should be signifi
cantly slower than the bookkeeping approach described 
above; (ii) Block list, which maintains a condensed log of 
events occurring along each branch; and (iii) Block tree, 
which uses a balanced binary tree to store the blocks. All 

Figure 3. Evolution of the sequence alignment through indel events. (A) Phylogenetic tree showing three species and five nodes (numbered 1–5) with 
indel events (represented by stars) along the branches. Each event is labeled with its type, position, and length. (B) The final super-sequence after 
preorder tree traversal. The super-sequence is updated following insertion events, with each insertion introducing new characters (numbers) to the 
super-sequence. In the above example, the insertions along the branch from node 1 to node 2 introduced numbers 6–7 and 8–10. (C) Alongside updating 
the super-sequence, the sequences at each node are updated, this time also accounting for deletions. Each sequence is updated relative to its 
predecessor sequence. The initial root sequence (Row 1) contained five characters (positions 1–5). Rows 1–5 show the specific subsequence associated 
with each node in the tree. Aligning each sequence with the super-sequence is trivial because each position in the super-sequence defines a column in 
the final alignment. (D) The final template alignment.
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algorithm implementations were coded in Python 3 and are 
available at: https://github.com/nimrodSerokTAU/evo-sim.

2.13 Benchmarking setup
In this comparison, the rates for insertions and deletions were 
set to 0.03 and 0.09, respectively, reflecting values within the 
range of empirical datasets (Graur et al. 1989, Cartwright 
2009). A Zipf distribution, truncated at 50, was assumed to 
model the length distribution of indels (Fletcher and Yang 
2009). The Zipf parameter was set to 2.0, which translates to 
a mean length of 2.76 characters for both insertions and dele
tions (Loewenthal et al. 2021). A total of 541 trees were 
taken from the OrthoMaM v8 database (Douzery et al. 
2014), all trees contained 40 species. The average sum of all 
branch lengths per tree was 2.96 ± 0.95 substitutions per site. 
The average branch length across all the trees was 0.038 ± 
0.059 substitutions per site. All trees are available in the 
GitHub repository “evo-sim” under the “benchmark/ 
TRUE_TREES” directory. Of note, when comparing the na
ive, block list, and block tree simulators, we used the exact 
same events for each method, and the differences in perfor
mance thus reflect only the handling of these events.

2.14 The contribution of indels versus substitutions 
to running times
We tested under which conditions indel simulation consti
tutes the computational bottleneck in a simulation of se
quence evolution. To this end, we also implemented a 
substitution simulator (in Python) for the JTT amino acid re
placement model. In this simulator, amino acid replacement 
probabilities are computed using the probability matrix ap
proach (Ly-Trong et al. 2022), by exponentiating the rate 
matrix Q using eigen-value decomposition. These transition 
probabilities are precomputed for each branch of the phylo
genetic tree. Substitutions are then determined based on these 
values for each site and for each branch. As stated above, 
substitutions and indels are computed independently and the 
resulting MSA is then obtained by superimposing the results 
of the two simulators. The cost of indels versus substitutions 
in running times was next calculated across varying sequence 
lengths (100, 500, 1000, and 5000 characters) and branch 
lengths (0.01, 0.05, 0.1, and 0.5 substitutions per site) using 
a representative tree from the OrthoMaM dataset 
(“AATF_true_tree.txt” in the “benchmark/TRUE_TREES” 
directory) with all branches normalized to the aforemen
tioned lengths. Using the same indel rates as above (0.03 in
sertion, 0.09 deletion), we measured the relative 
computational time spent on indel versus substitu
tion simulation.

2.15 The effect of insertion to deletion rate ratio and 
the tree divergence on running times
To further understand the runtime differences between the 
block list and block tree structures, we compared the MSA 
simulation performance for each data structure under the fol
lowing simulation settings: varying insertion rates from 0.01 
to 0.09 in increments of 0.01, while maintaining a total indel 
rate of 0.1 (e.g., insertion rate 0.02 with deletion rate 0.08). 
This analysis was repeated across three different branch 
length scaling factors (1, 5, 10) and used a representative tree 
from the OrthoMaM dataset with all branches normalized 
to 0.1.

2.16 Comparison with AliSim
In addition to this internal benchmarking, we compared the 
performance and memory usage of the block tree algorithm 
with AliSim (Ly-Trong et al. 2022), the current state-of-the- 
art in MSA simulations. The simulators were compared on 
the same setup described in the previous paragraph, once 
with substitutions and once without substitutions (indel-only 
simulation). To prevent AliSim from computing substitu
tions, we set the invariant sites proportion to 0.999999, effec
tively eliminating substitutions.

2.17 Empirical data analysis setup
In this analysis, we considered protein MSAs from the 
OrthoMaM v12 database (Allio et al. 2024). The data cura
tion was based upon two criteria: (i) each MSA contained at 
least 16 species from the order Chiroptera; and (ii) the MSA 
included at least 14 different (unaligned) sequence lengths. 
These criteria ensured sufficient indel data within these data
sets and resulted in 47 protein MSAs. Following this, we split 
each MSA into two separate alignments: one containing only 
chiropterans and the other containing all remaining mam
mals. We then computed the corresponding tree for each of 
the MSAs using the RaxML-NG tree search software (Kozlov 
et al. 2019) with the WAGþG4 substitution model. Finally, 
we ran the SpartaABC inference on each of the datasets to in
fer the indel model parameters. Note that we assumed the 
length distribution of both insertions and deletions follows a 
truncated Zipfian distribution, with a maximum indel length 
of 50.

3 Results
3.1 Benchmarking
We compared the performance of the three methods (naive, 
block list, and block tree) using four different root sequence 
lengths: 50, 100, 500, and 1000 characters. For this compari
son, we only simulated indel events (without substitutions). 
We observed a substantial improvement in runtime when us
ing either the block list or block tree methods compared to 
the naive implementation. These differences in runtime be
came more pronounced for longer sequences (Fig. 4). There 
was a significant difference in mean runtime between the sim
ulation methods across the four different root lengths (two-
way ANOVA; P<.05), with no significant difference 
between the block list and block tree methods (Tukey test; 
P<.05). Detailed running time values are provided in Table 
S1, available as supplementary data at Bioinformatics online.

The above results demonstrate that the block list and block 
tree structures can substantially reduce runtime when simu
lating indel events. We next assessed the relative runtime ded
icated to the generation of indels versus substitutions when 
simulating MSAs. On the benchmark dataset (see Section 2), 
the percentage of time spent on simulating indels was 85.5% 
on average for the naive method (Fig. 5A). The length of the 
root sequence affected the relative running times: when the 
length was short (100 characters), the percentage of time de
voted to indels was less than 65%. For root sequences of 
5000 characters, the percentage was more than 98% 
(Fig. 5B). When considering the block list and block tree 
structures, indel simulation took on average 58.2% and 
63.1% of the total time, respectively, meaning both methods 
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alleviated some of the computational burden from indels to
ward substitutions compared with the naive approach.

The similar runtime performance between the block list 
and the block tree partially reflects differences in implementa
tion details (the block list implementation is based on Python 
lists, which are highly efficient). Moreover, the tree-based 
structure is expected to be much faster when the number of 
events per branch is large. We hypothesized that the number 
of events experienced in the above benchmark was not 
enough for these differences to become apparent. To test this 
hypothesis, we selected a tree from the above OrthoMaM 
dataset and set all the branch lengths within it to 0.1 substitu
tions per site. We then compared the running times of the 
block list and block tree algorithms when the branch lengths 
were multiplied by a factor of either 1, 5, or 10, and the root 
length was set to 10 000 characters. Additionally, we tested 
how different insertion-deletion ratios affect the runtime. 
Starting each time with an insertion rate of 0.01 and increas
ing it incrementally up to 0.09 while maintaining a constant 
sum of insertion and deletion rates of 0.1. For insertion rates 
above 0.06, increasing the branch length by a factor of 5, 
resulted in a small advantage (10%) in the performance of 
the block tree method. The difference was more pronounced 
when increasing the branch lengths by a factor of 10, e.g., 
when the insertion rate was 0.09, the block tree method was 
eight times faster than the block list method (Fig. 6). Thus, 
the block tree method is superior to the block list in some ex
treme settings, specifically with high insertion frequencies per 
branch. Even so, in trees originating from highly homologous 
sequences, the block list method offered a slightly better or 
similar performance overall when considering lower inser
tion rates.

3.2 Comparison with AliSim
To assess the performance and memory usage of our pro
posed block-based methods compared with existing MSA 

simulation programs, we ran AliSim (Ly-Trong et al. 2022) 
and our block tree-based simulator using the parameter sensi
tivity analysis setup described above (insertion rates 0.01– 
0.09, total indel rate 0.1, and branch length scaling factors 1, 
5, and 10). We measured both peak memory usage and run
time for both indel-only simulations with both indels and 
substitutions.

As expected, given the implementation differences between 
AliSim’s highly optimized Cþþ codebase and our proof-of- 
concept Python implementation, AliSim generally achieved 
faster runtimes across most parameter combinations (Fig. 7). 
The performance gap narrowed considerably under extreme 
conditions, particularly at 0.09 insertion rate with a scaling 
factor of 10, where runtimes became comparable (Fig. 7F). 
Both simulators exhibited memory usage that scaled with 
indel complexity, with AliSim maintaining a peak consump
tion below 230 MB and our implementation starting from a 
higher baseline that peaked at 718 MB under extreme param
eter combinations (Fig. 7C). The difference in baseline mem
ory consumption primarily reflects the inherent overhead of 
Python compared to Cþþ, while both implementations 
showed the expected increase in memory usage as indel rates 
and scaling factors increased. Notably, even at peak usage, 
our implementation’s memory requirements remain well 
within the capabilities of modern computing systems. Thus, 
even with the increase in memory usage, the corresponding 
gains in computational speed make our block-based ap
proach a worthwhile addition to modern MSA simulators.

As mentioned above, AliSim is implemented in Cþþ, while 
our simulator uses Python. Based on comprehensive bench
marking studies, Python implementations typically execute 
8–29× slower than equivalent Cþþ code (Lion et al. 2022), 
suggesting our block-based approach could achieve competi
tive performance when implemented in a compiled language. 
This performance differential indicates that the algorithmic 

Figure 4. Runtime comparison of the different indel simulation methods on the 541 OrthoMaM trees, across different root length values.
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advantages of our method may be currently masked by 
language-level overhead.

3.3 Empirical data analysis
As a proof-of-concept, we integrated our bookkeeping ap
proach within the SpartaABC framework to infer indel dy
namics across mammals (Karin et al. 2017, Loewenthal et al. 
2021). We specifically compared bats (order Chiroptera) 
with other mammals to investigate whether the known 

smaller genome size of bats could be explained by a higher 
deletion rate (Hughes and Hughes 1995).

We performed a two-sided Wilcoxon test on the inferred 
indel parameters (deletion rate, insertion rate, and length dis
tributions) to compare chiropterans with other mammals. 
There was no significant difference in the insertion length pa
rameter between groups (P> .05). The mean, standard devia
tion, and P-values of the indel model parameters across the 
two groups are summarized in Table 2. Surprisingly, chirop
terans exhibited a higher insertion rate and a lower deletion 

Figure 5. The relative runtime dedicated to the generation of indels versus substitutions when simulating MSAs. (A) The average time taken by indels 
versus substitutions in MSA simulation across all tested parameters. (B) Time fraction trends for naive indel simulation across the 16 test cases. Test 
cases 1–4: MSAs generated with a root length of 100 amino acids; test cases 5–8: Root lengths of 500 amino acids; test cases 9–12: root lengths of 
1000 amino acids; test cases 13–16: root lengths of 5000 amino acids. Within each group, branch lengths varied in increasing order: 0.01, 0.05, 0.1, 0.5. 
For example, in test case 13 all branch lengths were 0.01 substitutions per site, and in test case 14, all branch lengths were 0.05 substitutions per site.
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rate compared to other mammals, as well as a higher average 
deletion length parameter, i.e., shorter deletions (Table 2). 
These results might discount indels as a plausible cause for 
their smaller genome size.

As stated above, efficient simulations using the block tree 
algorithm were implemented within SpartaABC. The entire 
ABC-based computation of the above empirical data (MSAs 
of chiropterans and other mammals) took 1086.8 h, with 

756.1 h dedicated to simulations. In comparison, we esti
mated that the naive approach would require 
11 116 h (Supplemental Information S5, available as supple
mentary data at Bioinformatics online). This 14-fold speed 
improvement demonstrates the utility of our simulation algo
rithm, enabling ABC-based inference of indel parameters at a 
genomic scale.

4 Discussion
Sequence simulation is widely used in the study of gene evo
lution. In this work, we introduced two novel algorithms 
for the simulation of indel evolution along a tree. Both 
algorithms have lower time complexity compared to the na
ive method. In addition, we have shown that our bookkeep
ing methods for tracking indel events along a branch 
result in a significant speed-up compared to the na
ive approach.

Our proposed list-based approach requires iterating over 
the entire event history, which for extreme cases may still 
burden the simulation. In contrast, the AVL-based approach 
greatly reduces this burden. However, pointer-based data 
structures such as AVL trees may result in cache misses, 
which can significantly impact algorithm speed in real envi
ronments (Saikkonen and Soisalon-Soininen 2016). The real- 
time performance of the algorithms proposed here may vary 
depending on the computer language used and the implemen
tation details of the utilized data structures. Other data struc
tures used for text editing, such as rope (Boehm et al. 1995) 
or B-tree (Bayer and McCreight 1972), can also be considered 
to accelerate similar computations. Of note, binary search 
trees were recently proposed to expedite simulations with 
indels specifically for short branches with few events (De 
Maio et al. 2022).

Using the algorithms presented here, we accelerated 
SpartaABC, an ABC approach to infer indel dynamics 
(Loewenthal et al. 2021). We applied it to compare indel dy
namics of bats versus other mammals. Our results suggest 
that indels may not be the causative evolutionary process that 
led to the small genome size observed in bats. However, addi
tional analyses of non-coding regions are needed to further 
validate this conclusion. This type of analysis greatly benefits 
from the bookkeeping method, as it requires numerous simu
lations of indel-only MSAs with a wide range of indel 
parameters.

One of the most challenging aspects of simulation studies 
is to generate data that resemble empirical data. This is diffi
cult because we usually do not fully understand the evolu
tionary dynamics that led to current-day sequences. Inferring 
indel dynamics that capture the patterns in a given dataset is 
particularly complex (Trost et al. 2024). The algorithms pre
sented here, combined with SpartaABC and substitution- 
based models, enable efficient generation of multiple MSAs 
that match the indel evolutionary patterns observed in empir
ical data.

Many aspects of sequence evolution remain unaddressed in 
current indel simulation models. For instance, all these mod
els assume that indel probability is independent of sequence 
context. However, clear evidence contradicts this assump
tion. Indel dependence on sequence context has been demon
strated at both the DNA level (Tanay and Siggia 2008, 

Figure 6. Performance comparison of the block list and block tree 
methods across different branch length multiplication factors and 
indel rates.
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Kvikstad et al. 2009) and the amino acid level (Chang and 
Benner 2004, de la Chaux et al. 2007). Integrating context- 
dependent indel models into efficient simulation algorithms 
represents an important research frontier.
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Table 2. Mean and standard deviation of the inferred indel parameters for 
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Insertion  
rate
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Insertion  
length  
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length  
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