Bioinformatics, 2026, 42(1), btaf686
https://doi.org/10.1093/bioinformatics/btaf686
Advance Access Publication Date: 29 December 2025

Original Paper

OXFORD

Phylogenetics

Efficient algorithms for simulating sequences along a

phylogenetic tree

Elya Wygoda®, Asher Moshe’, Nimrod Serok', Edo Dotan?", Noa Ecker’, Naiel Jabareen’,
Omer Israeli’, Itsik Pe’er3, Tal Pupko™*

"The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv
69978, Israel

2The Henry and Marilyn Taub Faculty of Computer Science, Technion—Israel Institute of Technology, Haifa 3200003, Israel
3Department of Computer Science, Columbia University, New York, NY, 10027-7003, United States

*Corresponding author. The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv
69978, Israel. E-mail: talp@tauex.tau.ac.il.

Associate Editor: Russell Schwartz

Abstract

Motivation: Sequence simulations along phylogenetic trees play an important role in numerous molecular evolution studies such as bench-
marking algorithms for ancestral sequence reconstruction, multiple sequence alignment, and phylogeny inference. They are also used in phylo-
genetic model-selection tasks, including the inference of selective forces. Recently, Approximate Bayesian Computation (ABC)-based
approaches have been developed for inferring parameters of complex evolutionary models, which rely on massive generation of simulated data.
For all these applications, computationally efficient sequence simulators are essential.

Results: In this study, we investigate fast algorithms for simulating sequences along a phylogenetic tree, focusing on accelerating the speed-
limiting component of the simulation process: handling insertion and deletion (indel) events. We demonstrate that data structures which effi-
ciently store indel events along a tree can substantially accelerate the simulation process compared to a naive approach. To illustrate the utility
of this efficient simulator, we integrated it into an ABC-based algorithm for inferring indel model parameters and applied it to study indel dynam-
ics within Chiroptera.

Availability and implementation: The source code for the different simulation algorithms, alongside the data used, is available at: https://
github.com/nimrodSerokTAU/evo-sim. The simulator has also been integrated into SpartaABC, a website for the inference of indel parameters,

accessible at: https://spartaabc.tau.ac.il/.

1 Introduction

The reconstruction of multiple sequence alignments (MSAs)
and phylogenetic trees is at the heart of molecular evolution
and genomics research. Many tools exist for both MSA
(Katoh et al. 2002, Thompson et al. 2002, Loytynoja 2014)
and phylogenetic tree inference (Guindon et al. 2009,
Nguyen et al. 2015, Kozlov et al. 2019), each employing dif-
ferent strategies. These tools are extensively used by the scien-
tific community, with alignment and tree reconstruction
methods ranking among the most cited works in scien-
tific literature.

To compare these tools and identify areas for improvement,
benchmark datasets are needed—specifically, cases where the
true MSAs and trees are known. Unfortunately, the true evolu-
tionary history of empirical datasets is almost always unknown.
Consequently, researchers commonly rely on simulated data,
for which the true results are available, to compare perfor-
mance (Garland et al. 1993, Kuhner and Felsenstein 1994,
Tateno et al. 1994, Huelsenbeck 1995, Katoh et al. 2002,
Fletcher and Yang 2010, Jordan and Goldman 2012, Boussau
et al. 2013, Pervez et al. 2014, Kalaghatgi et al. 2016, Vialle
et al. 2018, Emms and Kelly 2019).

Simulations are also integral to parametric bootstrap
approaches. These approaches have been previously used in
evolutionary studies to detect deviations of data from pro-
posed models and to identify unaccounted data characteris-
tics that may cause such deviations (Goldman 1993, Thorne
et al. 1996). For example, Wollenberg and Atchley (2000)
employed parametric bootstrap to investigate how structural
and functional constraints lead to non-independent evolution
of sites within a sequence.

Furthermore, simulations play a central role in
Approximate Bayesian Computation (ABC) methods. ABC is
an approach for inferring parameters of probabilistic models
that bypasses the need for explicit likelihood calculations
(Beaumont et al. 2002, Przeworski 2003, Tallmon et al.
2008, Csilléry et al. 2010, Templeton 2010, Kuhlwilm et al.
2019). This methodology relies on generating numerous sim-
ulated datasets based on models with parameters sampled
from prior distributions. The accuracy of inference strongly
depends on the number of simulations that can be generated
(Gotte 2019). We previously developed SpartaABC, an
ABC-based methodology for inferring insertion and deletion
(indel) evolutionary dynamics (Karin et al. 2017, Loewenthal

Received: 6 May 2025; Revised: 10 September 2025; Accepted: 17 December 2025

© The Author(s) 2025. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https:/creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

920z Atenuer gz uo Jasn Aysianun AIAY 181 Aq L 269018/9894810/ /2 /8101 e/SoleWIOUIO0lg/WOoD dNodlwapede//:sdiy woly papeojumo(q

https://orcid.org/0009-0007-5403-6016
https://orcid.org/0000-0001-9463-2575
https://github.com/nimrodSerokTAU/evo-sim
https://github.com/nimrodSerokTAU/evo-sim
https://spartaabc.tau.ac.il/

et al. 2021, Wygoda et al. 2024). These studies directly moti-
vated our current effort to develop efficient sequence simula-
tion algorithms.

Machine learning algorithms have recently been introduced
to the field of phylogenetics (Abadi et al. 2020,
Leuchtenberger et al. 2020, Suvorov et al. 2020, Zou et al.
2020, Kumar and Sharma 2021, Dotan et al. 2023, Arasti
and Mirarab 2024, Mo et al. 2024, Nesterenko et al. 2025).
These applications typically rely on training models using
multiple simulated datasets, further emphasizing the critical
need for efficient sequence simulators.

Various sequence simulators have been previously devel-
oped (Cartwright 2005, Fletcher and Yang 2009, Dalquen
et al. 2012, Bouchard-Coté and Jordan 2013, De Maio et al.
2022, Ly-Trong et al. 2022). These available tools differ in
the types of data they can simulate (DNA, amino acids,
codons), the substitution models they implement, and the
indel length distributions they allow. For indel management,
these tools typically implement the Gillespie algorithm
(Gillespie 1977), which is described below. In most cases,
substitutions and indels are generated simultaneously, while
the algorithm for generating the true MSA is often not de-
scribed (see below).

In this work, we present novel algorithms for simulating
indels along a phylogenetic tree. We first provide a detailed
description of how indels are simulated using a naive ap-
proach. We then describe two alternative approaches that
simulate indels using specific data structures for tracking
indel events. These data structures lead to a substantial de-
crease in running times. We also provide a detailed explana-
tion of how true MSAs are computed following these
simulations. Finally, we demonstrate the utility of our
method by studying indel dynamics within Chiroptera pro-
tein MSAs.

2 Materials and methods

To lay the foundations for our new algorithms, we start by
describing the basic algorithm, known as Gillespie algorithm,
used to simulate indel evolution along a branch of a phyloge-
netic tree (Gillespie 1977). The common model used to simu-
late indel evolution assumes that indel rates and sizes are
independent from the sequence content and that the indel
rate scales linearly with sequence size. The indel location is
distributed uniformly throughout the sequence and its size is
drawn from a single distribution. As indel events change the
sequence length, indel probability changes accordingly after
each event. For a sequence of size n, there are #n + 1 potential
insertion locations, which consist of the n-1 potential
“spaces” between every two adjacent positions and both
edges of the sequence. Let r;,s be the insertion rate. The
sequence-wise insertion rate is Ry = (n+1)ris. This
sequence-wise insertion rate dictates the waiting time distri-
bution for an insertion event: it is assumed that the time until
the next insertion event is exponentially distributed with
mean 1/R;,s. Note that “time” here is measured in units of
number of substitutions per site, so when simulating along a
branch, the initial time is 0, and the final time is the length of
the branch. If an insertion event occurs, the event location is
drawn uniformly from the available 7+ 1 locations. The size
of the inserted sequence is drawn from a pre-specified length
distribution. Several distributions have been previously

Wygoda et al.

suggested to model indel sizes, the most common ones being
the truncated versions of the geometric and Zipfian distribu-
tions (Benner et al. 1993, Lunter 2007, Wygoda et al. 2024).
Content for the inserted positions is drawn from the station-
ary distribution of the substitution model, e.g., a JTT model
(Jones et al. 1992) for protein sequences. Note that after each
indel event, the insertion rate R;,; must be updated to account
for the new sequence length.

Simulating deletion events is similar to insertion events
with respect to deletion size and the need to update the
sequence-wise deletion rate after each indel event. For dele-
tion of size k that starts at position ¢, the deleted positions are
i, i+1, ..., i+k—1. In cases where the deletion size over-
flows (i+k—1>n), that is, there are not enough positions
after the start position to accommodate the deletion, the dele-
tion size is trimmed to the maximal available size. However,
special care is needed to ensure that every position has the
same probability of being deleted (Cartwright 2005). If the
starting position of a deletion event was drawn uniformly in
the range of 1 to 7, the first position would only be deleted if
an indel event starts at that position. In contrast, the second
position in the sequence can be deleted by indel events start-
ing at the second position, as well as indel events of length
larger than one starting at the first position. The third posi-
tion can be deleted by events starting at positions 1, 2, and 3.
Thus, allowing deletion events to start uniformly along the
sequence generates a bias against deletions at the beginning
of the sequence.

2.1 Correcting for edge effects when simulating
deletions along a branch

To account for deletion events that overflow into the se-
quence, an adjustment must be introduced. Given that a dele-
tion event has occurred, we first draw its length S,,;. An event
of length Sp,; can affect the sequence if it starts within the se-
quence or up to Sy, — 1 positions before the start of the se-
quence. We thus next draw the start location of the deletion
event uniformly from n+ (S4,; — 1) potential locations. Thus,
Ryer = r4e1[n+ (Sges — 1)]. We note that the effective deletion
size, i.e., the number of deleted positions in the simulated se-
quence, is smaller than S, if the deletion starts before the ac-
tual sequence or ends after the end of the sequence. Yet, with
this adjustment, assuming a deletion event of size S,,; has oc-
curred, every position within the sequence has the same prob-
ability of being deleted, which is S,/ /(7 + S4, — 1). Note that
for single character deletions (Sg4,; = 1), the probability of
each position being deleted is exactly 1/#.

The waiting time until the next event (either insertion or
deletion) follows an exponential distribution with parameter
A= R+ Ry, where R;,s and Ry, are the sequence-wise
rates of insertion and deletion events, respectively. Once an
event occurs, it is classified as an insertion with a probability
of Rjys/4 and as a deletion with a probability of Ry, /2.
This process continues iteratively, generating events and
updating sequence lengths, until the remaining branch length
is exhausted.

2.2 From simulating along a branch to simulations
along a tree

To simulate sequence evolution along a whole tree, we start
by generating the sequence at the root of the tree. Given a se-
quence size and a substitution model, we generate the root

920z Atenuer gz uo Jasn AysIaniun AIAY 191 A L Z69078/9894B10/ L /Z/2I0IE/SONEWLIOJUIOIG/WOD dNodlWapeo.)/:SA)Y WOy papeojumod

Efficient algorithms for simulating sequences

sequence and fill the positions using the stationary distribu-
tion of the supplied model. Then, given an ancestor sequence,
we simulate each of its immediate descendant sequences
along their corresponding branches. We repeat this procedure
until all extant sequences are generated.

2.3 The complexity of the Gillespie algorithm

The Gillespie algorithm involves updating the sequence after
each evolutionary event. In this algorithm, the evolving se-
quence is represented as an array or a list of characters. In
such a representation, the cost of updating the sequence fol-
lowing an indel is O(#n), where 7 is the current sequence
length. For example, if the sequence is represented as an ar-
ray, each indel requires copying O(n) elements. Let k denote
the number of indel events that have occurred along the
branch. In the worst case, these are all insertions, and the to-
tal sequence length after k insertions of maximal size M
becomes 7+ Mk. We assume that M is small and fixed, and
thus the cost of each indel event is O(n+k). As there are k
such events, the total time complexity of the Gillespie algo-
rithm for simulating indels along a specific branch is
O(k(n+k)). We note that when evolution is simulated
along long branches, k can be on the same order of magni-
tude as 7.

2.4 Separation of substitution and indel simulation

We assume that the rate, size, and location of indels are not
affected by substitutions and vice versa: the substitution type
is indel-independent. This allows the separation of the simu-
lation procedure into two independent processes. This sepa-
ration can be achieved as follows. First, starting from an
ancestral sequence, only indel events are simulated, without
any substitutions. Figure 1A illustrates a resulting alignment
in which all characters are marked with the letter “N”. This
process determines the alignment length L. We then simulate
substitutions by first drawing a random root sequence of

A Indel simulation

B Substitution simulation

length L and only simulating substitutions along the tree, i.e.,
disallowing indels to occur (Fig. 1B). The final simulated
MSA is generated by superimposing the indel-only and
substitution-only MSAs (Fig. 1C).

This simulation scheme has several advantages. First, it
allows generating MSAs in which the substitutions are simu-
lated and the indels are taken from empirical datasets, and
vice versa, as was done in Trost et al. (2024). Second, it ena-
bles the introduction of specific accelerations to each module
independently. Finally, our ABC-based approach for estimat-
ing indel model parameters from empirical MSAs relies on re-
peated simulations of the indel process. Substitutions are not
needed for inferring the indel parameters, and thus, only the
indel-only simulation model is used (Karin et al. 2017).

2.5 Faster indel simulation on a branch

We introduce a novel bookkeeping method that tracks events
along the branch, allowing us to update the sequence only
once after simulating the entire set of events that occurred
along the branch. This new algorithm improves on the above
O(k(n+k)) time complexity algorithm. The intuition behind
our approach is straightforward. Consider an insertion event
at a specific position. Since we simulate indels and substitu-
tions separately, we can defer determining the inserted se-
quence until the end of the simulation. We only need to
record the insertion’s length and starting position relative to
the original sequence. If additional insertions occur within
this segment, we simply update the inserted length. Similarly,
deletions within the inserted segment only require updating
the segment’s size. For a given branch, we only need to record
which positions from the original sequence remain and the
sizes of inserted sequences between them. Special handling is
required for deletions that span both previously inserted seg-
ments and positions from the predecessor sequence.

C Combining simulations

1: A-GCTCAGA
2: ATGGTCAGA
3: A-GCT--GA
4: ATGGTCAA-
5: -TGTTCAGA

(NN N @ V1 @€octcTen) (ToeTcAAN) (ATGTTCAGA)
1: N-NNNNNNN 1: ATGCTCAGA
2: NNNNNNNNN 2: ATGGTCAGA
3: N-NNN--NN 3: ACGCTCTGA
4: NNNNNNNN- 4: ATGGTCAAA
5: -NNNNNNNN 5: ATGTTCAGA

Figure 1. Separation of indel and substitution simulations and their merger. (A) Simulation of indel events while disregarding the sequence content,
creating a template for the resulting alignment. (B) The resulting alignment size (in our example, the alignment size is 9) is used to simulate the sequence
content and substitution events. (C) The indel template and sequence content are combined for the final alignment. Note that the alignments include
both extant and ancestral sequences. Insertion and deletion events are marked with a small circle and line above the affected character, respectively.
Substitution events are marked with a tilde symbol above the affected character.

920z Atenuer gz uo Jasn AysIaniun AIAY 191 A L Z69078/9894B10/ L /Z/2I0IE/SONEWLIOJUIOIG/WOD dNodlWapeo.)/:SA)Y WOy papeojumod

2.6 Blocks

To allow for effective event tracking when simulating along a
branch, we introduce the concept of blocks. Consider a se-
quence evolving along a branch of length ¢, where the starting
sequence is labeled s. As a sequence evolves along this
branch, it undergoes indel events, which are recorded using
the block structure. The information is recorded relative to s.
Because one must take special care of indels that can occur
before the first sequence position, the actual positions within
the sequence are numbered starting from one. We add a vir-
tual anchor position, marked 0, at the beginning of the se-
quence. An insertion before position 1 will be included in the
block that starts at position 0. We note that “position 07 is
only used to keep track of events that occur to the left of the
first position, and is not a real position.

A block is composed of two parts, the original part (OP)
and the added part (AP). An OP consists of contiguous posi-
tions from the predecessor sequence, that were undisturbed
by insertion and deletion events. The AP comprises positions
that were added during the evolution simulated along the
branch in question. Each block is represented by the 3-tuple
(start, length, insertion), where the start is the position in the
starting sequence where the OP starts, length is the length of
the OP, i.e., the OP contains the position range [start,
start + length] from the predecessor sequence, and insertion
is the size of the AP (Fig. S1, available as supplementary data
at Bioinformatics online). We note that while the AP can be
of size 0, that is, insertion =0, the OP size is assumed to be
positive for all blocks.

We first demonstrate how the list of blocks is generated
and updated during the process of evolution along a branch.
We start with a sequence labeled s of length 100 characters
(the corresponding data structure is shown in Table 1A).
Accordingly, the block structure representing the initial se-
quence consists of a single block that starts at position 0, has
a length of 101 (because of the inclusion of position 0 in the
counting), and includes no insertions. This block is compactly
written as (0, 101, 0), where the first index is the start posi-
tion of the block relative to s, the second index is the length
of the block, and the third index is the length of the

inserted sequence.

Table 1. Example of the processing of the data structure used for
bookkeeping indel events along a branch of a phylogenetic tree.?

A. Initial data structure

Start Length Insertion
0 101 0
B. Following deletion of positions 80-84

Start Length Insertion
0 80 0

85 16 0

C. Following insertion of size 5 after position 29

Start Length Insertion

0 30 S

30 50 0

85 16 0

* Each row corresponds to a block. The events presented are processed
sequentially: A—B— C.

Wygoda et al.

Consider a branch with two indel events (Table 1). The
first event is a deletion of size five, that occurred at position
80, i.e., positions 80-84 are deleted. The resulting sequence
has two stretches of characters that match sequences in s.
This can be compactly represented by splitting the original
block into two. The first block starts at position 0 and has a
length of 80 (again because position 0 is counted in the first
block), and the second block starts at position 85 and has a
length of 16 (positions 85-100, including both positions 85
and 100). The updated block list is shown in Table 1B. The
next event is an insertion event of size 5 that started after po-
sition 29 (Table 1C). This event breaks the first block in two.
The first block is now represented as (0, 30, 5), indicating
that starting at position 0, the first 30 characters match se-
quence s, after which an insertion of five characters has oc-
curred. The next block is represented as (30, 50, 0),
indicating that starting from position 30, the following 50
characters match sequence s, with no following insertion. Of
note, all blocks after the event remain unchanged, which di-
rectly contributes to the efficiency of the proposed algorithm.
In our example, only the final block (85, 16, 0) remains
unchanged. A more formal definition of a block and a de-
tailed example are provided in Supplemental Information S1,
available as supplementary data at Bioinformatics online.

2.7 ldentifying the affected blocks

Updating the block list according to a new event necessitates
identifying and updating all the blocks that are affected by
the event. For brevity, when discussing the block list hence-
forth, we will use S;, L,, and I; for the start, length, and inser-
tion of block i, respectively. Assume that the current block
list is [(S1, L1, I1), (S2, Lo, 1), ..., (Sgs Lg, It)]. Consider an
indel event that occurred at position g relative to the current
sequence. The total size of the first block is Ty =L+ I;. If
q > T, then clearly the first block is not affected, and we can
examine whether the event affects the second block.
Similarly, if g > Ty + T, the second block is not affected. By
iteratively scanning the block list, we can identify the first
block that is affected. Note that an insertion affects only a
single block, whereas a deletion event may affect several con-
secutive blocks. Once the affected blocks have been identi-
fied, the block list must be updated.

To demonstrate this process of identifying the affected
blocks and updating the block list, consider the starting block
list [(0, 30, 5), (30, 25, 0)] illustrated in Fig. 2. Consider an
insertion event of four characters that occurred after position
15 in the current sequence. Here, g =15 and T;=335; since
q < Ty, we determine that the first block requires an update.
The event occurred in the middle of the OP, i.e. it disturbed
the segment that corresponds to the original sequence s. The
block list is updated such that the first block becomes (0, 16,
4) and a new block (16, 14, 5) is added, as illustrated in
Fig. 2B. Another example (Fig. 2C) starts with the same block
list as Fig. 2A, but with event (insertion, 32, 4). The event
again affected the first block. Unlike the previous example,
this event occurred within the AP rather than the OP. We
simply update the AP size to accommodate the insertion,
yielding block (0, 30, 9). Yet another example (Fig. 2D) starts
with the same block list and event (deletion, 10, 4). This de-
leted positions 10-13 from the predecessor sequence. The
event affected the first block, splitting it into blocks (0, 10, 0)
and (14, 16, 5). As a final example (Fig. 2E), we update the

920z Atenuer gz uo Jasn AysIaniun AIAY 191 A L Z69078/9894B10/ L /Z/2I0IE/SONEWLIOJUIOIG/WOD dNodlWapeo.)/:SA)Y WOy papeojumod

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf686#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf686#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf686#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf686#supplementary-data

Efficient algorithms for simulating sequences

A

Event

Figure 2. Examples of updating the block list structure following different indel events. Each block is represented as [start, length] with insertion length
shown in dark boxes. (A) Initial block list with blocks (0, 30, 5) and (30, 25, 0). (B-E) Results of different indel events applied to the initial block list in (A):
(B) Insertion event (insertion, 15, 4) occurring within the original part (OP) of the first block, splitting it into (0, 16, 4) and (16, 14, 5). (C) Insertion event
(insertion, 32, 4) occurring within the added part (AP) of the first block, simply increasing the insertion length to 9. (D) Deletion event (deletion, 10, 4)
removing positions 10-13 from the OP, splitting the first block into (0, 10, 0) and (14, 16, 5). (E) Insertion event (insertion, 45, 4) occurring in the second

block’s OP, splitting it into (30, 10, 4) and (40, 15, 0).

block list following the event (insertion, 45, 4). Here, ¢ =45,
exceeds the total size of the first block T;=L;+1I; =35,
which means that it did not affect it. Moving to the second
block, we adjust g to represent the event position relative to
this block: g+ g-35=10. We can now treat the second
block as if it is the first block and perform the same check
again: ¢ =10 is less than T, =25. This event thus affects the
OP of the current block and is treated as in the first example,
resulting in adjusting the second block to (30, 10, 4) and add-
ing a new block (40, 15, 0).

More formally, the algorithm for locating affected blocks
works as follows: given an event and a block list, we start by
locating the first block that is affected by the event. To this
end, we iterate over the block list and for each block j=(S;,
L;, I;), we compare the total block length (T;=L;+1,) to q. If
q > T}, we move to the next block and update g g —T;. We
continue until we find j for which g < T;. The full details of
the algorithm for updating the block list are provided in
Supplemental Information S2, available as supplementary
data at Bioinformatics online.

2.8 Complexity of the block list structure approach

Let 7 denote the length of the starting sequence and assume
that k is the number of indel events that occurred along the
branch. Let b denote the size of the block list and 7/, the max-
imal length of the sequence as it evolves along the branch.
We first note that b <min(k+ 1,7+ 1), since each event can-
not add more than one block, and the worst-case scenario
would be a block list with one block for each position in the
predecessor sequence. Simulation of k events along a branch
requires processing all k events. Each event has a time com-
plexity of O(b), as we need to scan the block list linearly to
find the location of the event and add or remove a block if
needed. Therefore, the total time complexity for handling the
events along a branch is O(kb). In contrast, the naive simula-
tion approach has a time complexity of O(k#'), as each event

requires an array reallocation for the sequence. When the
sequences are long compared to the number of events, such
that b < n, the block list data structure approach should al-
low simulating indel events significantly faster than the na-
ive approach.

We note that the number of blocks that are kept corre-
sponds to the number of characters that remain from the an-
cestral sequence. Thus, after many deletion events have
occurred, many of these ancestral positions would be deleted,
resulting in fewer blocks. This suggests that at the beginning
of the simulation, there is a single block. Following deletion
events, this block is split, causing the number of blocks to ini-
tially increase. However, as additional deletion events occur,
residues that correspond to the ancestral sequence are lost,
thereby reducing the number of blocks.

2.9 Tree-based bookkeeping

When using a list to store the blocks, a linear search is con-
ducted to find the block(s) affected by each event, resulting in
O(b) operations. The AVL tree data structure (Cormen et al.
2009), which is a type of balanced binary search tree, allows
more efficient searching, adding, and deleting of blocks, spe-
cifically in O(log(b)) operations. In our implementation, one
AVL tree is associated with each branch of the tree topology.
See Supplemental Information S3, available as supplementary
data at Bioinformatics online, for a detailed description of
the AVL-based block tree data structure.

2.10 Generating the MSA from a set of
simulated sequences

Along with the simulation processes described above, it is
possible to generate the “true” MSA underlying the evolving
sequences, which depends on the ancestral sequence and the
complete history of evolutionary events. To achieve this, we
implement a “super-sequence”, a linked-list data structure
that integrates the root sequence with all insertions that

920z Atenuer gz uo Jasn Aysianun AIAY 181 Aq L 269018/9894810/ /2 /8101 e/SoleWIOUIO0lg/WOoD dNodlwapede//:sdiy woly papeojumo(q

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf686#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf686#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf686#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf686#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf686#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf686#supplementary-data

(insertion, 2, 2) 4.,

(insertion, 7, 3)w-...

] p (insertion, 4, 1)

(insertion, 1, 6)&-.._

-pp (deletion, 5, 3)

Wygoda et al.

o p (deletion, 3, 1)

pp(insertion, 4, 3)
T] p (insertion, 8, 1)

B 11/ 12][13/14) 15/ 16] [1][6][7][27][2][3][4] 18] 19] 20] 8][9] [10] 5] 21]

c 1. 1] 2][3][4] 5]
2. allell7] [2][3]]4] 8][9]h0[5]
3. 111121324 1526/ 1] [6][7] [2][3]4] 8][9][10]5]
4. 11][6][7]7] 8][9][10]5]

5. 1] 2] [a][28/[29 6] 5221

D N NNNNNHNINNS -NNINS---NNNN -
- = - = =« - NNNN - - - - =« - NNNN

- = - - <« - N - -« N=-NNNHNS=- - - NN

Figure 3. Evolution of the sequence alignment through indel events. (A) Phylogenetic tree showing three species and five nodes (numbered 1-5) with
indel events (represented by stars) along the branches. Each event is labeled with its type, position, and length. (B) The final super-sequence after
preorder tree traversal. The super-sequence is updated following insertion events, with each insertion introducing new characters (numbers) to the
super-seguence. In the above example, the insertions along the branch from node 1 to node 2 introduced numbers 6-7 and 8-10. (C) Alongside updating
the super-sequence, the sequences at each node are updated, this time also accounting for deletions. Each sequence is updated relative to its
predecessor sequence. The initial root sequence (Row 1) contained five characters (positions 1-5). Rows 1-5 show the specific subsequence associated
with each node in the tree. Aligning each sequence with the super-sequence is trivial because each position in the super-sequence defines a column in

the final alignment. (D) The final template alignment.

occurred throughout the simulation. Figure 3 demonstrates
how the super-sequence is used to reconstruct the true align-
ment by tracking the details of events along each branch. The
super-sequence serves as a comprehensive template that pre-
serves positional information across all sequences by tracking
the exact locations of insertions. During simulation, each
node in the phylogenetic tree maintains a current list of refer-
ences to specific positions in the super-sequence. This list is
called a “pointer sequence” because each element in the list
refers to a position in the super-sequence. To generate the fi-
nal MSA, we extract the pointer sequences from the leaf
nodes and align them according to their references to the
super-sequence, with each referenced position corresponding
to a column in the alignment. Importantly, some positions in
the super-sequence may represent characters that were de-
leted in all extant sequences. Therefore, each node in the
super-sequence contains a “column” flag indicating whether
that position is referenced by any leaf pointer sequence. This
prevents the inclusion of gap-only columns in the final align-
ment, ensuring that the MSA accurately reflects only the evo-
lutionary relationships observable in the leaf sequences. A
more detailed description, including how the true MSA is
generated wusing the block structure, is provided in
Supplemental Information S4, available as supplementary
data at Bioinformatics online.

2.11 Complexity of indel-only MSA generation

For each event, the generation of the pointer sequence has a
time complexity of O(#’). Given k events along a branch, the
total time complexity of the naive algorithm is O(k#’). When
using the block list structure, there is only a single pointer se-
quence that is generated along a given branch (see
Supplemental information S4, available as supplementary
data at Bioinformatics online), and thus the total time com-
plexity for updating the pointer sequence is O(#’), while the
total time complexity of the algorithm is O(kb+#'). When
using the tree-based bookkeeping, the complexity is reduced
to O(k-log(b) 4 #'). These factors must be summed over all
tree branches to obtain the complexity of the entire simula-
tion process.

2.12 Comparing different simulation methods

We first compared the runtime of three different methods for
indel simulation along a phylogenetic tree: (i) Naive, in which
the simulator applies each event directly on a copy of the par-
ent sequence as it occurs along the branch of the phylogenetic
tree. Intuitively, simulating in this manner should be signifi-
cantly slower than the bookkeeping approach described
above; (ii) Block list, which maintains a condensed log of
events occurring along each branch; and (iii) Block tree,
which uses a balanced binary tree to store the blocks. All

920z Atenuer gz uo Jasn Aysianun AIAY 181 Aq L 269018/9894810/ /2 /8101 e/SoleWIOUIO0lg/WOoD dNodlwapede//:sdiy woly papeojumo(q

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf686#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf686#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf686#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf686#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf686#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf686#supplementary-data

Efficient algorithms for simulating sequences

algorithm implementations were coded in Python 3 and are
available at: https://github.com/nimrodSerok TAU/evo-sim.

2.13 Benchmarking setup

In this comparison, the rates for insertions and deletions were
set to 0.03 and 0.09, respectively, reflecting values within the
range of empirical datasets (Graur et al. 1989, Cartwright
2009). A Zipf distribution, truncated at 50, was assumed to
model the length distribution of indels (Fletcher and Yang
2009). The Zipf parameter was set to 2.0, which translates to
a mean length of 2.76 characters for both insertions and dele-
tions (Loewenthal ef al. 2021). A total of 541 trees were
taken from the OrthoMaM v8 database (Douzery et al.
2014), all trees contained 40 species. The average sum of all
branch lengths per tree was 2.96 +0.95 substitutions per site.
The average branch length across all the trees was 0.038 =
0.059 substitutions per site. All trees are available in the
GitHub repository “evo-sim” under the “benchmark/
TRUE_TREES” directory. Of note, when comparing the na-
ive, block list, and block tree simulators, we used the exact
same events for each method, and the differences in perfor-
mance thus reflect only the handling of these events.

2.14 The contribution of indels versus substitutions
to running times

We tested under which conditions indel simulation consti-
tutes the computational bottleneck in a simulation of se-
quence evolution. To this end, we also implemented a
substitution simulator (in Python) for the JTT amino acid re-
placement model. In this simulator, amino acid replacement
probabilities are computed using the probability matrix ap-
proach (Ly-Trong et al. 2022), by exponentiating the rate
matrix Q using eigen-value decomposition. These transition
probabilities are precomputed for each branch of the phylo-
genetic tree. Substitutions are then determined based on these
values for each site and for each branch. As stated above,
substitutions and indels are computed independently and the
resulting MSA is then obtained by superimposing the results
of the two simulators. The cost of indels versus substitutions
in running times was next calculated across varying sequence
lengths (100, 500, 1000, and 5000 characters) and branch
lengths (0.01, 0.05, 0.1, and 0.5 substitutions per site) using
a representative tree from the OrthoMaM dataset
(“AATF_true_tree.txt” in the “benchmark/TRUE_TREES”
directory) with all branches normalized to the aforemen-
tioned lengths. Using the same indel rates as above (0.03 in-
sertion, 0.09 deletion), we measured the relative
computational time spent on indel versus substitu-
tion simulation.

2.15 The effect of insertion to deletion rate ratio and
the tree divergence on running times

To further understand the runtime differences between the
block list and block tree structures, we compared the MSA
simulation performance for each data structure under the fol-
lowing simulation settings: varying insertion rates from 0.01
to 0.09 in increments of 0.01, while maintaining a total indel
rate of 0.1 (e.g., insertion rate 0.02 with deletion rate 0.08).
This analysis was repeated across three different branch
length scaling factors (1, 5, 10) and used a representative tree
from the OrthoMaM dataset with all branches normalized
to 0.1.

2.16 Comparison with AliSim

In addition to this internal benchmarking, we compared the
performance and memory usage of the block tree algorithm
with AliSim (Ly-Trong et al. 2022), the current state-of-the-
art in MSA simulations. The simulators were compared on
the same setup described in the previous paragraph, once
with substitutions and once without substitutions (indel-only
simulation). To prevent AliSim from computing substitu-
tions, we set the invariant sites proportion to 0.999999, effec-
tively eliminating substitutions.

2.17 Empirical data analysis setup

In this analysis, we considered protein MSAs from the
OrthoMaM v12 database (Allio et al. 2024). The data cura-
tion was based upon two criteria: (i) each MSA contained at
least 16 species from the order Chiroptera; and (ii) the MSA
included at least 14 different (unaligned) sequence lengths.
These criteria ensured sufficient indel data within these data-
sets and resulted in 47 protein MSAs. Following this, we split
each MSA into two separate alignments: one containing only
chiropterans and the other containing all remaining mam-
mals. We then computed the corresponding tree for each of
the MSAs using the RaxML-NG tree search software (Kozlov
et al. 2019) with the WAG + G4 substitution model. Finally,
we ran the SpartaABC inference on each of the datasets to in-
fer the indel model parameters. Note that we assumed the
length distribution of both insertions and deletions follows a
truncated Zipfian distribution, with a maximum indel length
of 50.

3 Results
3.1 Benchmarking

We compared the performance of the three methods (naive,
block list, and block tree) using four different root sequence
lengths: 50, 100, 500, and 1000 characters. For this compari-
son, we only simulated indel events (without substitutions).
We observed a substantial improvement in runtime when us-
ing either the block list or block tree methods compared to
the naive implementation. These differences in runtime be-
came more pronounced for longer sequences (Fig. 4). There
was a significant difference in mean runtime between the sim-
ulation methods across the four different root lengths (two--
way ANOVA; P<.05), with no significant difference
between the block list and block tree methods (Tukey test;
P <.05). Detailed running time values are provided in Table
S1, available as supplementary data at Bioinformatics online.

The above results demonstrate that the block list and block
tree structures can substantially reduce runtime when simu-
lating indel events. We next assessed the relative runtime ded-
icated to the generation of indels versus substitutions when
simulating MSAs. On the benchmark dataset (see Section 2),
the percentage of time spent on simulating indels was 85.5%
on average for the naive method (Fig. SA). The length of the
root sequence affected the relative running times: when the
length was short (100 characters), the percentage of time de-
voted to indels was less than 65%. For root sequences of
5000 characters, the percentage was more than 98%
(Fig. 5B). When considering the block list and block tree
structures, indel simulation took on average 58.2% and
63.1% of the total time, respectively, meaning both methods

920z Atenuer gz uo Jasn AysIaniun AIAY 191 A L Z69078/9894B10/ L /Z/2I0IE/SONEWLIOJUIOIG/WOD dNodlWapeo.)/:SA)Y WOy papeojumod

https://github.com/nimrodSerokTAU/evo-sim
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf686#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf686#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf686#supplementary-data

Wygoda et al.

Methods
3001 mmm Block list
EEER Block tree
EXX® Naive
250
200
In
E
g 150
=
100
50
0 y i
50 100

500 1000

Root length

Figure 4. Runtime comparison of the different indel simulation methods on the 541 OrthoMaM trees, across different root length values.

alleviated some of the computational burden from indels to-
ward substitutions compared with the naive approach.

The similar runtime performance between the block list
and the block tree partially reflects differences in implementa-
tion details (the block list implementation is based on Python
lists, which are highly efficient). Moreover, the tree-based
structure is expected to be much faster when the number of
events per branch is large. We hypothesized that the number
of events experienced in the above benchmark was not
enough for these differences to become apparent. To test this
hypothesis, we selected a tree from the above OrthoMaM
dataset and set all the branch lengths within it to 0.1 substitu-
tions per site. We then compared the running times of the
block list and block tree algorithms when the branch lengths
were multiplied by a factor of either 1, 5, or 10, and the root
length was set to 10 000 characters. Additionally, we tested
how different insertion-deletion ratios affect the runtime.
Starting each time with an insertion rate of 0.01 and increas-
ing it incrementally up to 0.09 while maintaining a constant
sum of insertion and deletion rates of 0.1. For insertion rates
above 0.06, increasing the branch length by a factor of 3,
resulted in a small advantage (10%) in the performance of
the block tree method. The difference was more pronounced
when increasing the branch lengths by a factor of 10, e.g.,
when the insertion rate was 0.09, the block tree method was
eight times faster than the block list method (Fig. 6). Thus,
the block tree method is superior to the block list in some ex-
treme settings, specifically with high insertion frequencies per
branch. Even so, in trees originating from highly homologous
sequences, the block list method offered a slightly better or
similar performance overall when considering lower inser-
tion rates.

3.2 Comparison with AliSim

To assess the performance and memory usage of our pro-
posed block-based methods compared with existing MSA

simulation programs, we ran AliSim (Ly-Trong et al. 2022)
and our block tree-based simulator using the parameter sensi-
tivity analysis setup described above (insertion rates 0.01-
0.09, total indel rate 0.1, and branch length scaling factors 1,
5, and 10). We measured both peak memory usage and run-
time for both indel-only simulations with both indels and
substitutions.

As expected, given the implementation differences between
AliSim’s highly optimized C++ codebase and our proof-of-
concept Python implementation, AliSim generally achieved
faster runtimes across most parameter combinations (Fig. 7).
The performance gap narrowed considerably under extreme
conditions, particularly at 0.09 insertion rate with a scaling
factor of 10, where runtimes became comparable (Fig. 7F).
Both simulators exhibited memory usage that scaled with
indel complexity, with AliSim maintaining a peak consump-
tion below 230 MB and our implementation starting from a
higher baseline that peaked at 718 MB under extreme param-
eter combinations (Fig. 7C). The difference in baseline mem-
ory consumption primarily reflects the inherent overhead of
Python compared to C++, while both implementations
showed the expected increase in memory usage as indel rates
and scaling factors increased. Notably, even at peak usage,
our implementation’s memory requirements remain well
within the capabilities of modern computing systems. Thus,
even with the increase in memory usage, the corresponding
gains in computational speed make our block-based ap-
proach a worthwhile addition to modern MSA simulators.

As mentioned above, AliSim is implemented in C++, while
our simulator uses Python. Based on comprehensive bench-
marking studies, Python implementations typically execute
8-29x slower than equivalent C++ code (Lion et al. 2022),
suggesting our block-based approach could achieve competi-
tive performance when implemented in a compiled language.
This performance differential indicates that the algorithmic

920z Atenuer gz uo Jasn Aysianun AIAY 181 Aq L 269018/9894810/ /2 /8101 e/SoleWIOUIO0lg/WOoD dNodlwapede//:sdiy woly papeojumo(q

Efficient algorithms for simulating sequences

A

85.5%

80

60

40

Average Time Fraction (%)

20

Block list

B Indel Time
Substitution Time

Block tree

Algorithm

100

80

60

40

Time Fraction (%)

20

1 2 3 4 5 6 7

B2 Indels
Substitutions

9 10 11 12 13 14 15 16

Test Case

Figure 5. The relative runtime dedicated to the generation of indels versus substitutions when simulating MSAs. (A) The average time taken by indels
versus substitutions in MSA simulation across all tested parameters. (B) Time fraction trends for naive indel simulation across the 16 test cases. Test
cases 1-4: MSAs generated with a root length of 100 amino acids; test cases 5-8: Root lengths of 500 amino acids; test cases 9-12: root lengths of
1000 amino acids; test cases 13-16: root lengths of 5000 amino acids. Within each group, branch lengths varied in increasing order: 0.01, 0.05, 0.1, 0.5.
For example, in test case 13 all branch lengths were 0.01 substitutions per site, and in test case 14, all branch lengths were 0.05 substitutions per site.

advantages of our method may be currently masked by
language-level overhead.

3.3 Empirical data analysis

As a proof-of-concept, we integrated our bookkeeping ap-
proach within the SpartaABC framework to infer indel dy-
namics across mammals (Karin et al. 2017, Loewenthal et al.
2021). We specifically compared bats (order Chiroptera)
with other mammals to investigate whether the known

smaller genome size of bats could be explained by a higher
deletion rate (Hughes and Hughes 1995).

We performed a two-sided Wilcoxon test on the inferred
indel parameters (deletion rate, insertion rate, and length dis-
tributions) to compare chiropterans with other mammals.
There was no significant difference in the insertion length pa-
rameter between groups (P >.05). The mean, standard devia-
tion, and P-values of the indel model parameters across the
two groups are summarized in Table 2. Surprisingly, chirop-
terans exhibited a higher insertion rate and a lower deletion

920z Atenuer gz uo Jasn AjsIaAlun AIAY 191 A L Z690%8/989JBIG/ |/ZH/9101LE/SOIBWIOUIOIG/WOS"dNO"0ILSPED.//:SAY W) Papeo|umoQ

10

A Multiplication factor: 1
—#— Block list
~{)- Block tree

0.50 4

- y

T 0.45 A 4

C

(o]

9]

& 040

(O]

§ 0.35 4

L

C

3

& .30

0.25 4
O,bl 0.‘02 0.63 0.64 0.65 0.66 0.67 0.68 0.‘09
Insertion rate
B Multiplication factor: 5

—#— Block list
- Block tree

Runtime (seconds)

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
Insertion rate

(9]

Multiplication factor: 10

—#— Block list
)~ Block tree

160 1

140 -

1201

1001

Runtime (seconds)

0{ O—O—O0—-

O.bl 0.62 0.63 0.I04 0.2)5 0.I06 0.2)7 0.I08 0.;)9
Insertion rate

Figure 6. Performance comparison of the block list and block tree
methods across different branch length multiplication factors and
indel rates.

rate compared to other mammals, as well as a higher average
deletion length parameter, i.e., shorter deletions (Table 2).
These results might discount indels as a plausible cause for
their smaller genome size.

As stated above, efficient simulations using the block tree
algorithm were implemented within SpartaABC. The entire
ABC-based computation of the above empirical data (MSAs
of chiropterans and other mammals) took 1086.8 h, with

Wygoda et al.

756.1h dedicated to simulations. In comparison, we esti-
mated that the naive approach would require
11 116 h (Supplemental Information S35, available as supple-
mentary data at Bioinformatics online). This 14-fold speed
improvement demonstrates the utility of our simulation algo-
rithm, enabling ABC-based inference of indel parameters at a
genomic scale.

4 Discussion

Sequence simulation is widely used in the study of gene evo-
lution. In this work, we introduced two novel algorithms
for the simulation of indel evolution along a tree. Both
algorithms have lower time complexity compared to the na-
ive method. In addition, we have shown that our bookkeep-
ing methods for tracking indel events along a branch
result in a significant speed-up compared to the na-
ive approach.

Our proposed list-based approach requires iterating over
the entire event history, which for extreme cases may still
burden the simulation. In contrast, the AVL-based approach
greatly reduces this burden. However, pointer-based data
structures such as AVL trees may result in cache misses,
which can significantly impact algorithm speed in real envi-
ronments (Saikkonen and Soisalon-Soininen 2016). The real-
time performance of the algorithms proposed here may vary
depending on the computer language used and the implemen-
tation details of the utilized data structures. Other data struc-
tures used for text editing, such as rope (Boehm er al. 1995)
or B-tree (Bayer and McCreight 1972), can also be considered
to accelerate similar computations. Of note, binary search
trees were recently proposed to expedite simulations with
indels specifically for short branches with few events (De
Maio et al. 2022).

Using the algorithms presented here, we accelerated
SpartaABC, an ABC approach to infer indel dynamics
(Loewenthal et al. 2021). We applied it to compare indel dy-
namics of bats versus other mammals. Our results suggest
that indels may not be the causative evolutionary process that
led to the small genome size observed in bats. However, addi-
tional analyses of non-coding regions are needed to further
validate this conclusion. This type of analysis greatly benefits
from the bookkeeping method, as it requires numerous simu-
lations of indel-only MSAs with a wide range of indel
parameters.

One of the most challenging aspects of simulation studies
is to generate data that resemble empirical data. This is diffi-
cult because we usually do not fully understand the evolu-
tionary dynamics that led to current-day sequences. Inferring
indel dynamics that capture the patterns in a given dataset is
particularly complex (Trost et al. 2024). The algorithms pre-
sented here, combined with SpartaABC and substitution-
based models, enable efficient generation of multiple MSAs
that match the indel evolutionary patterns observed in empir-
ical data.

Many aspects of sequence evolution remain unaddressed in
current indel simulation models. For instance, all these mod-
els assume that indel probability is independent of sequence
context. However, clear evidence contradicts this assump-
tion. Indel dependence on sequence context has been demon-
strated at both the DNA level (Tanay and Siggia 2008,

920z Atenuer gz uo Jasn Aysianun AIAY 181 Aq L 269018/9894810/ /2 /8101 e/SoleWIOUIO0lg/WOoD dNodlwapede//:sdiy woly papeojumo(q

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf686#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf686#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf686#supplementary-data

Efficient algorithms for simulating sequences

A Multiplication factor: 1
e w
(%]
T
c
o
(9]
Q
=
[
£
=
[=4
3
o
1071
0.01 0.02 003 004 005 0.06 0.07 0.08 0.09
Insertion rate
B Multiplication factor: 5

10!

- /

Runtime (seconds)
=
<

Max Memory (MB)

0.01 0.02 0.03 0.04 005 0.06 0.07 0.08 0.09
Insertion rate

C 102 Multiplication factor: 10

._.
A

Runtime (seconds)
=
<

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
Insertion rate

—— Block tree (with substitutions)
—&— Block tree (no substitutions)

1

D Multiplication factor: 1

102

Max Memory (MB)

|

10!

0.01 0.02 0.03 0.04 005 0.06 0.07 0.08 0.09
Insertion rate

E Multiplication factor: 5

102

10t

0.01 0.02 0.03 0.04 005 0.06 0.07 0.08 0.09
Insertion rate

F Multiplication factor: 10
o

3

: /
[}

€

[

=

X

(©

=

10!

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
Insertion rate

—A— AliSim (with substitutions)
—%¥— AliSim (no substitutions)

Figure 7. Performance comparison of the block list and block tree methods across different branch length multiplication factors and indel rates. (A-C)
Runtime (seconds) for 1%, 5%, and 10x branch scaling factors. (D-F) Peak memory usage (MB) for the corresponding factors. squares: block tree with
substitutions; diamonds: block tree without substitutions; triangles: AliSim with substitutions; inverted triangles: AliSim without substitutions.

Table 2. Mean and standard deviation of the inferred indel parameters for
the 47 datasets, alongside the P-values for the Wilcoxon test.

Insertion Deletion Insertion Deletion
rate rate length length
parameter parameter

Chiropterans 0.009 =0.003 0.029+0.006 1.50+0.09 1.20=0.06

Other 0.007£0.002 0.035+0.007 1.53=0.07 1.11+0.05
mammals
P-value 489%x107° 4.76x 107 .09 7.07x 1071

Kvikstad et al. 2009) and the amino acid level (Chang and
Benner 2004, de la Chaux ef al. 2007). Integrating context-
dependent indel models into efficient simulation algorithms
represents an important research frontier.

Acknowledgements

E.W., N.S., A.M., and N.E. were supported in part by a fel-
lowship from the Edmond]. Safra Center for Bioinformatics

920z Atenuer gz uo Jasn Aysianun AIAY 181 Aq L 269018/9894810/ /2 /8101 e/SoleWIOUIO0lg/WOoD dNodlwapede//:sdiy woly papeojumo(q

12

at Tel Aviv University. The list-based, tree-based, and super-
sequence algorithms were developed by A.M. and are de-
scribed in his PhD thesis.

Author contributions

Elya Wygoda (Conceptualization [lead], Data curation [lead],
Formal analysis [lead], Investigation [lead], Methodology
[lead], Software [lead], Validation [lead], Visualization
[lead], Writing—original draft [lead], Writing—review &
editing [lead]), Asher Moshe (Conceptualization [lead],
Methodology [lead], Writing—original draft [equal],
Writing—review & editing [equal]), Nimrod Serok
(Conceptualization [equal], Investigation [equal],
Methodology [equal], Software [equal], Validation [equall],
Writing—review & editing [equal]), Edo Dotan
(Conceptualization [equal], Methodology [equal], Writing—
review & editing [equal]), Noa Ecker (Conceptualization
[equal], Investigation [equal], Methodology [equal], Software
[supporting]), Naiel Jabareen (Investigation [supporting],
Resources [supporting], Software [supporting], Validation
[equal], Writing—review & editing [supporting]), Omer
Israeli (Software [supporting]), Itsik Pe’er (Conceptualization
[supporting], Methodology [supporting], Supervision [sup-
porting], Writing—original draft [equal]), and Tal Pupko
(Conceptualization [lead], Investigation [lead], Methodology
[lead], Project Administration [lead], Supervision [lead],
Writing—original draft [lead], Writing—review & editing
[lead])

Supplementary material

Supplementary material is available at Bioinformatics online.

Conflict of interest: None declared.

Funding

This work was supported by the Israel Science Foundation
(ISF) [2818/21 to T.P.].

Data availability

The data underlying this article are available at https://
github.com/nimrodSerok TAU/evo-sim

References

Abadi S, Avram O, Rosset S et al. ModelTeller: model selection for opti-
mal phylogenetic reconstruction using machine learning. Mol Biol
Ev0l2020;37:3338-52. https://doi.org/10.1093/molbev/msaal54

Allio R, Delsuc F, Belkhir K et al. OrthoMaM v12: a database of cu-
rated single-copy ortholog alignments and trees to study mamma-
lian evolutionary genomics. Nucleic Acids Res 2024;52:D529-35.
https://doi.org/10.1093/nar/gkad834

Arasti S, Mirarab S. Median quartet tree search algorithms using opti-
mal subtree prune and regraft. Algorithms Mol Biol 2024;19:12.
https://doi.org/10.1186/s13015-024-00257-3

Bayer R, McCreight E. Organization and maintenance of large ordered
indexes. Acta Inform 1972;1:173-89. https://doi.org/10.1007/BF00
288683

Beaumont MA, Zhang W, Balding DJ. Approximate Bayesian computa-
tion in population genetics. Genetics 2002;162:2025-35.

Benner SA, Cohen MA, Gonnet GH. Empirical and structural models
for insertions and deletions in the divergent evolution of proteins.

Wygoda et al.

J Mol Biol 1993;229:1065-82. https://doi.org/10.1006/jmbi.1993.
1105

Boehm HJ, Atkinson R, Plass M. Ropes: an alternative to strings. Softw
Pract Exp 1995;25:1315-30. https://doi.org/10.1002/spe.43802
51203

Bouchard-Cété A, Jordan MI. Evolutionary inference via the Poisson
Indel Process. Proc Natl Acad Sci USA 2013;110:1160-6. https://
doi.org/10.1073/pnas.1220450110

Boussau B, Szollosi GJ, Duret L et al. Genome-scale coestimation of
species and gene trees. Genome Res 2013;23:323-30. https://doi.
org/10.1101/gr.141978.112

Cartwright RA. DNA assembly with gaps (Dawg): simulating sequence
evolution. Bioinformatics 2005;21 Suppl 3:iii31-8. https://doi.org/
10.1093/bioinformatics/bti1200

Cartwright RA. Problems and solutions for estimating indel rates and
length distributions. Mol Biol Evol 2009;26:473-80. https:/doi.
org/10.1093/molbev/msn275

Chang MSS, Benner SA. Empirical analysis of protein insertions and
deletions determining parameters for the correct placement of gaps
in protein sequence alignments. | Mol Biol 2004;341:617-31.
https://doi.org/10.1016/j.jmb.2004.05.045

Cormen TH, Leiserson CE, Rivest RL et al. Introduction to Algorithms.
3rd ed. Cambridge, MA: MIT Press, 2009.

Csilléry K, Blum MGB, Gaggiotti OF et al. Approximate Bayesian
Computation (ABC) in practice. Trends Ecol Evol 2010;25:410-8.
https://doi.org/10.1016/j.tree.2010.04.001

Dalquen DA, Anisimova M, Gonnet GH et al. ALF—a simulation
framework for genome evolution. Mol Biol Evol 2012;29:1115-23.
https://doi.org/10.1093/molbev/msr268

de la Chaux N, Messer PW, Arndt PF. DNA indels in coding regions re-
veal selective constraints on protein evolution in the human lineage.
BMC Evol Biol 2007;7:191. https://doi.org/10.1186/1471-2148-
7-191

De Maio N, Boulton W, Weilguny L ez al. phastSim: efficient simulation
of sequence evolution for pandemic-scale datasets. PLoS Comput
Biol 2022;18:e1010056. https://doi.org/10.1371/journal.pcbi.
1010056

Dotan E, Belinkov Y, Avram O ez al. Multiple sequence alignment as a
sequence-to-sequence learning problem. 2023. https://openreview.
net/forum?id=8ef]YMBrNb

Douzery EJP, Scornavacca C, Romiguier] ef al. OrthoMaM v8: a data-
base of orthologous exons and coding sequences for comparative ge-
nomics in mammals. Mol Biol Evol 2014;31:1923-8. https://doi.
org/10.1093/molbev/msu132

Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for
comparative genomics. Genome Biol 2019;20:238-14. https://doi.
org/10.1186/s13059-019-1832-y

Fletcher W, Yang Z. The effect of insertions, deletions, and alignment
errors on the branch-site test of positive selection. Mol Biol Evol
2010;27:2257-67. https://doi.org/10.1093/molbev/msq115

Fletcher W, Yang Z. INDELible: a flexible simulator of biological se-
quence evolution. Mol Biol Evol 2009;26:1879-88. https://doi.org/
10.1093/molbev/msp098

Garland T, Dickerman AW, Janis CM et al. Phylogenetic analysis of co-
variance by computer simulation. Syst Biol 1993;42:265-92.
https://doi.org/10.1093/sysbio/42.3.265

Gillespie DT. Exact stochastic simulation of coupled chemical reac-
tions. | Phys Chem 1977;81:2340-61. https://doi.org/10.1021/
71005402008

Goldman N. Simple diagnostic statistical tests of models for DNA sub-
stitution. | Mol Evol 1993;37:650-61. https://doi.org/10.1007/BF
00182751

Gotte H. Handbook of Approximate Bayesian Computation. Edited by
Scott A. Sisson, Yanan Fan, Mark A. Beaumont (2019). London,
UK: Chapman & Hall/CRC Press. 662 pages, ISBN: 978-1-4398-
8150-7. Biometrical | 2019;61:1601-2. https://doi.org/10.1002/
bimj.201900141

Graur D, Shuali Y, Li WH. Deletions in processed pseudogenes accu-
mulate faster in rodents than in humans.] Mol Evol 1989;28:
279-85. https://doi.org/10.1007/BF02103423

920z Atenuer gz uo Jasn Aysianun AIAY 181 Aq L 269018/9894810/ /2 /8101 e/SoleWIOUIO0lg/WOoD dNodlwapede//:sdiy woly papeojumo(q

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf686#supplementary-data
https://github.com/nimrodSerokTAU/evo-sim
https://github.com/nimrodSerokTAU/evo-sim
https://doi.org/10.1093/molbev/msaa154
https://doi.org/10.1093/nar/gkad834
https://doi.org/10.1186/s13015-024-00257-3
https://doi.org/10.1007/BF00288683
https://doi.org/10.1007/BF00288683
https://doi.org/10.1006/jmbi.1993.1105
https://doi.org/10.1006/jmbi.1993.1105
https://doi.org/10.1002/spe.4380251203
https://doi.org/10.1002/spe.4380251203
https://doi.org/10.1073/pnas.1220450110
https://doi.org/10.1073/pnas.1220450110
https://doi.org/10.1101/gr.141978.112
https://doi.org/10.1101/gr.141978.112
https://doi.org/10.1093/bioinformatics/bti1200
https://doi.org/10.1093/bioinformatics/bti1200
https://doi.org/10.1093/molbev/msn275
https://doi.org/10.1093/molbev/msn275
https://doi.org/10.1016/j.jmb.2004.05.045
https://doi.org/10.1016/j.tree.2010.04.001
https://doi.org/10.1093/molbev/msr268
https://doi.org/10.1186/1471-2148-7-191
https://doi.org/10.1186/1471-2148-7-191
https://doi.org/10.1371/journal.pcbi.1010056
https://doi.org/10.1371/journal.pcbi.1010056
https://openreview.net/forum?id=8efJYMBrNb
https://openreview.net/forum?id=8efJYMBrNb
https://doi.org/10.1093/molbev/msu132
https://doi.org/10.1093/molbev/msu132
https://doi.org/10.1186/s13059-019-1832-y
https://doi.org/10.1186/s13059-019-1832-y
https://doi.org/10.1093/molbev/msq115
https://doi.org/10.1093/molbev/msp098
https://doi.org/10.1093/molbev/msp098
https://doi.org/10.1093/sysbio/42.3.265
https://doi.org/10.1021/j100540a008
https://doi.org/10.1021/j100540a008
https://doi.org/10.1007/BF00182751
https://doi.org/10.1007/BF00182751
https://doi.org/10.1002/bimj.201900141
https://doi.org/10.1002/bimj.201900141
https://doi.org/10.1007/BF02103423

Efficient algorithms for simulating sequences

Guindon S, Delsuc F, Dufayard JF et al. Estimating maximum likeli-
hood phylogenies with PhyML. Methods Mol Biol 2009;537:
113-37. https://doi.org/10.1007/978-1-59745-251-9_6

Huelsenbeck JP. Performance of phylogenetic methods in simulation.
Syst Biol 1995;44:17-48. https://doi.org/10.1093/sysbio/44.1.17

Hughes AL, Hughes MK. Small genomes for better flyers. Nature 1995;
377:391. https://doi.org/10.1038/377391a0

Jones DT, Taylor WR, Thornton JM. The rapid generation of mutation
data matrices from protein sequences. Comput Appl Biosci 1992;8:
275-82. https://doi.org/10.1093/bioinformatics/8.3.275

Jordan G, Goldman N. The effects of alignment error and alignment fil-
tering on the sitewise detection of positive selection. Mol Biol Evol
2012529:1125-39. https://doi.org/10.1093/molbev/msr272

Kalaghatgi P, Pfeifer N, Lengauer T. Family-joining: a fast distance-
based method for constructing generally labeled trees. Mol Biol
Evol2016;33:2720-34. https://doi.org/10.1093/molbev/msw123

Katoh K, Misawa K, Kuma K ez al. MAFFT: a novel method for rapid
multiple sequence alignment based on fast Fourier transform.
Nucleic Acids Res 2002;30:3059-66. https://doi.org/10.1093/
nar/gkf436

Kozlov AM, Darriba D, Flouri T et al. RAXML-NG: a fast, scalable and
user-friendly tool for maximum likelihood phylogenetic inference.
Bioinformatics 2019;35:4453-5. https://doi.org/10.1093/bioinfor
matics/btz305

Kuhlwilm M, Han S, Sousa VC et al. Ancient admixture from an extinct
ape lineage into bonobos. Nat Ecol Evol 2019;3:957-65. https://
doi.org/10.1038/s41559-019-0881-7

Kuhner MK, Felsenstein JA. Simulation comparison of phylogeny algo-
rithms under equal and unequal evolutionary rates. Mol Biol Evol
1994;11:459-68. https://doi.org/10.1093/0xfordjournals.mol
bev.a040126

Kumar S, Sharma S. Evolutionary sparse learning for phylogenomics.
Mol Biol Evol 2021;38:4674-82. https://doi.org/10.1093/mol
bev/msab227

Kvikstad EM, Chiaromonte F, Makova KD. Ride the wavelet: a multi-
scale analysis of genomic contexts flanking small insertions and
deletions. Genome Res 2009;19:1153-64. https://doi.org/10.1101/
gr.088922.108

Leuchtenberger AF, Crotty SM, Drucks T et al. Distinguishing
Felsenstein zone from Farris zone using neural networks. Mol Biol
Evo0l2020;37:3632-41. https://doi.org/10.1093/molbev/msaal64

Karin LE, Shkedy D, Ashkenazy H et al. Inferring rates and length-
distributions of indels using approximate Bayesian computation.
Genome Biol Evol 2017;9:1280-94. https://doi.org/10.1093/
gbe/evx084

Lion D, Chiu A, Stumm M et al. Investigating managed language run-
time performance: why JavaScript and Python are 8x and 29x
slower than C++, yet Java and go can be faster? In: Proceedings of
the 2022 USENIX Annual Technical Conference. Berkeley, CA,
USA: USENIX Association, 2022, 835-52. https://www.usenix.org/
conference/atc22/presentation/lion

Loewenthal G, Rapoport D, Avram O et al. A probabilistic model for
indel evolution: differentiating insertions from deletions. Mol Biol
Ev0l2021;38:5769-81. https://doi.org/10.1093/molbev/msab266

Loytynoja A. Phylogeny-aware alignment with PRANK. Methods Mol
Biol 2014;1079:155-70. https://doi.org/10.1007/978-1-62703-
646-7_10

Lunter G. Probabilistic whole-genome alignments reveal high indel
rates in the human and mouse genomes. Bioinformatics 2007;23:
i289-96. https://doi.org/10.1093/bioinformatics/btm185

© The Author(s) 2025. Published by Oxford University Press.

13

Ly-Trong N, Naser-Khdour S, Lanfear R et al. AliSim: a fast and versa-
tile phylogenetic sequence simulator for the genomic era. Mol Biol
Evol2022;39:msac092. https://doi.org/10.1093/molbev/msac092

Mo YK, Hahn MW, Smith ML. Applications of machine learning in
phylogenetics. Mol Phylogenet Evol 2024;196:108066. https://doi.
org/10.1016/j.ympev.2024.108066

Nesterenko L, Blassel L, Veber P ez al. Phyloformer: fast, accurate and
versatile phylogenetic reconstruction with deep neural networks.
Mol Biol Evol 2025;42:msaf051. https://doi.org/10.1093/mol
bev/msaf051

Nguyen LT, Schmidt HA, Haeseler A et al. IQ-TREE: a fast and effec-
tive stochastic algorithm for estimating maximum-likelihood phy-
logenies. Mol Biol Evol 2015;32:268-74. https://doi.org/10.1093/
molbev/msu300

Pervez MT, Babar ME, Nadeem A et al. Evaluating the accuracy and ef-
ficiency of multiple sequence alignment methods. Evol Bioinform
Online 2014;10:205-17. https://doi.org/10.4137/EBO.519199

Przeworski M. Estimating the time since the fixation of a beneficial al-
lele. Genetics 2003;164:1667-76. https://doi.org/10.1093/genetics/
164.4.1667

Saikkonen R, Soisalon-Soininen E. Cache-sensitive memory layout for
dynamic binary trees. Comput | 2016;59:630-49. https://doi.org/
10.1093/comjnl/bxv090

Suvorov A, Hochuli J, Schrider DR. Accurate inference of tree topolo-
gies from multiple sequence alignments using deep learning. Syst
Biol 2020;69:221-33. https://doi.org/10.1093/sysbio/syz060

Tallmon DA, Koyuk A, Luikart G et al. ONeSAMP: a program to esti-
mate effective population size using approximate Bayesian compu-
tation. Mol Ecol Resour 2008;8:299-301. https://doi.org/10.1111/;.
1471-8286.2007.01997 x

Tanay A, Siggia ED. Sequence context affects the rate of short insertions
and deletions in flies and primates. Genome Biol 2008;9:R37-14.
https://doi.org/10.1186/gb-2008-9-2-r37

Tateno Y, Takezaki N, Nei M. Relative efficiencies of the maximum-
likelihood, neighbor-joining, and maximum-parsimony methods
when substitution rate varies with site. Mol Biol Evol 1994;11:
261-77. https://doi.org/10.1093/oxfordjournals.molbev.a040108

Templeton AR. Correcting approximate Bayesian computation. Trends
Ecol Evol 2010;25:488-9. https://doi.org/10.1016/j.tree.2010.
06.009

Thompson JD, Gibson TJ, Higgins DG. Multiple sequence alignment
using ClustalW and ClustalX. Curr Protoc Bioinform 2002;Chapter
2:Unit 2.3. https://doi.org/10.1002/0471250953.bi0203s00

Thorne JL, Goldman N, Jones DT. Combining protein evolution and
secondary structure. Mol Biol Evol 1996;13:666-73. https://doi.
org/10.1093/oxfordjournals.molbev.a025627

Trost], Haag J, Hohler D et al. Simulations of sequence evolution: how
(un)realistic they are and why. Mol Biol Evol 2024;41:msad277.
https://doi.org/10.1093/molbev/msad277

Vialle RA, Tamuri AU, Goldman N. Alignment modulates ancestral se-
quence reconstruction accuracy. Mol Biol Evol 2018;35:1783-97.
https://doi.org/10.1093/molbev/msy055

Wollenberg KR, Atchley WR. Separation of phylogenetic and func-
tional associations in biological sequences by using the parametric
bootstrap. Proc Natl Acad Sci U § A 2000;97:3288-91. https://doi.
org/10.1073/pnas.97.7.3288

Wygoda E, Loewenthal G, Moshe A et al. Statistical framework to de-
termine indel-length distribution. Bioinformatics 2024;40:btae043.
https://doi.org/10.1093/bioinformatics/btae043

Zou Z, Zhang H, Guan Y et al. Deep residual neural networks resolve
quartet molecular phylogenies. Mol Biol Evol 2020;37:1495-507.
https://doi.org/10.1093/molbev/msz307

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits
unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 2026, 42, 1-13
https://doi.org/10.1093/bioinformatics/btaf686
Original Paper

920z Atenuer gz uo Jasn Aysianun AIAY 181 Aq L 269018/9894810/ /2 /8101 e/SoleWIOUIO0lg/WOoD dNodlwapede//:sdiy woly papeojumo(q

https://doi.org/10.1007/978-1-59745-251-9_6
https://doi.org/10.1093/sysbio/44.1.17
https://doi.org/10.1038/377391a0
https://doi.org/10.1093/bioinformatics/8.3.275
https://doi.org/10.1093/molbev/msr272
https://doi.org/10.1093/molbev/msw123
https://doi.org/10.1093/nar/gkf436
https://doi.org/10.1093/nar/gkf436
https://doi.org/10.1093/bioinformatics/btz305
https://doi.org/10.1093/bioinformatics/btz305
https://doi.org/10.1038/s41559-019-0881-7
https://doi.org/10.1038/s41559-019-0881-7
https://doi.org/10.1093/oxfordjournals.molbev.a040126
https://doi.org/10.1093/oxfordjournals.molbev.a040126
https://doi.org/10.1093/molbev/msab227
https://doi.org/10.1093/molbev/msab227
https://doi.org/10.1101/gr.088922.108
https://doi.org/10.1101/gr.088922.108
https://doi.org/10.1093/molbev/msaa164
https://doi.org/10.1093/gbe/evx084
https://doi.org/10.1093/gbe/evx084
https://www.usenix.org/conference/atc22/presentation/lion
https://www.usenix.org/conference/atc22/presentation/lion
https://doi.org/10.1093/molbev/msab266
https://doi.org/10.1007/978-1-62703-646-7_10
https://doi.org/10.1007/978-1-62703-646-7_10
https://doi.org/10.1093/bioinformatics/btm185
https://doi.org/10.1093/molbev/msac092
https://doi.org/10.1016/j.ympev.2024.108066
https://doi.org/10.1016/j.ympev.2024.108066
https://doi.org/10.1093/molbev/msaf051
https://doi.org/10.1093/molbev/msaf051
https://doi.org/10.1093/molbev/msu300
https://doi.org/10.1093/molbev/msu300
https://doi.org/10.4137/EBO.S19199
https://doi.org/10.1093/genetics/164.4.1667
https://doi.org/10.1093/genetics/164.4.1667
https://doi.org/10.1093/comjnl/bxv090
https://doi.org/10.1093/comjnl/bxv090
https://doi.org/10.1093/sysbio/syz060
https://doi.org/10.1111/j.1471-8286.2007.01997.x
https://doi.org/10.1111/j.1471-8286.2007.01997.x
https://doi.org/10.1186/gb-2008-9-2-r37
https://doi.org/10.1093/oxfordjournals.molbev.a040108
https://doi.org/10.1016/j.tree.2010.06.009
https://doi.org/10.1016/j.tree.2010.06.009
https://doi.org/10.1002/0471250953.bi0203s00
https://doi.org/10.1093/oxfordjournals.molbev.a025627
https://doi.org/10.1093/oxfordjournals.molbev.a025627
https://doi.org/10.1093/molbev/msad277
https://doi.org/10.1093/molbev/msy055
https://doi.org/10.1073/pnas.97.7.3288
https://doi.org/10.1073/pnas.97.7.3288
https://doi.org/10.1093/bioinformatics/btae043
https://doi.org/10.1093/molbev/msz307

	Active Content List
	1 Introduction
	2 Materials and methods
	3 Results
	4 Discussion
	Acknowledgements
	Author contributions
	Supplementary material
	Funding
	Data availability
	References

