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Abstract
Motivation: Multiple sequence alignments (MSAs) are extensively used in biology, from phylogenetic reconstruction to structure and function 
prediction. Here, we suggest an out-of-the-box approach for the inference of MSAs, which relies on algorithms developed for processing natural 
languages. We show that our artificial intelligence (AI)-based methodology can be trained to align sequences by processing alignments that are gener
ated via simulations, and thus different aligners can be easily generated for datasets with specific evolutionary dynamics attributes. We expect that 
natural language processing (NLP) solutions will replace or augment classic solutions for computing alignments, and more generally, challenging infer
ence tasks in phylogenomics.
Results: The MSA problem is a fundamental pillar in bioinformatics, comparative genomics, and phylogenetics. Here, we characterize and 
improve BetaAlign, the first deep learning aligner, which substantially deviates from conventional algorithms of alignment computation. 
BetaAlign draws on NLP techniques and trains transformers to map a set of unaligned biological sequences to an MSA. We show that our 
approach is highly accurate, comparable and sometimes better than state-of-the-art alignment tools. We characterize the performance of 
BetaAlign and the effect of various aspects on accuracy; for example, the size of the training data, the effect of different transformer architec
tures, and the effect of learning on a subspace of indel-model parameters (subspace learning). We also introduce a new technique that leads to 
improved performance compared to our previous approach. Our findings further uncover the potential of NLP-based methods for sequence 
alignment, highlighting that AI-based algorithms can substantially challenge classic approaches in phylogenomics and bioinformatics.
Availability and implementation: Datasets used in this work are available on HuggingFace (Wolf et al. Transformers: state-of-the-art natural 
language processing. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations. 
p.38–45. 2020) at: https://huggingface.co/dotan1111. Source code is available at: https://github.com/idotan286/SimulateAlignments.

1 Introduction
The Needleman–Wunsch algorithm was the first to use dy
namic programming to efficiently find the best global scoring 
alignment between two sequences (Needleman and Wunsch 
1970). The inference of a multiple sequence alignment (MSA) 
was later shown to be an NP-complete problem (Wang and 
Jiang 1994), making the inference task impractical for a large 
set of sequences. To overcome this hurdle, popular MSA 
algorithms, such as MAFFT (Katoh and Standley 2013) and 
PRANK (L€oytynoja 2014), use heuristics to reduce the search 
space and consequently, the running time.

There is extensive knowledge regarding the variability of 
the evolutionary process among different datasets and line
ages. For example, amino acid replacement matrices vary be
tween proteins encoded in the nuclear genome, the 
mitochondria, and plastids (Pesole et al. 1999). Indel dynam
ics also highly vary between datasets and among different 
phylogenetic groups (Wolf et al. 2007, Ajawatanawong and 

Baldauf 2013, Loewenthal et al. 2021). Furthermore, site- 
specific evolutionary rates vary along the analyzed sequence. 
For example, amino acid sites that are exposed to the solvent 
tend to have higher evolutionary rates compared to buried 
sites (Wang et al. 2008). Alignment algorithms using default 
configurations implicitly assume that the evolutionary dy
namics do not substantially vary among different datasets 
and within a single dataset. The general inability of MSA in
ference algorithms to automatically tune their scoring scheme 
to the specific dataset being analyzed is a shortcoming of pre
sent alignment programs. The “one matrix fits all biological 
datasets” and “one matrix fits all regions within a dataset” 
assumptions implicitly employed by most current methodolo
gies raise fundamental questions about the correctness of 
alignments produced by such methods. Although it is possible 
to modify gap-penalty parameters in some alignment pro
grams, these programs do not provide means to automati
cally tune the parameters to specific datasets or regions 
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within a dataset, and hence, by and large, all users employ 
the default settings.

Alignment algorithms are typically assessed by empirical 
alignment regions, but these regions are not comprehensive 
enough to cover the entire range of alignment challenges. 
These regions are often calculated manually, so their reliabil
ity as a “gold standard” is uncertain (Iantorno et al. 2014). 
Differences exist between empirical and simulated datasets, e. 
g., the latter may not account for evolutionary scenarios such 
as micro-rearrangements (Walker et al. 2021). Thus, when 
alignment programs are tested with simulated alignments, the 
results may differ from empirical benchmark outcomes 
(Chang et al. 2014).

One of the key concepts in learning algorithms, in general, 
and in deep learning algorithms in particular, is the ability to 
learn from previously annotated data, i.e., to generalize from 
previous observations to unseen cases. For the task of align
ment inference, a deep learning algorithm should learn from 
“true” alignments (e.g., simulated sequences for which the 
correct alignment is known) and apply the obtained knowl
edge to align novel sequences. In this work, we aimed to har
ness natural language processing (NLP) learning algorithms 
to the task of aligning sequences; thus, to better capture the 
evolutionary dynamics of biological sequences.

Here, we present an improvement for our previously devel
oped BetaAlign approach (Dotan et al. 2023), in which instead 
of computing a single alignment, we infer multiple alternative 
alignments and return the one that maximizes the certainty. To 
further characterize BetaAlign, we conducted the following 
analyses: (i) evaluating the effect of training time and size; 
(ii) evaluating the effect of transfer learning; (iii) measuring the 
performance as a function of the evolutionary dynamics that 
generated the sequences; and (iv) comparing different trans
former architectures. We also introduce the term subspace 
learning to describe training on a subspace of the indel parame
ters and investigate its utility for BetaAlign. Lastly, we show 
that the benefit of our approach is also transferable, that is, the 
embedding obtained by the model could serve as meaningful 
features for accurate inference in other learning tasks such as in
ferring sequence length prediction of ancestral sequences.  
Table 1 describes the main differences between the previous and 

current work. For completeness, we start by describing 
the algorithm.

2 Materials and methods
2.1 New approach
2.1.1 Outline

Typically, sequence-to-sequence NLP tasks involve a single 
sentence (or text) as both input and output, e.g., translating 
from one language to another or changing a sentence from 
active to passive (Sutskever et al. 2014, Bahdanau et al. 2016, 
Shalumov and Haskey 2023). The learning phase of the algo
rithm is to map a single input sentence to a single output sen
tence. When we aim to apply sequence-to-sequence models to 
the problem of alignment, we are faced with a challenge: the 
input to the alignment task is several “sentences”, each corre
sponding to an unaligned sequence. Similarly, the output is a 
set of related sentences, each corresponding to a row in the 
resulting alignment. The first task in the BetaAlign algorithm 
is to transform the set of unaligned sequences to a single 
“sentence”. Such input- transformation can be done, e.g., by 
concatenating all the unaligned sequences, adding a special 
character (we use the pipe character, “j”) to indicate the 
boundaries between the sequences (Fig. 1). For training the 
algorithm, we also need to provide target sentences. Thus, we 
also need an output-transformation step, in which we convert 
resulting alignments to a single target sentence. In BetaAlign, 
we use the “spaces” representation (Fig. 1). The above repre
sentations allow providing a sequence-to-sequence model 
with a large set of examples of valid source and target senten
ces, which are used for model training. The models that we 
use rely on the transformer architecture (Vaswani et al. 
2017). Once trained, the optimized transformer can process 
new unseen examples, in our case, it can transform (unseen) 
unaligned sequences to an alignment.

There are several aspects that need to be addressed to fully 
describe the BetaAlign algorithm and how its performance 
was evaluated. These include, for example, the generation of 
training and test data, the transformer architecture and how 
it was trained, the handling of long sequences and how the 
generation of invalid alignments was prevented. We aim to 

Table 1. The different topics discussed in this research compared to the previous version of BetaAlign.

Topic What is new in this work

Algorithm: increasing the accuracy by generating alternative alignments 
for the same set of unaligned sequences and selecting the best one

We changed our alignment methodology. In the new algorithm, 
we calculate multiple alternative alignments and return the alignment 
that maximizes the certainty. Thus, all the results in the current 
manuscript are new, as they are computed with the novel 
alignment algorithm

Analysis: the effect of training time and size We investigated the effect of the training phase on BetaAlign’s loss and 
performance

Analysis: the effect of indel model parameters on BetaAlign 
performance

We investigated the effect of indel parameters on BetaAlign’s 
performance

Analysis: subspace learning We introduce the term subspace learning to describe training on a 
subspace of the indel parameters. We investigate how subspace 
learning affects BetaAlign’s performance

Algorithm: embedding extraction for downstream tasks We introduced a new approach to gather meaningful representations of 
unaligned and aligned sequences and evaluate its performance

Analysis: transfer learning We investigated the effect of transfer learning on BetaAlign’s 
performance

Analysis: architecture comparisons We investigated the effect of different transformer architectures
Algorithm: handling invalid alignments and long sequences These issues were explained in our previous paper and are hence only 

shortly described here
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provide a more general description as part of the Section 2, 
while technical details are provided in Section 4.

2.1.2 Generation of training and test data
For both training and testing the performance of BetaAlign, 
many sets (data points) of unaligned sequences and their corre
sponding “true alignment” were needed. These data points were 
generated using simulations. Specifically, we use SpartaABC 
(Loewenthal et al. 2021), which allows different length distribu
tions for insertions and deletions. For example, the initial testing 
and training for the pairwise alignment problem were achieved 
by generating millions of pairs of two unaligned sequences and 

their corresponding alignments for the training and testing data. 
The indel rates, their type (insertion or deletion), and their length 
distribution were sampled from specific ranges. We note that we 
do not assume equal rates of insertions and deletions, nor equal 
length distributions for the two types of events (this is mainly im
portant when simulating along a tree rather than when simulat
ing pairwise alignments).

2.1.3 Transformer architecture
Transformers are currently the working horse of NLP and other 
AI domains. A transformer is a deep learning model designed to 
handle discrete sequential data. The transformer used in our 

Figure 1. Example of aligning three sequences with BetaAlign, (a): (I) Consider the unaligned sequences “AAG”, “ACGG” and “ACG”; (II) The 
unaligned sequences are concatenated to a single sentence with a special character “j” between each original sequence; (III) The trained model 
processes the single input sentence and generates the single output sentence; (IV) The processed output is structured such that the first three 
nucleotides represent the first column, the next three nucleotides represent the second column, and so on; (V) The output is converted into an MSA. (b) 
An illustration of the different input (I) and output (II) transformation schemes. (c) Example of handling invalid alignments. When aligning the same 
sequences, BetaAlign first transformer may mistakenly mutated the character “A” to “G” (I); A different transformer resulted in a different output, may 
generate a shorter sequence in which the last two characters are missing (II); The third transformer provided a valid alignment as output and can be used 
as the output of BetalAlign (III).
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work is composed of an encoder and a decoder. The encoder 
embeds each input sequence (and in our case, the source 
sequence representing multiple unaligned sequences) into a 
sequence of high-dimensional vector representation. In this vec
tor space, two related sequences should be closer to each other 
than two less related sequences. This projection from the se
quence space to the high-dimensional space, i.e., the embedding 
process, is not fixed, but rather is learned as part of the training 
process. Next, the decoder receives those representations and 
the last generated token and predicts the next token (a token in 
natural languages is the building block of a sentence, in our 
case, each token is either a base pair or an amino acid). The en
coder and decoder are neural networks with multiple sequential 
layers, each containing numerous neurons. These neurons act as 
linear functions with tunable parameters that are adjusted dur
ing training. To handle complex data, each layer of the trans
former also incorporates non-linear functions (without non- 
linear functions, the model acts as a function composition of lin
ear only functions which results in a linear function). Although 
each layer could theoretically attend to all previously computed 
embeddings (i.e., the input to the layer), previous research has 
shown that focusing on a specific subset of tokens yields better 
results. This approach, known as attention, is a foundational as
pect of the transformer model (Vaswani et al. 2017). To create 
the initialized set of the embeddings, the discrete data (in our 
case, the DNA and the amino acid sequences) are converted via 
the tokenizer into a set of ids (Dotan et al. 2024), which are 
then converted to a numerical representation via the embed
dings matrix. Transformers may vary in architecture, number of 
layers, and size. These features are the tunable architectural 
hyperparameters. When training a transformer, one can also 
vary the learning hyperparameters, e.g., the parameter “max 
tokens” determines how much input to process before the 
model parameters are updated. We have tested several trans
former architectures and parameters, implemented using the 
Fairseq library (Ott et al. 2019). Technical details regarding 
transformer optimizations are provided in Section 4.

2.1.4 Transfer learning and subspace learning
The input and output patterns of the analyzed sequences vary 
as a function of their number, e.g., the number of pipe char
acters in the “concat” representation. We thus optimized a 
different transformer for each number of sequences. To this 
end, when optimizing the transformer for, say, five sequen
ces, we start the parameter optimization step from the set of 
optimal parameters obtained for the previous transformer 
that was trained on four sequences, a technique called trans
fer learning (Tan et al. 2018, Avram et al. 2024).

We also use transfer learning in order to train a trans
former on subregions of the parameter space, i.e., subspace 
learning (see Section 4). For example, we can train a general 
pairwise alignment transformer as described above and then 
train a different transformer only for alignments with a high 
ratio of indels to substitutions. In essence, this allows training 
several transformers, specialized for subregions of the param
eter space.

2.1.5 Handling invalid alignments
Transformers have no inherent mechanism that restricts them 
to generate valid alignments. Thus, in some cases, a trained 
transformer may produce invalid outputs. For example, 
when aligning sequences, each output sequence, including 
gap characters, should be of the same length (Fig. 1c). To this 

end, we trained several different transformers, which differ 
from each other with respect to their tunable hyperpara
meters, on the same training dataset (see Section 4). If a trans
former provided an invalid alignment, we provided the 
output of an alternative transformer.

2.1.6 Handling long sequences
The transformers that we have utilized were designed to pro
cess text of natural languages and not biological sequences. 
As such, they are limited to processing sentences with up to 
1024 tokens. When aligning biological sequences, the input 
and output sentences often exceed this length threshold. Due 
to memory and run-time constraints, increasing the threshold 
is infeasible. To overcome this challenge, we introduced a 
“segmentation” methodology, in which we align segments of 
the alignments, which are later concatenated to form the en
tire MSA. This procedure is achieved by training dedicated 
transformers for this task (Dotan et al. 2023).

2.1.7 Considering alternative input and output 
transformation schemes
The transformer architectures we harnessed for the task of 
aligning sequences are sequence-to-sequence models. One of the 
key components of our proposed alignment approach is to 
transpose the multiple input sequences into a single sentence 
that can be processed by the transformer. Input transformation 
converts the unaligned sequences into the “input sentence” of 
the transformer, while output transformation converts the 
“output sentence” of the transformer into an MSA.

There are various transformation schemes available for 
converting unaligned sequences into a single sentence. In  
Fig. 1a, we present the “concat” representation: the un
aligned sequences are concatenated with a special character 
“j”. The vocabulary, which encompasses the entire set of pos
sible tokens, of this scheme is f“A”, “C”, “G”, “T” and “j”g
for the nucleotide sequences. We used the “spaces” represen
tation for output transformation, in which each of the amino 
acids or nucleotides is considered a separate token. The vo
cabulary of this scheme for DNA sequences is f“A”, “C”, 
“G”, “T” and “–”g.

However, alternative transformation schemes for the 
source sequences can be considered. We previously consid
ered the “crisscross” scheme, the tokens of the unaligned 
sequences are interleaved (Dotan et al. 2023). That is, the 
first token represents the first character from the first un
aligned sequence, the second token represents the first token 
of the second unaligned sequence, and so on. The vocabulary 
of this scheme is f“A”, “C”, “G”, “T” and “–”g for the nu
cleotide sequences. Of note, the gap character is used to fill 
the gaps if the sequences are of different lengths (Fig. 1b). 
Similarly, alternative transformation schemes for generating 
the output sentence are possible.

In the “pairs” scheme, each token represents the entire col
umn. The vocabulary of this scheme depends on the number 
of unaligned sequences, for instance, when aligning three 
DNA sequences, the vocabulary size is 124 tokens: f“AAA”, 
“AAC”, “AAG”, “AAT”, “AA–”, … , “TTG”, and “TTT”g. 
Of note, the token “– – –” (three gap characters) is invalid as 
such column cannot exist.

It is important to remember that the transformation 
schemes are external to the transformer itself. Each transfor
mation methodology creates a different mapping from un
aligned sequences to an MSA, which requires training the 
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transformer on these representations. Different considera
tions come into play when selecting the appropriate scheme 
(Dotan et al. 2023). In the “pairs” scheme, the output se
quence length is the number of columns, while in the 
“spaces” the length is the number of nucleotides. Because 
length is a limiting factor when using current transformer 
architectures, using the “pairs” scheme may be advanta
geous. However, the “pairs” scheme restricts the use of trans
fer learning (see below). When transitioning from pairwise 
alignment to aligning three sequences, the vocabulary would 
change (from 24 tokens to 124 tokens) and in general, the 
number of possible tokens exponentially increases as a func
tion of the number of unaligned sequences. In our previous 
work, we observed that the “concat” and “spaces” represen
tations (shown in Fig. 1a) performed best (Dotan et al. 2023). 
Thus, all the experiments in this work are done with these 
representations for the input sequences and output MSA, 
respectively.

2.1.8 Increasing the accuracy by generating 
alternative alignments for the same set of 
unaligned sequences and selecting the best one
We present a method for generating multiple alternative 
MSAs from the same input data. This is done by randomizing 
the order in which the input unaligned sequences are 
concatenated (see Section 4). We also show how we select a 
single MSA from this set using a “majority voting” approach. 
We show that, on average, this data augmentation followed 
by majority voting approach provides a more accurate MSA 
than relying on a randomly sampled MSA from the set of al
ternative MSAs. The majority voting approach relies on com
puting for each MSA, the degree of its agreement with all 
other alternative MSAs and selecting the one that agrees the 
most (see Section 4).

2.2 Generation of training and test data
We first describe in detail the simulation of nucleotide dataset 
SND1, in which each data point includes 10 unaligned 
sequences and their corresponding “true” MSA. We gener
ated 395 000 and 3000 data points for training and testing 
data, respectively. For each data point, we sampled a random 
tree using the program ETE 3 (Huerta-Cepas et al. 2016), 
with tree lengths uniformly distributed in the range 
ð0:05; 0:1Þ. The sequences along each tree were simulated 
using SpartaABC (Loewenthal et al. 2021). Specifically, indel 
parameters were sampled from the following ranges: 
RI; RD 2 ð0:0; 0:05Þ, AI; AD 2 1:01; 2:0ð Þ, and root length 
2 ½32; 44�. Of note, the insertion (RI and AI) and deletion 
(RD and AD) model parameters were sampled independently 
allowing a rich-indel model, in which insertions and deletions 
can have different evolutionary dynamics. The above param
eter ranges were found to accurately describe the indel evolu
tion rates along the tree of life (Loewenthal et al. 2021). The 
WAGþG and the GTRþG substitution models were used for 
the protein and nucleotide datasets, respectively. The 
GTRþG frequencies were ð0:37; 0:166; 0:307; 0:158Þ for 
the “T”, “C”, “A”, and “G”, respectively. Substitution rates 
were ð0:444; 0:0843; 0:116; 0:107; 0:00027Þ for the “a”, 
“b”, “c”, “d”, and “e” rate parameters as defined in Yang 
(1994). These frequencies and rate parameters reflect those 
that characterize the Yeast Intron Database (Lopez and 
S�eraphin 2000). Specific information for the simulation of 
each dataset is provided in Supplementary Table S2. The 

datasets are available on HuggingFace (Wolf et al. 2020) at: 
https://huggingface.co/dotan1111.

2.3 Transformer architecture
We applied the “vaswani_wmt_en_de_big” architecture 
(Vaswani et al. 2017) with 16 attention heads, embeddings 
size of 1024 and 6 layers. We also conducted an experiment 
to evaluate the effect of alternative architectures on perfor
mance (see Supplementary Information). We considered a va
riety of training hyperparameters configurations for the 
transformer, including different max tokens values, learning 
rates, and warmup updates and evaluated them on datasets 
of pairwise alignments (Supplementary Table S1). We contin
ued to train two configurations that yielded the best results, 
which we denote as “original” and “alternative”. The max 
token parameter values were 4096 and 2048 for the original 
and alternative transformers, respectively. For both configu
rations, we used the same learning rate (5E-5) and warmup 
updates (3000). Model training and evaluations were exe
cuted on a Tesla V100-SXM2-32GB GPU machine.

2.4 Using alternative alignments to increase the 
accuracy of BetaAlign
A “column certainty” metric was employed to compute 
“alignment certainty”. Given an alignment, x, and a set of al
ternative alignments, Y, the column certainty of each column 
in x is the number of times the column appears in each alter
native alignment y 2 Y divided by the total number of 
alignments in Y. As a result, column certainty values range 
between 0 and 1, where a score of 1 indicates high certainty. 
The alignment certainty is defined as the average of the col
umn certainty values (Fig. 6a).

It is possible to generate alternative MSAs for the same set 
of sequences. For example, alternative MSAs are generated 
by GUIDANCE to quantify the reliability of different regions 
within an MSA (Sela et al. 2015). These alternative MSAs are 
computed by considering alternative guide trees, considering 
co-optimal solutions of pairwise alignments, and changing 
the alignment scoring scheme. Alternative MSAs are also 
computed within the alignment program Muscle (Edgar 
2022). The alignment that agrees best with the set of alterna
tive MSAs is then chosen as the inferred MSA. We developed 
a similar approach for generating alternative MSAs, which is 
based on the deep learning methodology proposed here. 
Specifically, we alternate the order of the unaligned sequences 
given as input to the “concat” representation. This results in 
the inference of different MSAs for the same input. For exam
ple, an MSA of three sequences results in six different permu
tations, thus providing six alternative MSAs and similarly k!

alternative alignments for k sequences. In addition, as we 
trained several transformers with different training parame
ters for each dataset, we can add alternative alignments from 
two or more transformers by processing the same input using 
these different transformers (Dotan et al. 2023).

Formally, let x and h be a list of unaligned sequences and an 
aligner program, respectively. When computing an alignment, 
the aligner is dependent on a set of parameters, i.e., a configura
tion, denoted by α. Altering α would output a different align
ment for the same x and h. Thus, for a list of n different 
configurations: α1; . . . ; αi; . . . ;αn, one would receive n differ
ent alignments: Y ¼ fhα1 xð Þ; . . . ; hαi xð Þ; . . . ; hαn xð Þg. Of 
note, the alignments of different configurations could be the 
same. Creating the different configurations could be done by 

BetaAlign: a deep learning approach for multiple sequence alignment                                                                                                                         5 

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/41/1/btaf009/7945664 by TEL-AVIV U
N

IVER
SITY user on 19 M

arch 2025

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf009#supplementary-data
https://huggingface.co/dotan1111
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf009#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf009#supplementary-data


changing the scoring scheme for the aligners or by changing the 
permutation of the unaligned sequences in the case of BetaAlign 
(see above). For each alignment hαi xð Þ; we calculate the align
ment certainty described above, by comparing it to all the other 
alignments Y fhαi xð Þg and computing the average number of 
shared columns. We return the alignment that maximizes the 
alignment certainty. Specifically, we have two transformer con
figurations (“original” and “alternative”) and for each, we 

generated 10 alternative MSAs. We return the valid alignment 
with the highest certainty.

2.5 Calculating the loss
The training loss is calculated using the cross-entropy loss 
function (Szegedy et al. 2016). Consider a specific position 
within a pairwise alignment. In the “spaces” representation, 
there are five possible tokens in the nucleotide output (the 

Figure 2. Effect of increasing the training time (number of epochs) and size (number of different MSAs) on the fraction of invalid alignments 
(blue dots), CS-error (orange dots), validation loss (red dots), and training loss (green dots). All alignments were of three protein sequences, 
dataset SPD2. Note that the figure contains the four metrics together for comparing the correlation between the metrics. Each metric has a different 
range, and thus, there are multiple y-axes. Also note that the errors and coverage in this graph are based on a single alternative alignment, while in 
practice both the accuracy and coverage are substantially improved by considering a set of alternative MSAs (see text for details). The training loss and 
the validation loss clearly decrease with the number of epochs and the number of alignments used for training. In contrast, the CS-error and the fraction 
of invalid alignments show mediocre correlations with the training loss, and do not significantly decrease with the number of alignments used 
for training.
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five characters, “A”, “C”, “G”, “T”, “–”. In fact, the pipe 
character can also appear, as we use the same dictionary as 
the input). Our aligner predicts (accounting for the proceed
ing predictions in the alignment) a probability for each token. 
Let Pi be the probability for the token in which the next char
acter in the output alignment is i. Assume, for example that 
the correct class (the next character in the correct alignment) 
is “C”. In this case, the loss for this position is simply 
� logPC. The loss over the entire alignment string is the aver
age loss over all positions in the alignment. If all positions are 
predicted correctly (i.e., with a Pi ~¼1), the loss is close to 
zero. The higher the loss, the less accurate the prediction is. 

When the loss function is computed on the training data, we 
call it “training loss”, while when it is computed on the vali
dation data, we call it “validation loss”.

2.6 Evaluating accuracy and coverage
We evaluated the performance of BetaAlign using two met
rics: (i) column score (CS), which identifies how many col
umns are shared between the inferred and the true alignment. 
Of note, a shared column requires the same characters with 
the same positions of each character (Sela et al. 2015). The 
CS is the number of shared columns divided by the number 
of columns and thus the score is in the range [0,1]. The CS- 

Figure 3. Effect of subspace learning on the CS-error (a) and the fraction of invalid alignments (b). The three transformers: “general”, “specific”, 
and “ultra specific” were trained on the “general”, “specific”, and “ultra specific”, datasets, respectively. The “ultra specific” dataset (ND12) 
parameters (e.g., the indel rates) are a subset of the “specific” dataset (ND11) parameters, which are a subset of the “general” dataset (ND10) 
parameters. The difference between the accuracy of “general” and “ultra specific” transformers on the “ultra specific” dataset is significant (paired t- 
test; p<0:05).
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error is the complementary of the CS to 1. (ii) We use the 
term coverage to denote the percentage of valid alignments 
out of the total number of MSAs generated by the trans
former. Examples of invalid alignments are illustrated 
in Fig. 1c.

2.7 Evaluating the effect of training time and size
We generated datasets containing 50 000, 100 000, and 
200 000 alignments. Next, we trained transformers on each 
of the datasets for 60 epochs with the original transformer train
ing parameters. We evaluated the performance of the transform
ers at the end of each epoch, with respect to the following 
metrics: (i) training loss, (ii) validation loss, (iii) fraction of inva
lid alignments (i.e., 1—coverage), and (iv) CS-error. The valida
tion data contained 2000 alignments, which were used to 
measure the validation loss. The test data contained 3000 align
ments, which were used to measure the fraction of invalid align
ments and CS-error. Of note, in each of the three experiments 
we initialized the model with random weights, and thus, trans
fer learning did not affect these results.

2.8 Evaluating the effect of indel parameters on 
alignment inference accuracy
To quantify the effect of the evolutionary parameters on 
alignment inference accuracy, we generated training and test 
data using the same random topology and branch lengths as 
were used in PD14 (see Supplementary Table S2). The range 
of indel evolutionary parameters was binned: For AI and AD 
that dictate indel-length distribution for insertions and dele
tions, respectively, the following ten bins were considered for 
each parameter: (1.0, 1.1), (1.1, 1.2) … (1.9, 2.0). For RI 
and RD that dictate indel rates relative to substitutions for 
insertions and deletions, respectively, the following ten bins 
were considered for each parameter: (0.000, 0.005), (0.005, 

0.01) … (0.045, 0.05). We thus considered 100 bins for the 
pair (AI; ADÞ and similarly for the pair (RI, RD). When ana
lyzing the effect of AI and AD, for each of the 100 (AI; ADÞ

bins, 100 alignments were generated, in which the RI and RD 

values were sampled randomly from the range (0.00, 0.05). 
Thus, in total 10 000 MSAs were considered when studying 
the effect of the AI and AD parameters. Similarly, 10 000 
MSAs were considered when studying the effect of the RI and 
RD parameters, and in this case, in each MSA the AI and AD 

parameters were sampled from the range ð1:0; 2:0Þ. The 
score for each bin is the average over the scores of the 100 
alignments in each bin.

2.9 Subspace learning evaluation
The MSA in the training data for BetaAlign is generated by 
evolving sequences along a specific phylogenetic tree and dif
ferent MSAs are generated with different trees and with dif
ferent evolutionary models. The substitution and indel 
dynamics are dictated in this simulation by an evolutionary 
model (a continuous-time Markov process). Let g be the set 
of evolutionary models and trees used to generate the data. 
Clearly, a trained aligner, h, depends on g. In other words, 
our aligner learns to align sequences generated by the set of 
evolutionary models g that generated the training data. Thus, 
we can easily create aligners that will best suit a specific sub
space of model parameters and trees, e.g., aligners for a spe
cific phylogenetic tree, and similarly aligners for species or 
proteins with a specific indel or substitution dynamics. In 
subspace learning, the transformer is optimized on a subspace 
of the alignment parameters space. To test how subspace 
learning affects performance, we generated three nucleotide 
datasets, each one with a narrower range of model parame
ters, i.e., AI, AD, RD, and RI, branch lengths and root lengths 
(ND10, ND11, and ND12). We trained BetaAlign starting 
with the dataset of the widest parameter range (ND10), 
which we named “general”. Then, the optimized transform
ers were used as the starting point for additional training on 
the next dataset, ND11, whose model parameters are a subset 
of those of ND10. We named this dataset “specific”. The op
timized transformers from ND11 were then further trained 
on the next dataset (ND12) “ultra specific”. Each of the three 
transformers was evaluated on each of the three test datasets.

2.10 Embedding of MSAs in a high-dimensional  
space
The deep learning approach presented here enables embed
ding the information within the sequences in a high- 
dimensional space, i.e., it allows automatic feature extrac
tion, which could be utilized for downstream analyses. The 
high-dimensional vector is created within the encoding pro
cess from a set of unaligned sequences. To obtain the embed
ded vector, the unaligned sequences were given as an input to 
the trained transformer. The vector is internally created by 
the encoder part of the transformer, and we have modified 
the code of the transformer to extract it (to reduce running 
time, we skipped the decoder step). This high-dimensional 
vector contains �1024 ×n× l entries, where n is the number 
of input sequences and l is the average length of unaligned 
sequences. A representation of this vector, for three sequen
ces, is given in Supplementary Fig. S2a.

For various downstream tasks, it is often desirable to com
press this vector to a fixed size, i.e., a size that does not de
pend on the sequence length (the compressed vector size does 

Figure 4. Results of the linear regressor trained to predict the root 
length from the embedding of the unaligned sequences, with an R2 

of 0:91 and MSE of 2.003 base pairs. The solid (orange) line is the 
regression line and the dashed (red) line reflects the Y ¼ x function. The 
embeddings are of the ND10 dataset sequences.
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depend on the number of sequences). For the compression ex
ample shown in Supplementary Fig. S2, the uncompressed 
vector is of size 1024×15 and the size of the compressed vec
tor is 1024×5. Each of the unaligned sequences is represented 
by 1024 entries in the compressed vector by row-wise averag
ing of the corresponding tokens in the input sequences. In ad
dition, we use the representations of the pipe character in the 
compressed vector. Thus, the compressed vector corresponds 
to a vector of a fixed size of 1024 × ð2n – 1Þ.

2.11 Evaluating and implementing transfer learning
In our work, transfer learning was repeatedly used for training 
the transformers. The first protein transformer was trained on 
a simple dataset of pairwise amino acid sequences (we denote 
this dataset PD1, for protein dataset 1). Its weights were ran
domly sampled with default values of the Fairseq library (Ott 
et al. 2019). The resulting trained transformer is termed as 
“PT1”, for protein transformer 1. PT1 was next trained on 
PD2, resulting in PT2, etc. The term transfer learning is used 
to denote the fact that in order to obtain PT2, the transformer 

trained on PD2 was initialized with weights transferred from 
PT1, rather than random initialization. A similar process was 
used to train the nucleotide-based transformers (NT1, NT2, 
etc.) on nucleotide datasets (ND1, ND2, etc.). Of note, trans
fer learning was applied across this study only between models 
that processed data with the same representation, i.e., they 
share the same dictionaries.

We aimed to evaluate the contribution of transfer learning. 
To this end, we compared three different scenarios (illus
trated in Fig. 5). In Scenario 1, we evaluate a transformer 
that first encounters protein data PD5 (three protein sequen
ces). This transformer was trained before on simpler datasets. 
In Scenario 2, the trained transformer from Scenario 1 was 
retrained on PD5, without experiencing more complex data
sets. In Scenario 3, the trained transformer from Scenario 1 
was trained on additional more complex datasets (PD6, PD7, 
PD8, PD9, PD10, PD11, PD12, PD13, PD14, and PD15) and 
was then retrained on PD5.

A similar evaluation was done on nucleotide transformers. 
Here instead of PD5, the base-dataset was ND4, comprised 

Figure 5. Quantifying the contribution of transfer learning to performance. (a) The transfer learning path. Scenario 1 includes training on “D1”, 
“D2”, and “D3”. Scenario 2 is the same as Scenario 1, but the transformer was trained twice on “D3”. Scenario 3 includes training on “D1”, “D2”, 
“D3”, “D4”, “D5” and then again on “D3”. “D1” and “D2” represent simpler datasets. “D3” is the target dataset, composed of MSAs of three DNA or 
amino acid sequences, on which the performance was evaluated. “D4” and “D5” represent more complex datasets. Arrows between datasets 
represent the transfer learning path, i.e., the transformer optimized on a dataset was used as a base transformer for the next dataset. (b) The effect of 
transfer learning on the performance.
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of alignments of three sequences. In Scenario 3, the additional 
more complex datasets are: ND5, ND6, ND7, ND8, ND9, 
ND10, ND11, ND12, ND13, and ND14.

2.12 Comparing against other alignment programs
The performance of BetaAlign was compared to the following 
programs used with default parameters: MUSCLE v3.8.1551 
(Edgar 2004), MAFFT v7.475 (Katoh and Standley 2013), 
PRANK v.150803 (L€oytynoja and Goldman 2008), ClustalW 
2.1 (Larkin et al. 2007), and DIALIGN dialign2-2 
(Morgenstern 2004). Specific commands used for evaluation 
are provided in the Supplementary Information.

3 Results
3.1 Effect of training time and size
We tested how the number of epochs (a single pass on the 
whole training set) and training size affect the accuracy and 
coverage of BetaAlign. We compared the model’s 

performance when trained on three training data sizes: 
50 000, 100 000, and 200 000 protein alignments. Our 
results clearly indicate that for all datasets, the training loss 
(see Section 4) decreases as the number of epochs increases, 
reaching almost a plateau when the data size is 200 000 
alignments (Fig. 2). For each training data size, the validation 
loss follows the decrease in the training loss, suggesting that 
there is no overfitting for the transformer. The coverage (frac
tion of resulting alignments that are valid) also continuously 
increases, e.g., after 20 epochs the coverage was �40%, while 
after 60 epochs, the coverage was already �80%.

Inference accuracy is measured using the column score 
(CS), which quantifies the number of columns that are shared 
between the inferred and the “true” MSA (see Section 4). The 
CS-error (one minus the CS) seems to substantially fluctuate 
even after 30 epochs (we note that the CS-error quantifies the 
error on valid alignments only, while the loss function quanti
fies the error on all alignments). The correlation between the 
loss on the validation data and the CS-error on the dataset of 

Figure 6. Quantifying the correlation of alignment certainty and alignment accuracy. (a) An illustration demonstrating the calculation of alignment 
certainty. Consider x to be a pairwise alignment where “AAGT” is aligned to “ACGT” and Y to be the collection of two alternative alignments: (i) where 
“AAG-T” is aligned to “A-CGT” and (ii) where “AAGT” is aligned to “ACGT”. To determine the certainty for each column in x, we count the number of its 
appearances in the set of alternative alignments Y and divide it by the size of the set Y . For example, the first column, “AA”, appears both in alignments 
(i) and (ii) and thus its certainty is 2/2. The second column in x, “AC” appears only in alignment (ii) and thus its certainty is 1/2. (b) The frequency of the 
optimal alternative alignment for each certainty rank. For each data point, a total of 20 alternative alignments were considered, each with 10 sequences 
(SND1 and SPD1 for the nucleotide and protein datasets, respectively). The 20 MSAs were ranked according to their certainty. Next, the most accurate 
MSA was detected (based on the CS accuracy score) and its rank recorded. Of note, some of the alternative MSAs may be identical. In case the most 
accurate MSA was ranked multiple times (e.g., the first and second ranks), we consider its rank to be the higher rank (e.g., the first). Shown is the 
distribution of ranks among 3000 independent data points. In almost all cases, the MSA that had the highest confidence is ranked highest.
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100 000 alignments, between epochs 20 and 60, was R2 ¼

0.467 (p¼0.0023). This correlation suggests that reducing 
the loss also reduces the CS-error, despite the clear differences 
between these two functions.

Comparing the training and validation loss between the 
different training size datasets indicated that increasing the 

training size decreases the loss as expected (training loss at 
epoch 60: 0.989, 0.985, 0.977, for datasets of 50 000, 
100 000, 200 000, respectively). This gain in accuracy as 
reflected in the loss function was not evident when the perfor
mance is measured by the CS-error, reflecting lack of strong 
correlation between these two scores.

Figure 7. Comparing the results of BetaAlign with different aligners on SND1 (a) and SPD1 (b). The y-axis represents the performance of sequence 
alignment programs. The lower the CS-error, the better the performance.
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3.2 Effect of indel model parameters on BetaAlign 
performance
We next studied the effect of the different indel parameters 
(of the assumed indel model that generated the simulated 
data) on the performance. To this end, we divided the align
ments into bins by their evolutionary parameters: the inser
tion and deletion rate parameters (RI and RD, respectively) 
and the parameters that determine the distribution of indel 
lengths (AI and AD for the insertion and deletion distribu
tions, respectively). As expected, increasing the indel rate 
parameters RI and RD substantially decreases accuracy 
(Supplementary Fig. S1a). The size distribution of the indels 
had little effect on accuracy (Supplementary Fig. S1b).

3.3 Subspace learning
As stated above, we can train a transformer on a set of MSAs 
that share specific features, e.g., training them on MSAs with 
a high deletion rate and a low insertion rate. Deep learning 
models have a large number of free parameters, allowing 
learning complex patterns. In subspace learning, we optimize 
these free parameters again on a subset of the dataset. The 
starting weights of the parameters are the weights obtained 
for the entire range. Nevertheless, we note that as the archi
tecture is fixed, the number of free parameters is fixed as 
well. To determine if such a subspace-learning approach 
increases accuracy, we simulated three nucleotide datasets of 
five sequences per sample (see Section 4). The first dataset, 
“general” (ND10), was simulated with a wide range of indel 
model parameters. The second dataset, “specific” (ND11), 
was simulated on a subspace of the indel model parameter 
space, i.e., the generated MSAs resemble each other in terms 
of indel dynamics. Finally, the third dataset, “ultra specific” 
(ND12), is even more restrictive in terms of the allowed indel 
dynamics (see Supplementary Table S2). Our results suggest 
that subspace learning can improve both coverage and accu
racy (Fig. 3), with a more substantial effect on coverage. This 
highlights the importance of fitting the correct configuration 
of the alignment program (and in our case the training of the 
transformer) to the specific data. These results demonstrate 
that subspace learning has the potential to improve the accu
racy of BetaAlign.

3.4 Embedding extraction for downstream tasks
Transformers are composed of two parts, the encoder and 
the decoder. The encoder creates high-dimensional vector 
representations of the source sentence, i.e., the unaligned 
sequences, which are passed to the decoder to create the 
translated sentence, i.e., the aligned sequences. This high- 
dimensional vector embeds the information in sequences as a 
numeric representation. We compressed this vector to a vec
tor of a size that does not depend on the number of positions. 
In the case of n sequences, the dimension of the vector is 
1024× 2n−1ð Þ (see Section 4). To exemplify the utility of 
such a representation, we used this vector representation as 
input for a different machine-learning task, which is to esti
mate for each MSA the length of the root sequence, from 
which the resulting sequences diverged. To this end, we 
trained a linear regression model that takes the coordinates 
of the compressed high-dimensional vector as input. The 
training set includes 90 000 nucleotide MSAs, each with five 
sequences (ND10). The accuracy of the linear-regression 
model using these features was evaluated on test data com
prising 10 000 MSAs (Fig. 4). The significant correlation 

between the true and inferred root lengths [R2 ¼ 0:91 and 
2.003 base pairs mean squared error (MSE)] suggests that 
our approach can be used to compactly code sequences, as a 
preliminary step for downstream machine-learning tasks.

3.5 Transfer learning
Our approach heavily depends on transfer learning. Except 
for the first transformers, for which the weights were ran
domly initialized, all other transformers used initial weights 
that were optimized on a previous dataset. The transformers 
of the nucleotide datasets have a different path of training 
from the transformers of the amino acid datasets. In addition, 
each transformer is optimized based on the previous trans
former with the same configuration (as we trained two differ
ent transformers for each dataset). To evaluate the 
contribution of transfer learning to performance, we tested 
three alternative scenarios (Fig. 5a, see Section 4). Briefly, the 
transformer in Scenario 1 (Transformer 1) is trained once on 
a target dataset. Transformer 2 started from the end point of 
Transformer 1 and was retrained on the same target dataset. 
Transformer 3 (Scenario 3) started from the end point of 
Transformer 1 and was trained on various other datasets, 
and then retrained on the same target dataset. Our results 
demonstrated the benefit of transfer learning (Fig. 5b). 
Transformer 3 outperformed Transformer 1, both for protein 
and DNA sequences, with error reduction of 37.3% and 
33.3%, respectively (paired t-test; p<0.005). It may be that 
the increased accuracy resulted from the fact that 
Transformer 3 was trained twice on the target dataset and 
not due to the additional training. To test this hypothesis, we 
compared it to Transformer 2. Our analysis suggests that 
some of the improved accuracy is indeed due to the extra 
training (comparing Transformers 1 and 2). Nevertheless, it 
also shows that transfer learning substantially contributes to 
performance (comparing Transformers 2 and 3), resulting in 
16% and 25% error reductions for protein and DNA, respec
tively (paired t-test; p< 0.005).

3.6 Correlation of certainty and the 
alignment accuracy
We found a strong dependence between the alignment certainty 
and the CS-score (Fig. 6). As the certainty of alignments can be 
calculated by creating multiple alternative alignments for the 
same set of unaligned sequences (see Section 4), we could utilize 
this dependence to infer the most accurate alignment, similar to 
a previous approach (Edgar 2022).

Having observed that the alignment with the highest (align
ment) certainty is ranked higher than expected (among the 
set of alternative alignments from a specific dataset), we next 
directly compared performance between choosing the align
ment alternative with the highest certainty and selecting the 
first alternative alignment. We tested this approach on 10- 
sequences data points (SND1 and SPD1) and observed a sig
nificant CS-error reduction of 9.8% and 20.9% for DNA 
and protein alignments, respectively (paired t-test; p 
¼ 0.002).

3.7 Comparing performance
We compared the performance of BetaAlign after selecting the 
MSA with the highest certainty against other commonly used 
alignment programs, both for DNA and protein sequences 
(Fig. 7). For DNA sequences, regardless of the number of 
sequences analyzed, BetaAlign was the most accurate (paired t- 
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test; p<10� 7), with a minimal error reduction of 12.7%. The 
second most accurate alignment program was MUSCLE for 4– 
7 sequences and PRANK for 8–10 sequences. For 10 sequences, 
for example, BetaAlign had an 13.7% error reduction com
pared to PRANK (paired t-test; p<10� 12) and similar results 
were obtained for other number of sequences. MAFFT, 
DIALIGN, and ClustalW had a significantly lower perfor
mance, with MAFFT outperforming the two other alignment 
programs. Notably, for protein sequences, BetaAlign was typi
cally the second most accurate. For 10 sequences, the error re
duction of PRANK was 5.1% relative to BetaAlign. We 
speculate that the higher accuracy of protein MSAs compared 
to DNA-based MSAs, which is observed across all methods, 
stems from the higher alphabet size of protein sequences, which 
makes it easier to find anchors to guide MSA inference.

4 Discussion
The weights that are learned by the encoder can be used as a 
starting point for other machine-learning tasks, i.e., the sequen
ces are embedded as meaningful vectors that hold contextual in
formation. In this work, we demonstrated using such 
embedding for predicting the length of ancestral sequences, 
without computing the MSA. A similar approach can be used 
for other machine-learning tasks, e.g., secondary structure pre
diction, predicting the stability of proteins, and ancestral se
quence reconstruction. In NLP, transferring representations 
from one task to another is highly common, and encoder–de
coder models are commonly used for this purpose (McCann 
et al. 2017).

There are limitations when using NLP approaches for se
quence alignment, one of which arises from the maximum se
quence length that can be inserted into an attention-based 
model. This limitation stems from computing attention matri
ces, in which the memory requirement increases quadratically 
with the total length of the input and output sequences. The 
data size that can be processed depends on multiple factors 
that dictate the size of the obtained alignment. These factors 
include the number of sequences, the root length, the se
quence divergence, which is dictated by the edges of the phy
logenetic tree, and the indel rates and indel-length 
distributions. In general, the memory limitation is computer- 
specific, and on the current GPUs that we have used, we 
could analyze 1024 tokens (e.g., �10 sequences of 100 
aligned columns, see Section 4). To overcome this issue, we 
have developed a novel approach that involves splitting and 
merging the alignment while training the transformer on a 
slightly different task (Dotan et al. 2023). It is possible to ap
ply different techniques to increase the limit on the sizes of 
the sequences. For example, a different tokenization tech
nique allows multiple amino acids or nucleotides to be con
sidered as a single token, and thus reduces the number of 
tokens for the entire sequence (Dotan et al. 2024). Another 
option would be to employ state-space models instead of 
transformers (Gu et al. 2022).

Our proposed method introduces a paradigm shift: it redi
rects the focus from the traditionally labor-intensive task of 
developing new sequence aligners to the more manageable 
process of creating simulations that replicate the evolutionary 
dynamics observed in empirical data. This approach is partic
ularly beneficial for incorporating additional types of evolu
tionary events. For example, developing an aligner capable of 
detecting inversions in unaligned sequences would be 

complex and likely increase the algorithm’s complexity. In 
contrast, BetaAlign can be easily trained on simulated data 
that include inversions, enabling it to effectively align sequen
ces which experience inversions.

Generating multiple alternative alignments can be impor
tant for various applications, including the inference of align
ment reliability (Sela et al. 2015). MergeAlign (Collingridge 
and Kelly 2012) combines alternative alignments into a single 
consensus, offering a promising method for enhancing the ac
curacy and reliability of MSAs. Multiple alternative MSAs 
are also accounted for in Bayesian alignment strategies, such 
as Bali-Phy (Redelings 2021). However, Bayesian methods 
rely on a predefined prior and stochastic evolutionary model 
to guide alignment calculations, while in BetaAlign, the sto
chastic method is used for generating the training data, and 
not for the alignment inference.

We have coupled the NLP domain and the MSA problem 
by using transformers that were originally designed for natu
ral languages. Future improvements in the NLP field are 
likely to directly impact future alignment methodologies. We 
expect that transformers that are dedicated to the task of se
quence alignment, together with other breakthroughs in ma
chine learning, will lead to alignment algorithms that account 
for the specific grammar rules of each set of analyzed sequen
ces and will substantially outperform existing aligners.
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