
Parallel and Fully Recursive
Multifrontal Sparse Cholesky∗

Dror Irony† Gil Shklarski‡ Sivan Toledo§

1st May 2003

Abstract

We describe the design, implementation, and performance of a new parallel sparse
Cholesky factorization code. The code uses a multifrontal factorization strategy. Oper-
ations on small dense submatrices are performed using new dense-matrix subroutines
that are part of the code, although the code can also use the BLAS and LAPACK. The
new code is recursive at both the sparse and the dense levels, it uses a novel recur-
sive data layout for dense submatrices, and it is parallelized using Cilk, an extension
of C specifically designed to parallelize recursive codes. We demonstrate that the new
code performs well and scales well on SMP’s. In particular, on up to 16 processors,
the code outperforms two state-of-the-art message-passing codes. The scalability and
high performance that the code achieves imply that recursive schedules, blocked data
layouts, and dynamic scheduling are effective in the implementation of sparse factor-
ization codes.

keywords: sparse Cholesky factorization, parallel Cholesky factorization, multifrontal fac-
torizations, Cilk, recursive factorizations, block layouts, recursive layouts.

1 Introduction

This paper describes the design and implementation of a new parallel direct sparse linear
solver. The solver is based on a multifrontal supernodal sparse Cholesky factorization
[17] (see also the review [36]). The first analysis parallel multifrontal methods is due to
Duff [18], and there are now a number of parallel high-performance implementations [3,
23, 27, 32, 37].

The multifrontal method factors the matrix using recursion on a combinatorial structure
called the elimination tree (etree). Each vertex in the tree is associated with a set of columns
of the Cholesky factor L. The set of columns is called an amalgamated node [17] or a
relaxed supernode [6]. Strictly speaking, in the elimination tree each vertex is associated
with a single column. The structure that we call elimination tree in this paper is usually
called an assembly tree or a condensed or supernodal elimination tree. Since we never
refer to the single-column elimination tree in this paper, no confusion should arise. The
set of columns associated with a vertex is called a front or a supernode and the number of
columns in such as set is called the size of the front (or the size of the supernode). The
method works by factoring the columns associated with all the proper descendants of a

∗This research was supported in part by an IBM Faculty Partnership Award, by grants 572/00 and 9060/99
from the Israel Science Foundation (founded by the Israel Academy of Sciences and Humanities), and by a
VATAT graduate fellowship.

†Tel-Aviv University.
‡Tel-Aviv University.
§Corresponding author. School of Computer Science, Tel-Aviv University, Tel-Aviv 69978, Israel. Email:

stoledo@tau.ac.il. Telephone: +972-3-6405285. Fax: +972-3-6409357.

1

vertex v, then updating the coefficients of the unknowns associated with v, and factoring
the columns of v.

The updates and the factorization of the columns of v are performed using calls to the
dense level-3 BLAS [14, 15]. The ability to exploit the dense BLAS and the low symbolic
overhead allow the method to effectively utilize modern computer architectures with caches
and multiple processors. Our solver includes a newly designed and implemented subset of
the BLAS/LAPACK, although it can use existing implementations, such as ATLAS [42] and
BLAS produced by computer vendors [1, 2, 12, 28, 29, 33, 38].

While the multifrontal supernodal method itself is certainly not new, the design of our
solver is novel. The novelty stems from aggressive use of recursion in all levels of the
algorithm, which allows the solver to effectively utilize complex advanced memory systems
and multiple processors. We use recursion in three ways, one conventional and two new:

• The solver uses a recursive formulation for both the multifrontal sparse factorization
and for the new implementation of the BLAS. This approach is standard in multi-
frontal sparse factorization, and is now fairly common in new implementations of
the dense linear algebra codes [5, 19, 20, 25, 24, 26, 41, 42]. A similar approach was
recently proposed by Dongarra and Raghavan for a non-multifrontal sparse Cholesky
method [16]. This use of recursive formulations enables us to exploit recursion in
two new ways.

• The solver exploits parallelism by declaring, in the code, that certain function calls
can run concurrently with the caller. That is, the parallel implementation is based
entirely on recursive calls that can be performed in parallel, and not on loop parti-
tioning, explicit multithreading, or message passing. The parallel implementation
uses Cilk [21, 39], a programming environment that supports a fairly minimal par-
allel extension of the C programming language and a specialized run-time system.
One of the most important aspects of using Cilk is the fact that it performs dynamic
scheduling that leads to both load balancing and locality of reference.

• The solver lays out dense submatrices recursively. More specifically, matrices are
laid out in blocks, and the blocks are laid out in memory using recursive partitioning
of the matrices. This data layout, originally proposed by Gustavson et al. [24] en-
sures automatic effective utilization of all the levels of the memory hierarchy and can
prevent false sharing and other memory-system problems. The use of a novel indirec-
tion matrix enables low-overhead indexing and sophisticated memory management
for block-packed formats.

Our performance results indicate that sparse factorization codes implemented in Cilk can
achieve high performance and high scalability. The fact that Cilk schedules processors dy-
namically using only information about the procedure-invocation tree of a running program
relieves the programmer from having to implement complex special-purpose schedulers.
(Cilk runs on shared-memory machines; we acknowledge that on distributed-memory ma-
chines, static and special purpose schedulers might still be necessary.) Cilk supports nested
parallelism in a natural way: if there is sufficient parallelism at the top levels of the pro-
gram, Cilk does not extract any parallelism further down; if there is not, Cilk uses paral-
lelism exposed at lower levels. This ensures that the coarsest possible level of parallelism
is exploited, leading to low overhead and good data locality.

Our results also indicate that blocked data layouts for dense matrices enables high-
performance sequential and parallel implementations at both the dense and sparse levels of
the factorization code. We have found that it is best to keep the data in a blocked layout
throughout the computation, even though this results in slightly higher data-access costs at
the sparse levels.

The rest of the paper is organized as follows. Section 2 describe the design of the
new dense subroutines. Section 3 describes the design of the parallel sparse Cholesky

2

factorization code. Section 4 describes the performance of the new solver, and Section 5
presents our conclusions.

2 Parallel Recursive Dense Subroutines

Our solver uses a novel set of BLAS (basic linear algebra subroutines; routines that perform
basic operations on dense blocks, such as matrix multiplication; we informally include in
this term dense Cholesky factorizations). The novelty lies in the fusion of three powerful
ideas: recursive data structures, automatic kernel generation, and parallel recursive algo-
rithms.

2.1 Indirect Block Layouts

Our code stores matrices by block, not by column. Every block is stored contiguously
in memory, either by row or by column. The ordering of blocks in memory is based on
a recursive partitioning of the matrix, as proposed in [24]. The algorithms use a recursive
schedule, so the schedule and the data layout match each other. The recursive layout allows
us to automatically exploit level 2 and 3 caches and the TLB. The recursive data layout also
prevents situations in which a single cache line contains data from two blocks, situations
that lead to false sharing of cache lines on cache-coherent multiprocessors.

Our data format uses a level of indirection that allows us to efficiently access elements
of a matrix by index, to exploit multilevel memory hierarchies, and to transparently pack
triangular and symmetric matrices. While direct access by index is not used often in most
dense linear algebra algorithms, it is used extensively in the extend-add operation in multi-
frontal factorizations.

In our matrix representation, shown in Figure 1, a matrix is represented by a two-
dimensional array of structures that represent submatrices. The submatrices are of uniform
size, except for the submatrices in the last row and column, which may be smaller. This
array is stored in a column major order in memory. A structure that represents a submatrix
contains a pointer to a block of memory that stores the elements of the submatrix, as well as
several meta-data members that describe the size and layout of the submatrix. The elements
of a submatrix are stored in either column-major order or row-major order. The elements
of all the submatrices are normally stored submatrix-by-submatrix in a large array that
is allocated in one memory-allocation call, but the order of submatrices within that array
is arbitrary. It is precisely this freedom to arbitrarily order submatrices that allows us to
effectively exploit multilevel caches and non-uniform-access-time memory systems.

Note that in Figure 1, the matrix is not only partitioned, but its blocks are laid out
recursively in memory. That is, the first four blocks in memory are A11, A21, A12, and
A22, not the blocks in the first block-row or the first block-column. This arrangement is the
one we call recursive partitioning.

Accessing a random element of a matrix requires two div/mod operations and two in-
dexing operations in two-dimensional arrays. In a column- or row-major layout, only one
indexing operation is required and no div/mod’s. However, even in an extend-add opera-
tion, the elements that are accessed are not completely arbitrary, and many accesses are to
consecutive elements. In such cases, we can significantly reduce the cost of data accesses
by simply advancing a pointer up to the block boundary. Our code uses this optimization.

2.2 Efficient Kernels, Automatically-Generated and Otherwise

Operations on individual blocks are performed by optimized kernels that are usually pro-
duced by automatic kernel generators. In essence, this approach bridges the gap between
the level of performance that can be achieved by the translation of a naive kernel imple-
mentation by an optimizing compiler, and the level of performance that can be achieved by

3

A11

Array of pointers, stored by column

A21 A12 A22 A31 A41 A32 A42 A13 A23 A14 A24 A33 A43 A43 A44

Array of submatrices, stored by submatix, each submatrix stored by row or by column

Figure 1: The use of indirection in the layout of matrices by block. The matrix is rep-
resented by an array of pointers to blocks (actually by an array of structures that contain
pointers to blocks).

careful hand coding. The utility of this approach has been demonstrated by ATLAS, as well
as by earlier projects, such as PHIPAC [7]. We have found that on some machines with ad-
vanced compilers, such as SGI Origin’s, we can obtain better performance by writing naive
kernels and letting the native optimizing compiler produce the kernel. On SGI Origin’s, a
compiler feature called the loop-nest optimizer delivers better performance at smaller code
size than our automatically-generated kernels. Even on the SGI, our kernels are not com-
pletely naive: as in ATLAS, we split the kernel into several cases, one that handles fixed-size
blocks and others that handle smaller leftover blocks of arbitrary sizes.

We currently have kernel generators for two BLAS routines: DGEMM and DSYRK. We
also use hand-coded kernels for fixed-sized blocks. The hand-coded kernels are written
in assembly language and utilize SSE2 instructions (vector instructions on Intel Pentium
processors that handle pairs of double-precision floating-point numbers). These kernels are
based on the SSE2 DGEMM kernel contributed to ATLAS by Camm Maguires.

The kernel generators accept as input several machine parameter and code-configuration
parameters and generate optimized kernels automatically. Our matrix multiplication (DGEMM)
kernel generator is essentially the ATLAS generator (by Whaley and Petitet). We have im-
plemented a similar generator for rank-k update (DSYRK). The additional kernels ensure
that we obtain high performance even on small matrices; relying only on a fast DGEMM

kernel, which is the strategy that ATLAS uses, leads to suboptimal performance on small
inputs. Our DSYRK kernel is simpler than ATLAS’s DGEMM kernel: it uses unrolling but
not optimizations such as software pipelining and prefetching.

The flexibility of our data structures allows us one optimization that is not possible in
ATLAS and other existing kernels. Our data structure can store a submatrix either by row
or by column; a bit in the submatrix structure signals whether the layout is by row or by
column. Each kernel handles one layout, but if an input submatrix is laid out incorrectly,
the kernel simply calls a conversion subroutine that transposes the block and flips the layout
bit. In the context of the BLAS and LAPACK calls made by the sparse factorization code,
it is never necessary to transpose a block more than once. In other BLAS implementations
that are not allowed to change the layout of the input, a single block may be transposed
many times, in order to utilize the most efficient loop ordering and stride in each kernel
invocation (usually in order to perform the innermost loop as a stride-1 inner product).

2.3 Parallel Recursive Dense Subroutines

The fact that the code is recursive allows us to easily parallelize it using Cilk. The syntax
of Cilk, illustrated in Figures 2 and 3 (and explained fully in [39]) allows the programmer
to specify that a function call may execute the caller concurrently with the callee. A special
command specifies that a function may block until all its subcomputations terminate. Par-

4

cilk void mat mult add(int n,
matrix A, matrix B, matrix C) {

if (n < blocksize) {
mat mult add kernel(n, A, B, C);

} else {
// Partition A into A 11, A 12, A 21, A 22
// Partition B and C similarly
spawn mat mult add(n/2,A 11,B 11,C 11);
spawn mat mult add(n/2,A 11,B 12,C 12);
spawn mat mult add(n/2,A 21,B 11,C 21);
spawn mat mult add(n/2,A 21,B 12,C 22);
sync; // wait for the 4 calls to return
spawn mat mult add(n/2,A 12,B 21,C 11);
spawn mat mult add(n/2,A 12,B 22,C 12);
spawn mat mult add(n/2,A 22,B 21,C 21);
spawn mat mult add(n/2,A 22,B 22,C 22);

}
}

Figure 2: Simplified Cilk code for square matrix multiply-add. The code is used as an
illustration of the main features of Cilk; this is not the exact code that we use. Our recursive
code is about 90 lines long.

allelizing the recursive BLAS in Cilk essentially meant that we added the spawn keyword
to function calls that can proceed in parallel and the sync keyword to wait for termination
of subcomputations. We stress that we use recursion not just in order to expose parallelism,
but because recursion improves locality of reference in the sequential case as well.

3 Multifrontal Sparse Cholesky Factorization

Our multifrontal sparse Cholesky implementation is fairly conventional except for the use
of Cilk. The code is explicitly recursive, which allowed us to easily parallelize it using
Cilk. In essence, the code factors the matrix using a postorder traversal of the elimination
tree. At a vertex v, the code spawns Cilk subroutines that recursively factor the columns
associated with the children of v and their descendants. When such a subroutine returns, it
triggers the activation of an extend-add operation that updates the frontal matrix of v. These
extend-add operations that apply updates from the children of v are performed sequentially
using a special Cilk synchronization mechanism called inlets.

In this section we first explain the overheads incurred by Cilk programs. We then
explain the use of inlets to manage memory efficiently in our code, as well as performance
issues arising from the interfaces to the dense BLAS.

3.1 Overheads in a Cilk Program

Cilk programs incur three main kinds of overheads. The first source of overheads is the
cost of spawning a Cilk procedure, which is roughly 3 times more expensive than calling
a C function [39, Section 5.3]. We address this issue by switching from Cilk to straight C
at the bottom levels of the recursion. Since even C function calls are much more expensive
than loop iterations, we also switch from recursion to loops on small subproblems, as does
almost any high-performance recursive code.

The second source of overheads is Cilk’s processor scheduling mechanism. When a
processor pi that participates in the execution of a Cilk program becomes idle, it queries the
other processors, and if one of them, say pj , has work that needs to be performed, pi “steals”

5

a chunk of work from pj (the chunk is actually the top-most (oldest) suspended procedure
on pj’s execution stack). The other processors are queried by pi in a random order, which
introduces overhead when most of the processors are idle, since this situation leads to
many unsuccessful queries and to contention on the work queues of the busy processors.
Extensive theoretical and experimental analysis shows that when the program has sufficient
parallelism, this overhead is small with very high probability. See [39, Section 2.8] for an
overview, and [10, 9] for the technical details.

The third source of overhead is the memory system. Cilk uses a shared-memory model.
Most parallel computers, even those with hardware support for shared-memory program-
ming, have memories that are distributed to some extent. In some cases the main memory
is shared but each processor uses a private cache, and in other cases the main memory is
physically distributed among the processors. Access to a data item by multiple processors
(sometimes even to different data items that are stored nearby in memory) often induces
communication to communicate values and/or to invalidate or update cached values. This
source of overhead can be significant. Our experiments, reported below, show that as long
as the memory system is relatively fast, even when physically distributed, as in the case of
an Origin 3000 with 16 processors or fewer, this overhead is tolerable. But when the mem-
ory system is too slow, as in an Origin 3000 with more than 16 processors, the overheads
incurred by our code are intolerable.

3.2 Memory Management and Synchronization using Inlets

Inlets are subroutines that are defined within regular Cilk subroutines (similar to inner
functions in Java or to nested procedures in Pascal). An inlet is always called with a first
argument that is the return value of a spawned subroutine, as illustrated in Figure 3. The
runtime system creates an instance of an inlet only after the spawned subroutine returns.
Furthermore, the runtime system ensures that all the inlets of a subroutine instance are per-
formed atomically with respect to one another, and only when the main procedure instance
is either at a spawn or sync operation. This allows us to use inlets as a synchronization
mechanism, which ensures that extend-add operations, which all modify a dense matrix
associated with the columns of v, are performed sequentially, so the dense matrix is not
corrupted. This is all done without using any explicit locks.

The use of inlets also allows our parallel factorization code to exploit a memory-
management technique due to Liu [34, 35, 36]. Liu observed that we can actually delay
the allocation of the dense frontal matrix associated with vertex v until after the first child
of v returns. By cleverly ordering the children of vertices, it is possible to save significant
amounts of memory and to improve the locality of reference. Our sequential code exploits
this memory management technique and delays the allocation of a frontal matrix until after
the first child returns. In a parallel factorization, we do not know in advance which child
will be the first to return. Instead, we check in the inlet that the termination of a child
activates whether the frontal matrix of the parent has already been allocated. If not, then
this child is the first to return, so the matrix is allocated and initialized. Otherwise, the
extend-add simply updates the previously-allocated frontal matrix. Since Cilk’s scheduler
uses on each processor the normal depth-first C scheduling rule, when only one processor
works on v and its descendants, the memory allocation pattern matches the sequential one
exactly, and in particular, the frontal matrix of v is allocated after the first-ordered child
returns but before any of the other children begin their factorization process. When multi-
ple processors work on the subtree rooted at v, the frontal matrix is allocated after the first
child returns, even if it is not the first-ordered child.

3.3 Interfaces to the Dense Subroutines

The sparse Cholesky code can use both traditional BLAS and our new recursive BLAS.
Our new BLAS provide two advantages over traditional BLAS: they exploit deep memory

6

cilk matrix* snmf factor(vertex v) {
matrix* front = NULL;
inlet void extend add helper(matrix* Fc) {
if (!front) front = allocate front(v);
extend add(Fc, front);
free front(Fc);

}

for (c = first child[v]; c != -1; c = next child[c]) {
extend add helper(spawn snmf factor(c));

}
sync; // wait for the children & their extend-adds
if (!front) front = allocate front(v); // leaf

// now add columns of original coefficient matrix to
// frontal matrix, factor the front, apply updates,
// copy columns to L, and free columns from front

return front;
}

Figure 3: Simplified Cilk code for the multifrontal Cholesky factorization with inlets to
manage memory and synchronize extend-add operations.

hierarchies better and they are parallelized using Cilk. The first advantage affects only large
matrices, in particular matrices that do not fit within the level-2 cache of the processor. The
second advantage allows a single scheduler, the Cilk scheduler, to manage the parallelism
in both the sparse factorization level and the dense BLAS/LAPACK level.

On the other hand, the recursive layout that our BLAS use increases the cost of extend-
add operations, since computing the address of the (i, j) element of a frontal matrix be-
comes more expensive. By carefully implementing data-access operations, we have been
able to reduce the total cost of these operations, but they are nonetheless significant.

To explore this issue, we have implemented several variants of the interface code that
link the sparse factorization code to the dense kernels. One variant keeps the dense matrices
in blocked layout throughout the computation. Two other variants perform extend-add
operations on column-major layout but copy the data to and from blocked layout to exploit
the blocked-layout dense routines. One of these two variants copies data before and after
each call to a dense routine. The other variant copies data once before a sequence of three
calls that constitute the factorization of a frontal matrix and copies the data back after the
three calls. A final variant keeps the matrices in column-major layout and uses conventional
dense routines. Tables 1 and 2 in the next section presents performance results that compare
these four variants.

4 Performance

We now present performance results that support our claims regarding the design of the
factorization code. We conducted experiments on two different machines. One machine
is an SGI Origin 3000 series with 32 R14000 processors running at 500 MHz, and with
8 MB level-2 caches. The Origin 3000 is a ccNUMA machine. Its basic node contains 4
processors and a memory bank in a symmetric configuration (SMP); the combined memory
bandwidth of such a node is 3.2 GB/s in full duplex. Four such nodes are connected to a
router using 1.6 GB/s full-duplex links. The machine that we used has two routers, which
are connected using two 1.6 GB/s full-duplex links. The topology of this machine implies

7

deteriorating bisection bandwidths and increasing latencies when going from four nodes to
16 to 32.

The second computer that we used is a 1.6 GHz Intel Pentium 4 uniprocessor with
256 KB of on-chip cache and 256 MB of 133 MHz SDRAM main memory running Linux.
On this machine, both our matrix-multiplication kernel and ATLAS’s matrix-multiplication
kernel utilize SSE2 instructions, which allow for two double-precision multiply-add in-
structions per cycle.

We present results on matrices from the PARASOL test-matrix collection, on one matrix
from the Harwell-Boeing collection, and on Laplacians of regular 3-dimensional meshes
(i.e., 7-point finite-element discretizations of the model Poisson problem). All the matrices
have been reordered using METIS 4.0 with its default settings prior to the factorization.

Figure 4 shows that the uniprocessor performance of our new dense matrix subroutines
is competitive and often better than the performance of the vendor library, SGI’s SCSL

version 1.4, and competitive with the performance of ATLAS (version 3.4). The graphs in
the figure also show that even though the cost of copying to and from column-major order
is significant, on large matrices our routine outperforms the vendor’s routine even when this
cost is included. We note that the previous version of SCSL, 1.3, does not perform as well as
version 1.4 (see [30]). In particular, version 1.3 slows down significantly when the matrices
exceeds the size of the level-2 cache. Neither our code nor version 1.4 suffers from this
behavior. The data in the figure shows the performance of dense Cholesky factorization
routines, but the performance characteristics of other routines are similar.

In experiments not reported here, we have found that on both the Origin and the Pentium-
4 machine, the uniprocessor performance of our new dense codes does not depend on the
ordering of blocks. That is, as long as we lay out matrices by block, performance is inde-
pendent of the ordering of blocks (recursive vs. block-column-major). It appears that the
spatial locality that laying out matrices by block provides is sufficient, and that the addi-
tional coarser-grained spatial locality that we achieve by recursive layout of blocks does
not contribute significantly to performance.

Tables 1 and 2 demonstrate the performance differences between different sparse/dense
interfaces. The tables show the performance of several variants of the sparse/dense inter-
face. The no-column-major column describes the performance of a code that keeps the
frontal matrices in the indirect blocked layout; the extend-add operations access matrix el-
ements using double indirection. The no-column-major-simple-SYRK is a similar code, but
which uses a plain SYRK dense kernel rather than an automatically-generated and SSE2-
enhanced one (all the other variants use an automatically-generated and SSE2-enhanced
SYRK kernel). The copy-once-to-blocks code copies from column major to blocked lay-
out before the factorization of each frontal matrix, which consists of 3 dense calls. The
copy-for-each-routine code copies matrices before and after each of the 3 dense calls. The
column-major-with-ATLAS code uses a column-major layout for the frontal matrices and
calls ATLAS.

The data shows that blocked layouts are beneficial. On the Pentium 4, the blocked
layout and column-major layout with ATLAS result in similar performance. On the Origin,
blocked layout are clearly more effective than column-major layout with SCSL. On both
machines, when we use blocked layout, performing extend-adds directly on the blocked
layout is preferable to copying between blocked layouts and column-major layouts.

Table 1 also shows that the code benefits significantly from a highly optimized dense
SYRK kernel. The “simple” SYRK kernel uses a fairly simple implementation using three
nested loops. The optimized kernel uses SSE2 hand-coded kernel for 80-by-80 blocks and
automatically-generated unrolled kernels for smaller block sizes.

Figure 5 shows that our new dense matrix routines scale well unless memory access
times vary too widely. The graphs show the performance of the dense Cholesky factoriza-
tion routines on a 32-processor SGI Origin 3000 machine. The entire 32-processor machine
was dedicated to these experiments. On this machine, up to 16 processors can communicate
through a single router. When more than 16 processors participate in a computation, some

8

0 1000 2000 3000 4000
0

2

4

6

8

10x 10
8

matrix dimension

flo
at

in
g−

po
in

t o
pe

ra
tio

ns
 p

er
 s

ec
on

d
DPOTRF, 500Mhz Origin 3000

TAUCS
TAUCS (with copy)
SCSL 1.4

0 1000 2000 3000 4000
0

0.5

1

1.5

2x 10
9

matrix dimension

flo
at

in
g−

po
in

t o
pe

ra
tio

ns
 p

er
 s

ec
on

d

DPOTRF, 1.6 GHz Pentium 4

TAUCS
TAUCS (with copy)
ATLAS 3.4

0 200 400 600 800 1000
0

2

4

6

8x 10
8

matrix dimension

flo
at

in
g−

po
in

t o
pe

ra
tio

ns
 p

er
 s

ec
on

d

DPOTRF (small sizes), Origin 3000

TAUCS
TAUCS (with copy)
SCSL 1.4

0 200 400 600 800 1000
0

2

4

6

8

10

12

14x 10
8

matrix dimension

flo
at

in
g−

po
in

t o
pe

ra
tio

ns
 p

er
 s

ec
on

d

DPOTRF (small sizes), Pentium 4

TAUCS
TAUCS (with copy)
ATLAS 3.4

Figure 4: The uniprocessor performance of the new dense Cholesky factorization (denoted
TAUCS) compared to the performance of SCSL 1.4, SGI’s native BLAS/LAPACK and to AT-
LAS 3.4. Each plot shows the performance of our new subroutine with recursive layout, the
performance of the new subroutine when the input and output are in column-major order
(in which case we copy the input and output to and from recursive format), and the perfor-
mance of SCSL or ATLAS. The graphs on the top row show the performance on matrices
whose dimension is up to 4000, and the top row shows the performance on matrices with
dimension 1000 or less, to highlight the behavior of the code on smaller matrices.

Table 1: The performance of the code on a 1.6 GHz Pentium 4 with several variants of the
sparse/dense interface, explained in the text. The first matrix is from the Harwell-Boeing
collection, the third is from the PARASOL collection, and the two remaining ones are regular
3D meshes. The second column specifies the total number of floating-point operations in
the factorization, and columns 3–7 the performance of the different variants in Mflop/s.

Operation no column no col-maj. copy once copy for col-maj.
count major simple SYRK to blocks each routine w/ ATLAS

bcsstk32 1.73e9 430 430 343 330 464
30x30x30 2.72e9 686 638 478 466 661
oilpan 3.16e9 483 454 357 349 519
40x40x40 16.00e9 928 878 657 648 845

of the memory accesses must go through a link between two routers, which slows down
the accesses. The graphs show that when 16 or fewer processors are used, our new code
performs similarly or better than SCSL. The performance difference is especially signifi-
cant on 12–16 processors. But when 32 processors are used, the slower memory accesses
slow our code down more than it slows SCSL (but even SCSL slows down relative to its
16-processors performance). We suspect that the slowdown is mostly due to the fact that

9

Table 2: The performance of the code on a single processor of the Origin 3000 with sev-
eral variants of the sparse/dense interface. All the matrices except the last are from the
PARASOL collection, last is a regular 3D mesh. The columns are the same as in Table 1.
There is no no-column-major-simple-SYRK column in this case since on the Origin none
of our kernels are automatically generated. The last column shows the performance with
column-major layout and the SCSL BLAS.

Operation no column no col-maj. copy once copy for col-maj.
count major simple SYRK to blocks each routine w/ SCSL

crankseg1 35e9 620 536 528 616
thread 38e9 681 589 583 612
shipsec1 42e9 629 549 541 606
crankseg2 48e9 631 543 536 614
bmwcra1 66e9 605 522 514 593
50x50x50 63e9 686 592 588 552

12 4 8 12 16 32
0.5

1

1.5

2

2.5

3

3.5

4x 10
9

number of processors

flo
at

in
g−

po
in

t o
pe

ra
tio

ns
 p

er
 s

ec
on

d

DPOTRF, 500Mhz Origin 3000

TAUCS
TAUCS (with copy)
SCSL 1.4

12 4 8 12 16 32
0

2

4

6

8x 10
9

number of processors

flo
at

in
g−

po
in

t o
pe

ra
tio

ns
 p

er
 s

ec
on

d
DPOTRF, 500Mhz Origin 3000

TAUCS
TAUCS (with copy)
SCSL 1.4

Figure 5: The parallel performance of the new dense Cholesky factorization on matrices of
order 2000 (left) and 4000 (right).

we allocate the entire matrix in one memory-allocation call (so all the data resides on a
single 4-processor node) and do not use any memory placement or migration primitives,
which would render the code less portable and more machine specific.

Figures 7 and 8 show that our overall sparse Cholesky code scales well with up to 16
processors. Note that our earlier code [30] could not effectively exploit that many proces-
sors. The graphs in Figure 7 also show the benefit of parallelizing the sparse and dense
layers of the solver using the same parallelization mechanism. The code speeds up best
(circles) when both the sparse multifrontal code and the dense routines are parallelized
using Cilk. When we limit parallelism to either the sparse layer or to the dense routines
(triangles), performance drops significantly. Figure 8, which describes the performance
of our best code, shows that our code achieves not only effective speedups but also high
absolute performance.

Figure 6 explains the data in Figure 7. The figure shows that the vast majority of
fronts in the multifrontal algorithm are small, but most of the floating-point arithmetic is
performed on large fronts. On the four test matrices analyzed here, about 80% of the fronts
have fewer than 100 columns, but 80% of the arithmetic is performed on fronts with 500
columns or more. This observation is not new [3, 23, 27, 32, 37]; we repeat it here to
explain Figure 7. Parallelizing dense operations is important mainly in order to speed up
operations on large fronts. Processing multiple fronts in parallel is important since there
are numerous small fronts whose processing generates significant overhead, which should

10

10
0

10
1

10
2

10
3

20

40

60

80

100

supernode size

%
 o

f s
up

er
no

de
s

at
 th

is
 s

iz
e

&
 s

m
al

le
r

CRANKSEG1
CRANKSEG2
THREAD
BMWCRA1

10
0

10
1

10
2

10
3

20

40

60

80

100

supernode size

%
 o

f w
or

k
fo

r
th

is
 s

up
er

no
de

 s
iz

e
&

 s
m

al
le

r

CRANKSEG1
CRANKSEG2
THREAD
BMWCRA1

Figure 6: The distribution of front sizes (left) and the distribution of work according to
front sizes (right).

be parallelized.
Figure 9 shows that on an Origin 3000 with up to 16 processors, our code is competi-

tive with two other parallel sparse Cholesky factorization codes. In fact, our code is usualy
faster. The two other codes are MUMPS [3, 4] and PSPASES [23, 31, 32], both of which
are distributed-memory parallel codes. In this experiment we used the latest versions of the
codes available at the time of the experiment: MUMPS version 4.1.6, released March 2000,
and PSPASES version 1.0.3, dated May 9, 1999. We used SGI’s implementation of MPI
for both codes, and BLAS from SGI’s SCSL version 1.4. We also used ScaLAPACK version
1.7 [8, 11] and MPI-BLACS [13] version 1.1patch03 to run MUMPS. We used exactly the
same orderings for all the runs, orderings obtained from METIS. In PSPASES, we timed the
routine DPSPACEN, which is the numerical factorization phase, and in MUMPS, we timed
the routine MUMPS with parameters that instruct the routine to use our precomputed or-
dering and that inform the routine that the input matrix is symmetric positive definite. Due
to different supernode amalgamation strategies, the actual number of floating-point oper-
ations performed by the other codes are slightly different than the number performed by
TAUCS, even though the ordering is the same. MUMPS performed up to 0.46% more
floating-point operations. PSPASES performed between 5.11% fewer floating-point oper-
ations to 16.86% more. In PSPASES the amalgamation strategy depends on the number of
processors; in TAUCS and MUMPS it is not.

The data in Figure 9 clearly shows that our code is competitive with other parallel
sparse Cholesky codes, and usually faster. This indicates that the overheads hidden in the
recursive Cilk implementation are smaller or comparable to the overheads of other parallel
environments. We cannot conclude much more than this from the data, since TAUCS is
structurally different from the two other codes. MUMPS and PSPASES are distributed-
memory codes that use MPI, unlike TAUCS, which relies on shared memory. The memory
system of the Origin 3000 is physically distributed, but every processor can access all the
memory in a cache coherent and sequentially consistent manner. Using MPI on this ma-
chine obviously introduces overhead, which is a disadvantage, but avoids communication
induced by the coherency and consistency protocols. Therefore, the poorer performance of
PSPASES and MUMPS relative to TAUCS can be explained by the message-passing over-
heads. However, because PSPASES and MUMPS avoid implicit communication induced
by the consistency protocol, we expect them to perform well on more than 16 processors,
whereas TAUCS slows down on 32 processors, as indicated in Figure 5. Obviously, the
use of MPI also allows PSPASES and MUMPS to run on systems without shared-memory
support.

The comparisons are limited to PSPASES and MUMPS since these were the only par-

11

1 2 4 8 12 16
0

1

2

3

4

5x 10
9

number of processors

flo
at

in
g−

po
in

t o
pe

ra
tio

ns
 p

er
 s

ec
on

d
Sparse Cholesky, CRANKSEG1

All Parallel in Cilk
Parallel Sparse Only
Parallel Dense Only

1 2 4 8 12 16
0

1

2

3

4

5

6x 10
9

number of processors

flo
at

in
g−

po
in

t o
pe

ra
tio

ns
 p

er
 s

ec
on

d

Sparse Cholesky, CRANKSEG2

All Parallel in Cilk
Parallel Sparse Only
Parallel Dense Only

1 2 4 8 12 16
0

1

2

3

4x 10
9

number of processors

flo
at

in
g−

po
in

t o
pe

ra
tio

ns
 p

er
 s

ec
on

d

Sparse Cholesky, THREAD

All Parallel in Cilk
Parallel Sparse Only
Parallel Dense Only

1 2 4 8 12 16
0

1

2

3

4

5

6x 10
9

number of processors

flo
at

in
g−

po
in

t o
pe

ra
tio

ns
 p

er
 s

ec
on

d

Sparse Cholesky, BMWCRA1

All Parallel in Cilk
Parallel Sparse Only
Parallel Dense Only

Figure 7: The performance on the Origin 3000 of the parallel multifrontal sparse Cholesky
in Cilk on four PARASOL test matrices. The data only shows the performance of the nu-
meric factorization. The three plots in each graph show the performance of our Cilk-parallel
sparse solver with our Cilk-parallel dense routines, the performance of our Cilk-parallel
sparse solver with sequential recursive dense routines, and of our sequential sparse solver
with SCSL’s parallel dense routines. The TAUCS dense routines that we used in these ex-
periments copy to and from blocked layout before and after each dense call. Replacing
TAUCS’s sequential dense routines with SCSL’s dense routines does not significantly change
the performance of the overall code (“Parallel Sparse Only” plots).

allel sparse direct symmetric-positive-definite codes whose sources we could obtain.

5 Conclusions

Our research addresses several fundamental issues: Can blocked and possibly recursive
data layouts be used effectively in a large software project? In other words, is the overhead
of indexing the (i, j) element of a matrix acceptable in a code that needs to do that fre-
quently (e.g., a multifrontal code that performs extend-add operations on frontal matrices)?
How much can we benefit from writing additional automatic kernel generators and other
kernel optimizations? Can Cilk manage parallelism effectively in a multilevel library that
exposes parallelism at both the upper sparse layer and the lower dense layer?

Before we address each of these questions, we point out that the performance of our
code relative to other parallel sparse Cholesky codes indicates that our experiments, and
hence our conclusions, are valid. With up to 16 processors, our shared-memory code out-
performs two other parallel distributed-memory codes, MUMPS and PSPASES. Although
the distributed memory codes incur higher communication overhead, they avoid unneces-

12

1 2 4 8 12 16
0

1

2

3

4

5

6

7x 10
9

number of processors

flo
at

in
g−

po
in

t o
pe

ra
tio

ns
 p

er
 s

ec
on

d
Sparse Cholesky, CRANKSEG1

true flop/s
computational flop/s

1 2 4 8 12 16
0

2

4

6

8x 10
9

number of processors

flo
at

in
g−

po
in

t o
pe

ra
tio

ns
 p

er
 s

ec
on

d

Sparse Cholesky, CRANKSEG2

true flop/s
computational flop/s

1 2 4 8 12 16
0

1

2

3

4

5

6x 10
9

number of processors

flo
at

in
g−

po
in

t o
pe

ra
tio

ns
 p

er
 s

ec
on

d

Sparse Cholesky, THREAD

true flop/s
computational flop/s

1 2 4 8 12 16
0

2

4

6

8x 10
9

number of processors

flo
at

in
g−

po
in

t o
pe

ra
tio

ns
 p

er
 s

ec
on

d

Sparse Cholesky, BMWCRA1

true flop/s
computational flop/s

Figure 8: The performance and speedups of the sparse Cholesky code on the Origin 3000.
The data only shows the performance of the numeric factorization. The code is the no-
column-major code (third column in table 2). Each plot shows the performance in compu-
tational flop/s, which refers to the number of floating-point operations that the code actually
performs, and to the true flop/s, which excludes operations on structural zeros. The code
performs some operations on zeros in order to create larger supernodes [6].

sary communication that may be induced by the hardware’s shared-memory support mech-
anisms. Therefore, we believe that the comparison is essentially fair, and indicates that
our code performs at state-of-the-art levels. (We acknowledge that our code, like other
shared-memory codes, is sensitive to the performance characteristics of the shared memory
system, and that when the memory is too slow our code’s performance degrades.) Fur-
thermore, the sequential version of our code has been incorporated by the developers of
MATLAB [40] into the next release as the default sparse positive definite solver that the
linear-solve operator calls. While this implies nothing concerning the parallel code, it does
suggest that the sequential code, which is essentially identical to the parallel one except
for the use of C function calls instead of Cilk spawns, is efficient. The code will replace a
slower sparse left-looking column oriented code [22].

Our experiments clearly demonstrate that the blocked-recursive data layout does not
lower performance and can significantly improve performance (on the Origin). In addition,
the blocked layout is clearly scalable up to at least 16 processors. Although we have not
performed scalability experiments with column-major layouts, we believe that achieving
scalability with such layouts is more difficult. On the other hand, we have not found a
significant difference between the performance of column-major layout of the blocks and
a recursive layout of the blocks. This finding suggests that the recursive block layouts may
not be as important as suggested by [24]. The novelty in our results, compared to earlier
work on blocked and recursive layouts [24], is that we have demonstrated the effectiveness

13

of these layouts in a code that (1) often operates on small matrices, and (2) that performs
random accesses to matrix elements often.

Our experiments also clearly demonstrate that additional highly optimized kernels do
improve performance significantly. The obvious reason for this is that in a sparse Cholesky
code, a significant amount of work is performed in the context of dense operations on
small and medium matrices. As a result, a highly optimized matrix-multiplication kernel
(GEMM) does not provide near-optimal performance. We expect that additional optimized
kernels for POTRF and TRSM would further improve performance. In addition, it is clear
that other aspects of the dense kernels, such as data-copying policies and performance on
small problems also impact the performance of sparse codes.

So far, it seems clear that the Cilk can help manage parallelism and simplify code in
complex parallel codes. In particular, Cilk allows us to easily exploit nested parallelism.
The fact that both the elimination-tree parallelism and the dense parallelism are expressed
in Cilk allows the Cilk scheduler to effectively manage processors. However, the slow-
downs on 32 processors suggest that Cilk codes should manage and place memory care-
fully on ccNUMA machines. We also note that we have found that the overhead of the Cilk
scheduler is indeed small, but higher than we had expected. We found that avoiding spawn-
ing Cilk procedures on small problem instances, calling sequential C procedures instead,
can improve performance. This annoyance makes Cilk programming more difficult than it
should be.

The scalability and absolute performance of our code, as demonstrated by our experi-
ments, demonstrate the effectiveness of dynamic scheduling, at least on share-memory ma-
chines. Many parallel sparse factorization codes are statically scheduled, where a special-
ized scheduler decides in advance which processor or processors should perform which ver-
tices in the supernodal elimination tree. Our experiments demonstrate that a dynamically-
scheduled factorization can achieve high performance and scalability. The advantage of
dynamic scheduling is that it can adapt better to changes in the computing environments
(processors being used or freed by other users) and to parallelism in the application itself.

Our research not only addresses fundamental questions, but it also aims to provide
users of mathematical software with state-of-the-art high-performance implementations of
widely-used algorithms. A stable version of our sequential code (both real and complex)
is freely available at www.tau.ac.il/˜stoledo/taucs. This version includes the
sequential multifrontal supernodal solver. The parallel version with the recursive BLAS and
the parallelized Cilk codes is available from us upon request; we plan to incorporate the
parallel code into the standard distribution of TAUCS once we clean it up.

References

[1] R. C. Agarwal, F. G. Gustavson, and M. Zubair. Exploiting functional parallelism
of POWER2 to design high-performance numerical algorithms. IBM Journal of Re-
search and Development, 38(5):563–576, 1994.

[2] R. C. Agarwal, F. G. Gustavson, and M. Zubair. Improving performance of linear
algebra algorithms for dense matrices using algorithmic prefetch. IBM Journal of
Research and Development, 38(3):265–275, 1994.

[3] P. R. Amestoy, I. S. Duff, J. Koster, and J. L’Excellent. A fully asynchronous multi-
frontal solver using distributed dynamic scheduling. SIAM Journal on Matrix Analysis
and Applications, 23:15–41, 2001.

[4] P. R. Amestoy, I. S. Duff, J. L’Excellent, J. Koster, and M. Tuma. MUltifrontal
Massively Parallel Solver (MUMPS version 4.1), specification sheets. Available on-
line from http://www.enseeiht.fr/lima/apo/MUMPS/doc.html, Mar.
2000.

14

[5] B. S. Andersen, J. Waśniewski, and F. G. Gustavson. A recursive formulation of
cholesky factorization of a matrix in packed storage. ACM Transactions on Mathe-
matical Software, 27:214–244, June 2001.

[6] C. Ashcraft and R. Grimes. The influence of relaxed supernode partitions on the
multifrontal method. ACM Transactions on Mathematical Software, 15(4):291–309,
1989.

[7] J. Bilmes, K. Asanovic, C. W. Chin, and J. Demmel. Optimizing matrix multiply using
PHIPAC: a portable, high-performance, ANSI C coding methodology. In Proceedings
of the International Conference on Supercomputing, Vienna, Austria, 1997.

[8] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Don-
garra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley.
ScaLAPACK Users’ Guide. SIAM, Philadelphia, PA, 1997. Also available online
from http://www.netlib.org.

[9] R. D. Blumofe. Executing Multithreaded Programs Efficiently. PhD thesis, MIT
Department of Electrical Engineering and Computer Science, Sept. 1995.

[10] R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded computations by work
stealing. In Proceedings of the 35th Annual Symposium on Foundations of Computer
Science, pages 356–368, Santa Fe, New Mexico, Nov. 1994. IEEE Computer Society
Press.

[11] J. Choi, J. Dongarra, R. Pozo, and D. Walker. ScaLAPACK: A scalable linear algebra
for distributed memory concurrent computers. In Proceedings of the 4th Symposium
on the Frontiers of Massively Parallel Computation, pages 120–127, 1992. Also
available as University of Tennessee Technical Report CS-92-181.

[12] Compaq. Compaq extended math library (CXML). Software and documuntation
available online from http://www.compaq.com/math/, 2001.

[13] J. Dongarra and R. Whaley. A user’s guide to the blacs v1.0. Technical Report UT
CS-95-281, LAPACK Working Note 94, University of Tennessee, 1995. Available
online from http://www.netlib.org/blacs/.

[14] J. J. Dongarra, J. D. Cruz, S. Hammarling, and I. Duff. Algorithm 679: A set of
level 3 basic linear algebra subprograms. ACM Transactions on Mathematical Soft-
ware, 16(1):18–28, 1990.

[15] J. J. Dongarra, J. D. Cruz, S. Hammarling, and I. Duff. A set of level 3 basic lin-
ear algebra subprograms. ACM Transactions on Mathematical Software, 16(1):1–17,
1990.

[16] J. J. Dongarra and P. Raghavan. A new recursive implementation of sparse Cholesky
factorization. In Proceedings of the 16th IMACS World Congress 2000 on Scien-
tific Computing, Applications, Mathematics, and Simulation, Lausanne, Switzerland,
Aug. 2000.

[17] I. Duff and J. Reid. The multifrontal solution of indefinite sparse symmetric linear
equations. ACM Transactions on Mathematical Software, 9:302–325, 1983.

[18] I. S. Duff. Parallel implementation of multifrontal schemes. Parallel Computing, 3,
1986.

[19] E. Elmroth and F. Gustavson. Applying recursion to serial and parallel QR factor-
ization leads to better performance. IBM Journal of Research and Development,
44(4):605–624, 2000.

15

[20] E. Elmroth and F. G. Gustavson. A faster and simpler recursive algorithm for the
LAPACK routine DGELS. BIT, 41:936–949, 2001.

[21] M. Frigo, C. E. Leiserson, and K. H. Randall. The implementation of the Cilk-5
multithreaded language. ACM SIGPLAN Notices, 33(5):212–223, 1998.

[22] J. R. Gilbert, C. Moler, and R. Schreiber. Sparse matrices in MATLAB: Design and
implementation. SIAM Journal on Matrix Analysis and Applications, 13(1):333–356,
1992.

[23] A. Gupta, G. Karypis, and V. Kumar. Highly scalable parallel algorithms for
sparse matrix factorization. IEEE Transactions on Parallel and Distributed Systems,
8(5):502–520, 1997.

[24] F. Gustavson, A. Henriksson, I. Jonsson, B. Kågström, and P. Ling. Recursive blocked
data formats and BLAS’s for dense linear algebra algorithms. In B. Kågström, J. Don-
garra, E. Elmroth, and J. Waśniewski, editors, Proceedings of the 4th International
Workshop on Applied Parallel Computing and Large Scale Scientific and Industrial
Problems (PARA ’98), number 1541 in Lecture Notes in Computer Science Number,
pages 574–578, Ume, Sweden, June 1998. Springer.

[25] F. G. Gustavson. Recursion leads to automatic variable blocking for dense linear-
algebra algorithms. IBM Journal of Research and Development, 41:737–755, Nov.
1997.

[26] F. G. Gustavson and I. Jonsson. Minimal-storage high-performance Cholesky fac-
torization via blocking and recursion. IBM Journal of Research and Development,
44:823–850, Nov. 2000.

[27] P. Hénon, P. Ramet, and J. Roman. PaStiX: A high-performance parallel direct solver
for sparse symmetric definite systems. Parallel Computing, 28:301–321, 2002.

[28] IBM. Engineering and scientific subroutine library (SCSL). Software and documunta-
tion available online from http://www-1.ibm.com/servers/eservers/
pseries/software/sp/essl.html, 2001.

[29] Intel. Math kernel library (MKL). Software and documuntation available online from
http://www.intel.com/software/products/mkl/, 2001.

[30] D. Irony, G. Shklarski, and S. Toledo. Parallel and fully recursive multifrontal su-
pernodal sparse cholesky. In Proceedings of the International Conference on Compu-
tational Science (ICCS 2002), pages 335–344 of Part II, Amsterdam, Apr. 2002.

[31] M. Joshi, A. Gupta, F. Gustavson, G. Karypis, and V. Kumar. PSPASES: Scalable par-
allel direct solver library for sparse symmetric positive definite linear systems: User’s
manual for version 1.0.3. Technical Report TR 97-059, Department of Computer
Science, University of Minnesota, 1997, revised 1999.

[32] M. Joshi, A. Gupta, F. Gustavson, G. Karypis, and V. Kumar. PSPASES: An effi-
cient and scalable parallel sparse direct solver. Unpublished article, presented at the
International Workshop on Frontiers of Parallel Numerical Computations and Appli-
cations (Frontiers’99), Annapolis, Maryland, February 1999. Available online from
http://www-users.cs.umn.edu/˜mjoshi, 1999.

[33] C. Kamath, R. Ho, and D. P. Manley. DXML: a high-performance scientific subrou-
tine library. Digital Technical Journal, 6(3):44–56, 1994.

16

[34] J. W. H. Liu. On the storage requirement in the out-of-core multifrontal method for
sparse factorization. ACM Transactions on Mathematical Software, 12(3):249–264,
1986.

[35] J. W. H. Liu. The multifrontal method and paging in sparse Cholesky factorization.
ACM Transactions on Mathematical Software, 15(4):310–325, 1989.

[36] J. W. H. Liu. The multifrontal method for sparse matrix solution: Theory and practice.
SIAM Review, 34(1):82–109, 1992.

[37] O. Schenk and K. Gärtner. Sparse factorization with two-level scheduling in PAR-
ADISO. In Proceedings of the 10th SIAM Conference on Parallel Processing for
Scientific Computing, page 10 pages on CDROM, Portsmouth, Virginia, Mar. 2001.

[38] SGI. Scientific computing software library (SCSL). Software and documentation
available online from from http://www.sgi.com/software/scsl.html,
1993–2002.

[39] Supercomputing Technologies Group, MIT Laboratory for Computer Science, Cam-
bridge, MA. Cilk-5.3.2 Reference Manual, Nov. 2001. Available online at http:
//supertech.lcs.mit.edu/cilk.

[40] The MathWorks, Inc, Natick, MA. MATLAB Reference Guide, Aug. 1992.

[41] S. Toledo. Locality of reference in LU decomposition with partial pivoting. SIAM
Journal on Matrix Analysis and Applications, 18(4):1065–1081, 1997.

[42] R. C. Whaley and J. J. Dongarra. Automatically tuned linear algebra software. Tech-
nical report, Computer Science Department, University Of Tennessee, 1998. available
online at www.netlib.org/atlas.

17

1 2 4 8 12 16
0

2

4

6

8x 10
9

number of processors

flo
at

in
g−

po
in

t o
pe

ra
tio

ns
 p

er
 s

ec
on

ds
Sparse Cholesky, CRANKSEG1

TAUCS
MUMPS
PSPACES

1 2 4 8 12 16
0

10

20

30

40

50

60

number of processors

nu
m

er
ic

al
 fa

ct
or

iz
at

io
n

tim
e

in
 s

ec
on

ds

Sparse Cholesky, CRANKSEG1

TAUCS
MUMPS
PSPACES

1 2 4 8 12 16
0

2

4

6

8x 10
9

number of processors

flo
at

in
g−

po
in

t o
pe

ra
tio

ns
 p

er
 s

ec
on

ds

Sparse Cholesky, CRANKSEG2

TAUCS
MUMPS
PSPACES

1 2 4 8 12 16
0

20

40

60

80

100

number of processors

nu
m

er
ic

al
 fa

ct
or

iz
at

io
n

tim
e

in
 s

ec
on

ds

Sparse Cholesky, CRANKSEG2

TAUCS
MUMPS
PSPACES

1 2 4 8 12 16
0

2

4

6

8x 10
9

number of processors

flo
at

in
g−

po
in

t o
pe

ra
tio

ns
 p

er
 s

ec
on

ds

Sparse Cholesky, THREAD

TAUCS
MUMPS
PSPACES

1 2 4 8 12 16
0

10

20

30

40

50

60

number of processors

nu
m

er
ic

al
 fa

ct
or

iz
at

io
n

tim
e

in
 s

ec
on

ds

Sparse Cholesky, THREAD

TAUCS
MUMPS
PSPACES

1 2 4 8 12 16
0

2

4

6

8x 10
9

number of processors

flo
at

in
g−

po
in

t o
pe

ra
tio

ns
 p

er
 s

ec
on

ds

Sparse Cholesky, BMWCRA1

TAUCS
MUMPS
PSPACES

1 2 4 8 12 16
0

20

40

60

80

100

120

number of processors

nu
m

er
ic

al
 fa

ct
or

iz
at

io
n

tim
e

in
 s

ec
on

ds

Sparse Cholesky, BMWCRA1

TAUCS
MUMPS
PSPACES

Figure 9: The performance and speedups of three sparse Cholesky codes on the Origin
3000. The data only shows the performance of the numeric factorization. The plots on the
left show performance in true flop/s, which excludes operations on structural zeros. The
plots on the right show running times in seconds. The number of processors that PSPASES
can use must be a power of 2, and at least 2.

18

